Lovibond® Water Testing

Tintometer® Group

Manuale dei Metodi

Procedure di analisi per l'esame di acqua e acque di scarico

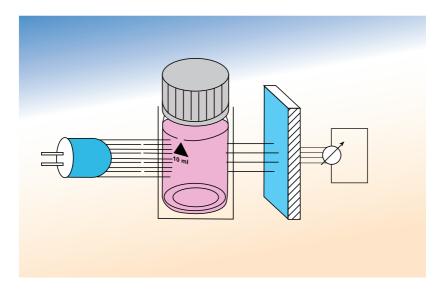
Titolo	No.	Valutazione	Pagina
Photometry		10	
Reagents		13	
Sample		14	
Glossary of analytical chemistry		17	
How to use		20	
Capacità acida KS4.3 con pastiglia	M20	K _{s4.3} T	34
Alcalinità, totale = alcalinità M = valore M con pastiglia	M30	Alcalinità M T	38
Alcalinità HR, totale = alcalinità M HR = valore M HR con pastiglia	M31	Alcalinità M HR T	42
Alcalinità P = valore P con pastiglia	M35	Alcalinità P T	46
Alluminio con pastiglia	M40	Alluminio T	52
Alluminio con polvere in bustine Vario	M50	Alluminio PP	58
Ammonio con pastiglia	M60	Ammonio T	64
Ammonio con polvere in bustine Vario	M62	Ammonio PP	70
Cloramina (M) PP	M63	Cloramina (M) PP	76
Cloro (libero) e monocloramina	M64	Cloro (libero) e mono- cloramina	84
Ammonio LR con test in cuvetta Vario	M65	Ammonio LR TT	92
Ammonio HR con test in cuvetta Vario	M66	Ammonio HR TT	98
Arsenico(III,IV)	M68	Arsenico	104
PHMB (biguanidi) con pastiglia	M70	PHMB T	110
Bromo con pastiglia	M78	Bromo 10 T	114
Bromo con pastiglia	M79	Bromo 50 T	120
Bromo con pastiglia	M80	Bromo T	126
Bromo con polvere in bustine	M81	Bromo PP	132
Boro con pastiglia	M85	Boro T	136
Cadmio con test in cuvetta MERCK Spectroquant® , n. 1.14834.0001	M87	Cadmio M. TT	140
Cloruro con pastiglia	M90	Cloruro T	146
Cloruro, test con reagente	M91	Cloruro L (B)	152
Cloruro con reagente liquido	M92	Cloruro L (A)	156
Cloruro con pastiglia	M93	Cloruro T	160
Cloro con pastiglia	M98	Cloro 10 T	164
Cloro con pastiglia	M99	Cloro 50 T	176
Cloro con pastiglia	M100	Cloro T	188
Cloro con reagente liquido	M101	Cloro L	200
Cloro HR con pastiglia	M103	Cloro HR T	210

Titolo	No.	Valutazione	Pagina
Cloro HR, rilevazione differenziata con pastiglia	M104	Cloro HR 10 T	220
Cloro HR (KI) con pastiglia	M105	Cloro HR (KI) T	230
Cloro con polvere in bustine	M110	Cloro PP	234
Cloro HR con polvere in bustine	M111	Cloro HR PP	244
Cloro MR con polvere in bustine	M113	Cloro MR PP	252
Biossido di cloro con pastiglia	M119	Biossido di cloro 50 T	262
Biossido di cloro con pastiglia	M120	Biossido di cloro T	268
Biossido di cloro con polvere in bustine	M122	Biossido di cloro PP	280
Cromo con polvere in bustine	M124	Cromo 50 PP	288
Cromo con polvere in bustine	M125	Cromo PP	298
CSB LR con test in cuvetta Vario	M130	CSB LR TT	308
CSB MR con test in cuvetta Vario	M131	CSB MR TT	316
CSB HR con test in cuvetta Vario	M132	CSB HR TT	322
CSB LMR con test in cuvetta	M133	CSB LMR TT	328
Rame, determinazione differenziata con pastiglia	M149	Rame 50 T	332
Rame, determinazione differenziata con pastiglia	M150	Rame T	340
Rame, determinazione differenziata con reagente liquido e polvere	M151	Rame L	350
Rame libero con polvere in bustine Vario	M153	Rame PP	360
Cianuro con test con reagenti	M156	Cianuro 50 L	366
Cianuro con test con reagenti	M157	Cianuro L	370
Test acido cianurico con pastiglia	M160	CYA T	376
Test acido cianurico con pastiglia	M161	CyA HR T	380
DEHA (N,N-dietilidrossilammina) con pastiglia e reagente liquido	M165	DEHA T (L)	384
DEHA (N,N-dietilidrossilammina) con polvere in bustine Vario e reagente liquido	M167	DEHA PP	390
Fluoruro con reagente liquido	M170	Fluoruro L	396
Formaldeide con test MERCK Spectroquant® , n. 1.14678.0001	M175	Formaldeide 10 M. L	402
Formaldeide con test MERCK Spectroquant® , n. 1.14678.0001	M176	Formaldeide 50 M. L	410
Formaldeide con test MERCK Spectroquant® , n. 1.14500.0001	M177	Formaldeide M. TT	418
Durezza calcio con pastiglia	M190	Durezza calcio T	422

Titolo	No.	Valutazione	Pagina
Durezza calcio 2 con pastiglia	M191	Durezza calcio 2T	428
Durezza calcio totale con pastiglia	M200	Durezza totale T	434
Durezza totale HR con pastiglia	M201	Durezza totale HR T	440
Colore, reale e apparente	M203	Hazen 50	446
Colore, reale e apparente	M204	Hazen 24	452
Idrazina con reagente in polvere	M205	Idrazina P	458
Idrazina con reagente liquido Vario	M206	Idrazina L	464
Idrazina con Vacu-vials® K-5003	M207	Idrazina C	470
Perossido di idrogeno con pastiglia	M209	H ₂ O ₂ 50 T	476
Perossido di idrogeno con pastiglia	M210	H_2O_2 T	482
Ipoclorito di sodio con pastiglia	M212	Ipoclorito di sodio T	488
Perossido di idrogeno LR con reagente liquido	M213	H ₂ O ₂ LR L	492
Perossido di idrogeno HR con reagente liquido	M214	H_2O_2 HR L	498
Iodio con pastiglia	M215	lodio T	502
Ferro(II,III), disciolto con pastiglia	M218	Ferro 10 T	506
Ferro(II,III), disciolto con pastiglia	M219	Ferro 50 T	512
Ferro(II,III), disciolto con pastiglia	M220	Ferro T	518
Ferro(II,III), disciolto con polvere in bustine Vario	M221	Ferro PP	524
Ferro(II,III), disciolto con polvere in bustine Vario	M222	Ferro PP	530
Ferro totale con polvere in bustine Vario	M223	Ferro (TPTZ) PP	536
Ferro totale (Fe in Mo) in presenza di molibdato con polvere in bustine Vario	M224	Ferro in Mo PP	542
Ferro LR con reagente liquido	M225	Ferro LR L (A)	548
Ferro LR (B) con reagente liquido	M226	Ferro LR L (B)	558
Ferro HR con reagente liquido	M227	Ferro HR L	570
Piombo (Pb2+)	M232	Piombo 10	580
Piombo (Pb2+) in acqua da dolce a medio-dura	M234	Piombo (A) TT	586
Piombo (Pb2+) in acqua da dura a molto dura	M235	Piombo (B) TT	594
Manganese con pastiglia	M240	Manganese T	602
Manganese LR con polvere in bustine Vario	M242	Manganese LR PP	606
Manganese HR con polvere in bustine Vario	M243	Manganese HR PP	612

Titolo	No.	Valutazione	Pagina
Manganese con reagente liquido	M245	Manganese L	616
Molibdato HR con pastiglia	M250	Molibdato T	622
Molibdato LR con polvere in bustine Vario	M251	Molibdato LR PP	626
Molibdato HR con polvere in bustine Vario	M252	Molibdato HR PP	632
Molibdato HR con reagente liquido	M254	Molibdato HR L	638
Nichel con test reagenti	M255	Nichel 50 L	642
Nichel con test reagenti	M256	Nichel L	646
Nitrato con pastiglia e polvere	M260	Nitrato T	650
Nitrato con test in cuvetta Vario	M265	Nitrato TT	656
Nitrato LR2 con test in cuvetta	M266	Nitrato LR2 TT	660
Nitrato LR con test in cuvetta	M267	Nitrato LR TT	666
Nitrato DMP HR con test in cuvetta	M268	Nitrate HR	672
Nitrito con pastiglia	M270	Nitrito T	678
Nitrito VHR L	M271	Nitrite VHR L	682
Nitrito con polvere in bustine Vario	M272	Nitrito PP	686
Nitrito LR con test in cuvetta	M275	Nitrito LR TT	690
Nitrito HR con test in cuvetta	M276	Nitrito HR TT	696
Azoto totale LR con test in cuvetta Vario	M280	TN LR TT	702
Azoto totale HR con test in cuvetta Vario	M281	TN HR TT	710
Azoto totale LR con test in cuvetta	M283	TN LR 2 TT	718
Azoto totale HR con test in cuvetta	M284	TN HR 2 TT	724
Ossigeno attivo con pastiglia	M290	Ossigeno attivo T	730
Ossigeno disciolto con Vacu Vials® K-7553	M292	Ossigeno disciolto C	734
Ozono con pastiglia	M299	Ozono 50 T	738
Ozono con pastiglia	M300	Ozono T	750
Ozono con polvere in bustine Vario	M301	Ozono PP	762
Fenoli con pastiglia	M315	Fenoli T	772
Fosfonato, metodo di ossidazione con UV in persolfato con polvere in bustine Vario	M316	Fosfonato PP	776
Fosfato totale LR con test in cuvetta	M317	Fosfato tot. LR TT	784
Fosfato totale HR con test in cuvetta	M318	Fosfato tot. HR TT	792
Fosfato orto LR con pastiglia	M319	Fosfato LR T	800
Fosfato orto LR con pastiglia	M320	Fosfato LR T	806

Titolo	No.	Valutazione	Pagina
Fosfato orto HR con pastiglia	M321	Fosfato HR T	812
Fosfato orto con test in cuvetta	M322	Fosfato HR TT	818
Fosfato orto con polvere in bustine Vario	M323	Fosfato PP	824
Fosfato orto con test in cuvetta Vario	M324	Fosfato TT	830
Fosfato idrolizzabile con acido con test in cuvetta Vario	M325	Fosfato idr. TT	836
Fosfato totale con test in cuvetta Vario	M326	Fosfato tot. TT	844
Fosfato HR orto con Vacu Vials® K-8503	M327	Fosfato HR C	852
Fosfato LR orto con Vacu Vials® K-8513	M328	Fosfato LR C	856
Valore pH LR con pastiglia	M329	Valore pH LR T	862
Valore pH con pastiglia	M330	Valore pH T	866
Valore pH con reagente liquido	M331	Valore pH L	870
Valore pH con pastiglia	M332	Valore pH HR T	876
Fosfato LR con reagente liquido	M334	Fosfato LR L	880
Fosfato HR con reagente liquido	M335	Fosfato HR L	890
Poliacrilati con reagente liquido	M338	Poliacrilati L	900
Potassio con pastiglia	M340	Potassio T	906
Coefficiente di assorbimento spettrale a 254 nm	M344	SAC 254 nm	910
Coefficiente di assorbimento spettrale a 436 nm	M345	SAC 436 nm	914
Coefficiente di assorbimento spettrale a 525 nm	M346	SAC 525 nm	918
Coefficiente di assorbimento spettrale a 620 nm	M347	SAC 620 nm	922
	M349	Silica VLR PP	926
Biossido di silicio con pastiglia	M350	Silicato T	932
Biossido di silicio LR con polvere in bustine Vario e reagente liquido	M351	Silicato LR PP	938
Biossido di silicio HR con polvere in bustine Vario	M352	Silicato HR PP	944
Biossido di silicio con reagente liquido e polvere	M353	Silicato L	950
Solfato con pastiglia	M355	Solfato T	956
Solfato con polvere in bustine Vario	M360	Solfato PP	960
	M361	Solfato HR PP	964
	M363	Selenio	968


Titolo	No.	Valutazione	Pagina
Solfuro con pastiglia	M365	Solfuro T	972
Solfito con pastiglia	M368	Solfito 10 T	976
Solfito con pastiglia	M370	Solfito T	980
Tensioattivi anionici con test in cuvetta MERCK Spectroquant® , n. 1.14697.0001	M376	Tensioattivi M. (anion.) TT	986
Tensioattivi non ionici con test in cuvetta MERCK Spectroquant® , n. 1.01787.0001	M377	Tensioattivi M. (non ion.) TT	992
Tensioattivi cationici con test in cuvetta MERCK Spectroquant® , n. 1.01764.0001	M378	Tensioattivi M. (cation.) TT	998
TOC LR con test in cuvetta MERCK Spectroquant® , n. 1.14878.0001	M380	TOC LR M. TT	1004
TOC HR con test in cuvetta MERCK Spectroquant® , n. 1.14879.0001	M381	TOC HR M. TT	1010
Solidi sospesi	M383	Solidi sospesi 50	1016
Solidi sospesi	M384	Solidi sospesi 24	1022
Torbidità	M385	Torbidità 50	1028
Torbidità	M386	Torbidità 24	1032
Benzotriazolo/tolitriazolo con polvere in bustine Vario	M388	Triazolo PP	1036
Tannino con reagenti liquidi	M389	Tannin L	1042
Urea con pastiglia e reagente liquido	M390	Urea T	1046
Urea con pastiglia e reagente liquido	M391	Urea T	1054
Zinco con pastiglia	M400	Zinco T	1060
Zinco con reagente liquido e polvere	M405	Zinco L	1066
PTSA	M500	PTSA	1070
PTSA	M501	PTSA	1074
Fluoresceina	M510	Fluoresceina	1078
Fluoresceina	M511	Fluoresceina	1082

Fotometria

Principio di misurazione

La misurazione della concentrazione con il metodo della fotometria si basa sulla capacità di una soluzione colorata di assorbire la luce di un determinato colore.

La riduzione dell'intensità luminosa nel momento in cui il campione viene irradiato dipende dall'intensità della colorazione. Dal momento che l'intensità della colorazione dipende dalla concentrazione dell'analita, osservando la riduzione dell'intensità luminosa è possibile ricavare la concentrazione dell'analita.

Si definisce trasmittanza il rapporto tra l'intensità luminosa misurata prima (I0) dell'irradiazione del campione e quella misurata dopo (I) l'irradiazione del campione. Per rappresentare in un ampio intervallo l'assorbimento della luce che si verifica durante tale processo si utilizza in genere il logaritmo decimale del reciproco della trasmittanza, anche noto come estinzione.

La relazione tra l'estinzione e la concentrazione del campione è definita dalla legge di Lambert-Beer:

$$E_{\lambda} = -\lg(Trans.) = -\lg(I/I_0) = \varepsilon \lambda \cdot c \cdot d$$

 $E_{\lambda} = Estinzione \ alla \ lunghezza \ d'onda \ \lambda \ ; \ \epsilon_{\lambda} = coefficiente \ di \ assorbimento \ del \ molare \ c = Concentrazione \ del \ campione \ ; \ d = Spessore \ dello \ strato \ della \ cuvetta$

conoscendo il percorso ottico della cuvetta e il coefficiente di estinzione molare dell'analita è possibile determinare la concentrazione dell'analita attraverso la misurazione dell'estinzione

Procedure di prova fotometriche

Per poter misurare gli analiti con l'ausilio della fotometria sono state sviluppate numerose procedure di prova. In queste prove una specifica reazione chimica genera una colorazione caratteristica, che successivamente viene misurata nel fotometro.

Nelle procedure di prova normalizzate viene prescritto un procedimento da seguire scrupolosamente in ogni dettaglio. Soltanto applicando la procedura in tutte le sue parti si potrà sfruttare il vero vantaggio di una procedura di analisi normalizzata: i dati prestazionali di analisi della procedura sono noti e universalmente riconosciuti.

Poiché tuttavia l'esecuzione delle procedure di analisi normalizzate richiede spesso conoscenze tecniche di laboratorio e un grande dispendio di apparecchiature e tempo, nelle analisi di routine si prediligono procedure semplificate. Queste derivano per la maggior parte da una procedura normalizzata, ma sono state sensibilmente ottimizzate per quel che riguarda il tempo impiegato, le apparecchiature utilizzate e le conoscenze tecniche necessarie, senza con ciò compromettere le prestazioni di analisi.

La nostra azienda offre kit di reagenti per oltre 150 procedure di analisi. Questi kit sono facili e sicuri da utilizzare e garantiscono una rapida esecuzione dell'analisi. Le calibrazioni, i tempi di reazione e i processi necessari per i kit di reagenti sono già programmati nei nostri fotometri sotto forma di metodi. Ciò consente di evitare errori durante l'analisi. Le misurazioni inoltre possono essere effettuate anche da persone non esperte nel campo della chimica.

Sul nostro sito web sono disponibili aggiornamenti regolari dei metodi sotto forma di aggiornamenti firmware.

Fattori che influiscono sull'analisi fotometrica

· Torbidità e particelle

La torbidità può essere già presente nel campione o può comparire in seguito alla reazione chimica del metodo di analisi. Se il metodo di analisi non è basato sulla misurazione di questa torbidità (come accade ad esempio nella determinazione del solfato), l'eventuale torbidità presente nella soluzione di misura interferisce con la misurazione fotometrica e provoca solitamente risultati troppo elevati.

La torbidità del campione può essere eliminata nella maggior parte dei casi eseguendo una filtrazione prima dell'analisi. Prima di tale processo il filtro dovrà essere sufficiente irrorato con il campione per evitare che la filtrazione alteri la concentrazione dell'analita nel campione.

Se viene trattato un campione torbido o contenente particelle prima dell'analisi vera e propria o durante la stessa (ad esempio nella determinazione del fosforo totale o del CSB) e le particelle contengono analita, questo campione non deve essere filtrato prima dell'analisi. La torbidità scompare in seguito alla digestione.

In questi campioni è importante garantire un'omogeneizzazione completa del campione, in modo tale che le piccole quantità di campione utilizzate per l'analisi siano rappresentative dell'intero campione.

· Valore del pH

I kit di reagenti non possono coprire i campioni di qualunque composizione possibile e immaginabile. I valori di pH del campione che differiscono sensibilmente dalla norma devono quindi essere riportati entro il range di pH prescritto per lo specifico metodo di analisi. La variazione nel volume del campione provocata dalla regolazione del pH dovrà essere considerata nel calcolo del risultato finale al pari di una diluizione.

Tempo

Le reazioni coloranti richiedono una determinata quantità di tempo per essere completate. Poiché in alcune procedure il complesso cromatico formatosi resta stabile soltanto per un tempo limitato, si deve anche evitare di superare i tempi prescritti. Pertanto è importante attenersi scrupolosamente ai tempi indicati nelle istruzioni di ar

Temperatura

La velocità di una reazione chimica dipende dalla temperatura. A basse temperature la maggior parte delle reazioni avviene più lentamente. Se non diversamente specificato, i metodi di analisi indicati si riferiscono a una procedura a temperatura ambiente. Reagenti molto freddi o un campione molto freddo possono rallentare la reazione e far sì che i tempi indicati non siano più corretti. Per questo motivo al momento dell'analisi il campione e i reagenti devono essere a temperatura ambiente.

Interferenze

Nello sviluppo delle procedure di analisi si cerca di ottenere il massimo grado di selettività possibile. Tuttavia le sensibilità trasversali nei confronti di altri analiti non vengono mai eliminate del tutto. Nella selezione della procedura bisogna tenere in considerazione le interferenze indicate in ciascun metodo. In alcuni casi si devono evitare le interferenze sottoponendo il campione a un pretrattamento speciale. Una contromisura efficace può essere anche scegliere un metodo più sensibile in combinazione con una prediluizione del campione.

Con il metodo delle aggiunte standard è possibile comprendere in che misura la composizione del campione interferisca con la procedura di misurazione scelta.

Consigli sulla fotometria

- Evitare oscillazioni di temperatura e umidità elevata durante la misurazione. In caso contrario i componenti ottici (ad es. fotorilevatore, cuvetta) possono appannarsi.
- · Per l'analisi si devono usare esclusivamente cuvette pulite.
- Eventuali torbidità o formazione di bolle nella soluzione di misura colorata o sulla superficie della cuvetta provocano alterazioni nei valori di misura.
- Le superfici delle cuvette attraversate dalla luce non devono essere toccate con le dita.
- Le pareti esterne delle cuvette devono essere asciutte.
- Utilizzare esclusivamente reagenti e indicatori concepiti e calibrati appositamente per il fotometro utilizzato. Eventuali sostanze chimiche differenti possono alterare i valori di misura.
- Attenersi scrupolosamente ai volumi di campione e reagenti indicati nella procedura di analisi
- Attenersi scrupolosamente ai tempi di attesa tra l'aggiunta del reagente e la misurazione indicati nella procedura di analisi.

Reagenti

I reagenti possono contenere sostanze nocive. Osservare sempre, pertanto, le avvertenze sui pericoli e sulla manipolazione riportate nelle schede tecniche di sicurezza dei reagenti.

Soluzioni reagenti

Durante il dosaggio di reagenti liquidi tramite boccetta contagocce, questa deve essere tenuta in posizione verticale. Premendo lentamente si immetteranno nel campione gocce di uguale grandezza.

Dopo l'uso, i flaconi devono sempre essere chiusi con il loro tappo. Per garantire una lunga durata dei reagenti è necessario conservarli come indicato nella istruzioni per la conservazione.

Reagenti in pastiglie

Uno dei vantaggi di questo formato è che con ogni pastiglia viene sempre dosata una quantità definita della preparazione necessaria. Inoltre la durata dei reagenti in pastiglie è maggiore di quella dei reagenti in altri formati.

Nel manipolare i reagenti in pastiglie bisogna accertarsi che le pastiglie vengano immesse nel campione di acqua direttamente dal blister, senza toccarle con le dita. Durante l'estrazione di ogni pastiglia occorre fare attenzione a non rompere la cavità adiacente per non comprometterne la tenuta.

Reagenti in polvere

La forma più diffusa di queste preparazioni sono le bustine di polvere predosate. Il reagente è racchiuso tra due fogli di alluminio saldati tra loro. In questo modo viene garantita una durata di conservazione maggiore rispetto a quella delle soluzioni reagenti, sebbene inferiore a quella dei reagenti in pastiglie. Per quanto riguarda la precisione di dosaggio, i reagenti in polvere sono superiori alle soluzioni reagenti. Tuttavia anche sotto questo aspetto i reagenti in pastiglie risultano generalmente migliori. Il vantaggio principale dei reagenti in polvere rispetto alle pastiglie è la solubilità più rapida. I reagenti in polvere sono ottimizzati per fuoriuscire completamente dalla bustina aperta. Eventuali residui minimi di reagente nella bustina non incidono sulla precisione del metodo. Pertanto non è necessario ad esempio sciacquare l'interno della bustina per far fuoriuscire l'eventuale polvere rimasta.

Campione

Prelievo del campione

Il primo passaggio dell'analisi è il prelievo del campione da analizzare. La correttezza dei risultati dell'analisi dipende in ampia misura dalla correttezza del prelievo del campione. L'obiettivo principale del prelievo del campione è che la quantità parziale prelevata rifletta il più possibile lo stato della quantità totale.

I requisiti per il prelievo e la preparazione del campione dipendono anche dall'analita da misurare.

Ad esempio per misurare il cloro nelle reti di tubazioni è necessario far scorrere nella tubazione una sufficiente quantità di acqua prima del prelievo effettivo del campione. Durante il prelievo il campione non deve essere sottoposto a turbolenze eccessive per evitare la degassificazione del cloro. Per la misurazione del fosforo totale nell'acqua di scarico, invece, il contenuto di analita non viene influenzato negativamente dalle turbolenze presenti al momento del prelievo del campione. Al contrario, tali turbolenze sono persino auspicabili: l'acqua di scarico contiene in genere una parte di solidi, pertanto effettuando il prelievo in un punto tranquillo di un condotto si potrebbe prelevare una quantità minima di solidi e il campione in questo caso non rifletterebbe lo stato generale del condotto

Può anche essere utile prelevare più campioni parziali e successivamente combinarli tra loro per aumentare la rappresentatività del campione finale.

Nell'analisi della misurazione comparativa rispetto a un altro sistema di misura (ad es. installato in modo fisso) bisogna accertarsi che in entrambi i casi venga effettivamente misurato lo stesso campione, ovvero che nelle due misurazioni non vi sia alcuna differenza nel prelievo del campione in termini di tempo o luogo (ad es. in caso di prelievo del campione per la misurazione comparativa direttamente dal sistema di misura installato e non dal condotto attraverso il quale il campione giunge al sistema di misura fisso).

Preparazione del campione

Prima di analizzare un campione sono solitamente necessari alcuni passaggi preliminari, che possono avere un influsso sostanziale sul risultato.

Stabilizzazione

Per i parametri che non vengono misurati direttamente sul posto è necessario stabilizzare il campione prima del trasporto e dello stoccaggio in modo tale che il contenuto di analita resti invariato

Parametro	Trattamento	Stoccaggio
Cl ₂ , Br ₂ , ClO ₂	nessuno, analizzare immediatamente	non ammesso
Metalli pesanti	nessun trattamento	analizzare in tempi brevi
Metalli pesanti	a pH 1 con HNO₃	max. 4 settimane
CSB	raffreddare a 2°-5°C	max. 24 h
NH ₄ , NO ₃ , NO ₂	nessuno, analizzare immediatamente	solo in casi eccezionali
		a 2°-5°C per max. 3h
PO ₄ , P	nessun trattamento	analizzare in tempi brevi
PO ₄ , P	a pH 1 con HNO₃	max. 4 settimane

Neutralizzazione

La maggior parte dei metodi di analisi funziona correttamente soltanto in un range di pH definito. Se il campione, a causa del suo valore di pH molto lontano dalla norma o del suo elevato potere tamponante, impedisce ai reagenti di impostare questo range di pH, l'utilizzatore dovrà regolare preventivamente il valore di pH del campione.

Diluizione

Può essere necessario diluire il campione laddove il suo contenuto di analita oltrepassi il range di misura del metodo o laddove la diluizione sia finalizzata a ridurre al minimo l'effetto delle interferenze.

Per ottenere una diluizione con il massimo grado di precisione è possibile procedere come seque:

Introdurre la quantità di campione desiderata in un matraccio da 100 ml con una pipetta adeguata o, in caso di volumi ridotti, con una pipetta a pistone. Riempire il matraccio con acqua demineralizzata fino alla tacca e miscelare bene.

Da questo campione diluito viene prelevata la quantità indicata nelle istruzioni di analisi e quindi si esegue l'analisi. Successivamente il risultato visualizzato deve essere convertito nel volume iniziale:

Esempio per matraccio da 100 ml:

Volume di campione introdotto / [ml] Il risultato va moltiplicato per

1	100
2	50
5	20
10	10
25	4
50	2

Filtrazione

Le torbidità presenti nel campione possono essere rimosse eseguendo una filtrazione prima dell'analisi, purché l'analita stesso sia altamente idrosolubile e non sia assorbito o legato a particelle. Prima di tale processo il filtro dovrà essere sufficiente irrorato con il campione per evitare che la filtrazione alteri la concentrazione dell'analita nel campione.

Se viene trattato un campione torbido o contenente particelle prima dell'analisi vera e propria o durante la stessa (ad esempio nella misurazione del fosforo totale o del CSB), questo campione non deve necessariamente essere filtrato prima dell'analisi in quanto le particelle contengono l'analita e contribuiscono quindi al risultato. Tali torbidità scompaiono in gran parte in seguito alla digestione.

Le lievi torbidità possono essere parzialmente compensate in fotometri adeguati misurando e includendo la torbidità di fondo su una seconda lunghezza d'onda accanto al colore da misurare.

Omogeneizzazione

Se si devono trattare campioni contenenti particelle o torbidità, prima e durante il prelievo di una quantità parziale bisogna sempre garantire un'omogeneizzazione sufficiente del campione. Per l'operazione si utilizzano in genere agitatori ad alta velocità (oltre 5000 giri al minuto), che frantumano anche le particelle più grandi e garantiscono una distribuzione sufficientemente uniforme.

Digestione

L'analita può presentarsi in forme non accessibili alla reazione chimica del metodo. Gli ioni metallici ad es. possono essere legati a forti agenti complessanti o presentare il grado di ossidazione errato. Il fosforo o l'azoto possono non essere disponibili come unità molecolari per la reazione di rivelazione specifica. Gli analiti legati ai solidi devono essere trasformati in soluzione prima di un'analisi idrochimica. In tutti questi casi l'analisi effettiva presuppone una cosiddetta digestione.

Nella descrizione del metodo vengono espressamente menzionate tali digestioni se i reagenti di digestione fanno parte del kit di reagenti. Tuttavia se si devono analizzare ad esempio parti non disciolte in un campione con un metodo che è stato concepito per l'analisi di soluzioni chiare, queste devono essere sottoposte a digestione separatamente prima dell'analisi.

La diluizione del campione originale causata dalla procedura di digestione deve essere tenuta in considerazione nel calcolo del risultato finale.

Se non si sa se sia necessaria una digestione (ad es. nell'ambito dell'analisi dei metalli pesanti) si consiglia di confrontare il risultato dell'analisi di un campione sottoposto a digestione con quello di un campione non sottoposto a digestione. Se i valori sono simili, la digestione non è necessaria. Se il campione sottoposto a digestione presenta valori più alti, in futuro si dovrà eseguire la digestione. L'informazione acquisita deve essere verificata di tanto in tanto.

Piccolo

Analita

L'analita è la sostanza che deve essere rilevata o misurata nella sua concentrazione nell'ambito di una procedura analitica.

Assorbanza

L'assorbanza è l'aspetto parziale dell'estinzione in cui la luce interagisce con la materia che attraversa in modo tale che la sua intensità diminuisca.

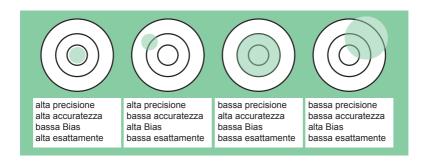
Estinzione

Deriva dalla parola latina "extinctio". In generale nell'ottica descrive l'attenuazione della luce. Si basa essenzialmente su diffusione, diffrazione e assorbanza.

Accuratezza (inglese: "accuracy")

L'accuratezza è probabilmente uno dei termini usati più di frequente nella chimica analitica. Tuttavia il suo significato esatto viene spesso frainteso. Ciò è dovuto al fatto che in sostanza questo concetto racchiude insieme due grandezze concretamente misurabili (precisione e correttezza) e quindi non rappresenta di per sé una grandezza autonomamente misurabile. Secondo il VIM (vocabulaire international de métrologie) un'accuratezza maggiore equivale a un errore minore. Tuttavia, poiché questo errore si compone in modo imprevedibile delle divergenze del risultato della misurazione rispetto al valore reale e della dispersione uniforme dei risultati, l'accuratezza non può essere calcolata concretamente come valore numerico.

Precisione (inglese: "precision")


La precisione misura la dispersione non sistematica dei risultati della misurazione di un campione prodotta con misurazioni ripetute in condizioni costanti. Per il calcolo della precisione si ricorre all'assunzione di errori distribuiti in modo statisticamente uniforme. Se si presenta una distribuzione non uniforme degli errori in riferimento al valore reale, questa viene imputata a una causa sistematica, ovvero a una mancanza di esattezza.

Esattezza

(inglese "trueness" o al contrario "bias", tuttavia erroneamente chiamata anche "accuracy")

Un risultato di misura è esatto se non si discosta dal valore reale del campione. Nel caso normale il valore reale di un campione specifico non è noto. Tuttavia per poter ottenere un valore per l'esattezza di un'analisi viene misurato un campione preparato artificialmente con una concentrazione nota dell'analita (il cosiddetto standard). Anche in caso di misurazioni esatte, le misurazioni ripetute presentano una dispersione rispetto al valore reale, in quanto una precisione assoluta non viene mai raggiunta. Tuttavia queste misurazioni in media non differiscono dal valore reale.

L'esattezza definisce anche la distanza del valore medio dei risultati dal valore reale. Una piccola distanza corrisponde a un'elevata esattezza e viceversa.

Limite di rilevabilità

La concentrazione minima che può essere distinta significativamente dallo zero è chiamata limite di rilevabilità. Spesso viene assunto quale criterio una significatività del 99,7% (ciò vuol dire che su 1000 misurazioni sarebbero errate solo tre dichiarazioni). Nel caso in cui sia presente un numero sufficiente di misurazioni e gli errori siano distribuiti in modo statisticamente normale, il limite di rilevabilità con la significatività richiesta si trova a una distanza tripla rispetto alla divergenza standard del segnale di sfondo.

A partire da un segnale di questa intensità è possibile quindi affermare con il 99,7% di sicurezza che il segnale non deriva più dallo sfondo (zero) ma da una concentrazione di analita più elevata.

La misura della concentrazione al livello del limite di rilevabilità tuttavia non è possibile. Questo perché le concentrazioni possibili che possono generare un tale segnale (più precisamente al 99,7%) si estendono su un intervallo che va da zero al doppio del limite di rilevabilità.

Limite di quantificazione

Per poter indicare una concentrazione con sufficiente precisione viene richiesto di norma un segnale di misura pari a 9-10 volte la divergenza standard dello sfondo. La concentrazione che genera guesto segnale viene chiamata limite di guantificazione.

Sensibilità

La variazione del segnale di misura in accordo con la variazione della concentrazione dell'analita viene definita sensibilità. Una procedura fotometrica è tanto più sensibile quanto più l'assorbanza cambia in seguito a una determinata variazione di concentrazione dell'analita

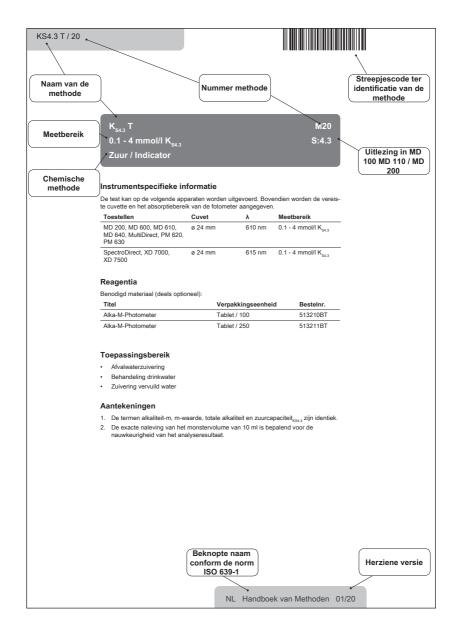
Range di misura

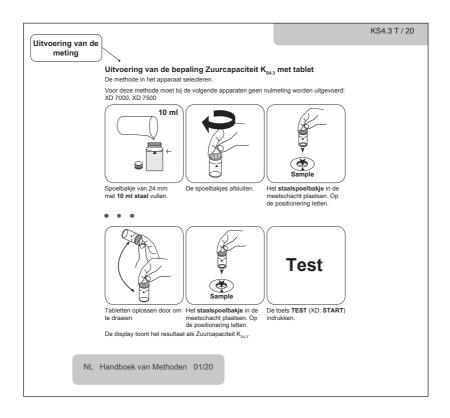
Il range di misura è il range di concentrazione entro il quale il metodo di analisi funziona con una determinata precisione (da definire). Il limite minimo possibile può essere considerato il limite di rilevabilità del metodo, il limite massimo può essere la concentrazione massima analizzabile.

Il range di misura effettivo tuttavia dipende sempre dai requisiti di precisione dell'applicazione concreta. Può essere quindi più piccolo del range massimo possibile.

Matrice

Si chiama matrice l'insieme di tutti i componenti del campione che non siano l'analita. La matrice influisce spesso sull'accuratezza del metodo. I componenti del campione ad esempio possono reagire in modo simile all'analita, possono verificarsi torbidità, i valori del pH possono essere alterati o le reazioni possono persino essere compromesse. Per riconoscere i possibili effetti di disturbo da parte della matrice è possibile utilizzare il metodo delle aggiunte standard nell'ambito del controllo di qualità dell'analisi.


Metodo delle aggiunte standard


In questa procedura vengono analizzati sia il campione che un campione al quale è stata aggiunta una quantità nota di analita. Nel caso ideale i risultati dell'analisi così ottenuti dovrebbero differire esattamente della quantità di analita aggiunta. Se la differenza è minore, applicando questo metodo di analisi la matrice del campione porterà a risultati troppo bassi. Se la differenza è maggiore, la matrice del campione porterà a risultati troppo alti.

La concentrazione iniziale del campione addizionato deve essere corretta con la quantità aggiunta della soluzione additiva:

Esempio:

10 ml di campione danno un valore di misura di 5 mg/l di analita 9 ml di campione + 1 ml di soluzione additiva con 20 mg/l analita = 5 mg/l /10*9 + 20 mg/l /10*1 = 6.5 mg/l valore di misura previsto

Let op:

In geval van XD 7000 en XD 7500 is het verloop na het opstarten van een meting anders dan hierboven staat beschreven. (XD: 'START) Door een cuvettest met streepjescode in te steken wordt de meting meteen geïnitieerd. Steek de cuvettest tot aan de bodem in de ronde schacht van het spoelbakje De lichtmeter selecteert de methode aan de hand van de streepjescode en start automatisch de meting. Bij een cuvet met een diameter van 24 mm of bij een rechthoekig cuvet moet u de methode eerst handmatig selecteren of via een externe streepjescodelezer selecteren. Het insteken van de ronde 24 mm-cuvet initieert dan eveneens terstond de meting. Bij toepassing van een rechthoekig cuvet moet u eerst het deksel over de cuvetschacht sluiten om de meting te kunnen initiëren. Vervolgens moet u de meting starten door toets START in te drukken.

Procedure bij tijdvoorgift:

Wordt in de methode na dotatie van een reagens een wachtduur vermeld? Wacht dan het verstrijken van die wachtduur af alvorens de meting te initiëren.

No.	Analyses	Campo di misura	Unità	Display MD 100/110/200
M31	Alcalinità M HR T	5 - 500	mg/L CaCO₃	
M30	Alcalinità M T	5 - 200	mg/L CaCO₃	tA
M35	Alcalinità P T	5 - 500	mg/L CaCO₃	
M50	Alluminio PP	0.01 - 0.25	mg/L Al	AL
M40	Alluminio T	0.01 - 0.3	mg/L Al	AL
M66	Ammonio HR TT	1.0 - 50	mg/L N	
M65	Ammonio LR TT	0.02 - 2.5	mg/L N	
M62	Ammonio PP	0.01 - 0.8	mg/L N	A
M60	Ammonio T	0.02 - 1	mg/L N	Α
M68	Arsenico	0.02 - 0.6	mg/L As	
M119	Biossido di cloro 50 T	0.05 - 1	mg/I CIO ₂	
M122	Biossido di cloro PP	0.04 - 3.8	mg/I CIO ₂	CLO2
M120	Biossido di cloro T	0.02 - 11	mg/I CIO ₂	CLO2
M85	Boro T	0.1 - 2	mg/L B	
M78	Bromo 10 T	0.1 - 3	mg/L Br ₂	
M79	Bromo 50 T	0.05 - 1	mg/L Br ₂	
M81	Bromo PP	0.05 - 4.5	mg/L Br ₂	
M80	Bromo T	0.05 - 13	mg/L Br ₂	Br
M87	Cadmio M. TT	0.025 - 0.75	mg/L Cd	
M156	Cianuro 50 L	0.005 - 0.2	mg/L CN	
M157	Cianuro L	0.01 - 0.5	mg/L CN	
M63	Cloramina (M) PP	0.02 - 4.5	mg/L NH ₂ Cl as Cl ₂	
M98	Cloro 10 T	0.1 - 6	mg/L Cl ₂	
M99	Cloro 50 T	0.02 - 0.5	mg/L Cl ₂	
M64	Cloro (libero) e monocloramina	0.02 - 4.50	mg/L Cl ₂	CL2
M104	Cloro HR 10 T	0.1 - 10	mg/L Cl ₂	
M105	Cloro HR (KI) T	5 - 200	mg/L Cl ₂	CLHr
M111	Cloro HR PP	0.1 - 8	mg/L Cl ₂	CL8
M103	Cloro HR T	0.1 - 10	mg/L Cl ₂	CL10
M101	Cloro L	0.02 - 4.0	mg/L Cl ₂	CL6
			IT Manuale	e del metodo

, Test Kit	MD 100	MD 110	MD 200	MD 600, MD 610	MD 640	• MultiDirect	• PM 600	• PM 620	• PM 630	SpectroDirect	XD 7000	XD 7500	Pagina
				•	•	•	•	•	•				42
	•	•	•	•	•	•	•	•	•				38
				•	•	•							46
	•	•		•	•	•		•	•				58
	•	•		•	•	•		•	•				52
				•	•	•							98
				•	•	•							92
	•			•	•	•							70
•	•	•		•	•	•		•	•				64
										•	•	•	104
										•	•	•	262
	•			•	•	•							280
	•	•	•	•	•	•		•	•				268
				•	•	•							136
										•	•	•	114
										•	•	•	120
				•	•	•							132
	•	•	•	•	•	•	•	•	•				126
										•	•	•	140
										•	•	•	366
				•	•	•							370
				•	•								76
										•	•	•	164
										•	•	•	176
				•	•			•					84
										•	•	•	220
	•	•		•	•	•							230
				•	•			•	•				244
	•	•	•	•	•	•	•	•	•				210
	•	•	•	•	•	•		•	•				200

No.	Analyses	Campo di misura	Unità	Display MD 100/110/200
M113	Cloro MR PP	0.02 - 3.5	mg/L Cl ₂	CL2
M110	Cloro PP	0.02 - 2	mg/L Cl ₂	CL2
M100	Cloro T	0.01 - 6.0	mg/L Cl ₂	CL6
M92	Cloruro L (A)	0.5 - 20	mg/L Cl ⁻	CL-
M91	Cloruro L (B)	5.00 - 60	mg/L Cl	
M90	Cloruro T	0.5 - 25	mg/L Cl ⁻	CL-1
M93	Cloruro T	5 - 250	mg/L Cl ⁻	CL-2
M124	Cromo 50 PP	0.005 - 0.5	mg/L Cr	
M125	Cromo PP	0.02 - 2	mg/L Cr	
M132	CSB HR TT	200 - 15000	mg/L COD	Hr
M133	CSB LMR TT	15 - 300	mg/L COD	LMr
M130	CSB LR TT	3 - 150	mg/L COD	Lr
M131	CSB MR TT	20 - 1500	mg/L COD	Mr
M161	CyA HR T	10 - 200	mg/L CyA	СуАН
M160	CYA T	10 - 160	mg/L CyA	СуА
M167	DEHA PP	0.02 - 0.5	mg/L DEHA	DEHA
M165	DEHA T (L)	0.02 - 0.5	mg/L DEHA	
M191	Durezza calcio 2T	20 - 500	mg/L CaCO₃	CAH
M190	Durezza calcio T	50 - 900	mg/L CaCO₃	
M201	Durezza totale HR T	20 - 500	mg/L CaCO₃	tH2
M200	Durezza totale T	2 - 50	mg/L CaCO₃	tH1
M315	Fenoli T	0.1 - 5	mg/L C₅H₅OH	
M218	Ferro 10 T	0.05 - 1	mg/L Fe	
M219	Ferro 50 T	0.01 - 0.5	mg/L Fe	
M223	Ferro (TPTZ) PP	0.02 - 1.8	mg/L Fe	FE2
M227	Ferro HR L	0.1 - 10	mg/L Fe	
M224	Ferro in Mo PP	0.01 - 1.8	mg/L Fe	FEM
M225	Ferro LR L (A)	0.03 - 2	mg/L Fe	FE
M226	Ferro LR L (B)	0.03 - 2	mg/L Fe	
M222	Ferro PP	0.02 - 3	mg/L Fe IT Manuale	FE1 del metodo

. Test Kit . MD 100 MD 200 MD 200 MD 640 . MD 640 . MultiDirect PM 620 . PM 630 . PM 630 XD 7000 XD 7000 XD 7500	252
	234
	188
	156
	152
	146
	160
	288
	298
	322
	328
	308
	316
	380
	376
	390
	384
	428
	422
	440
	434
	772
	506
	512
	536
	570
	542
	548
	558
	530

No.	Analyses	Campo di misura	Unità	Display MD 100/110/200
M221	Ferro PP	0.01 - 1.5	mg/L Fe	
M220	Ferro T	0.02 - 1	mg/L Fe	FE
M510	Fluoresceina	10 - 400	ppb	
M511	Fluoresceina	10 - 300	ppb	
M170	Fluoruro L	0.05 - 2	mg/L F	F
M175	Formaldeide 10 M. L	1.00 - 5.00	mg/L HCHO	
M176	Formaldeide 50 M. L	0.02 - 1.00	mg/L HCHO	
M177	Formaldeide M. TT	0.1 - 5	mg/L HCHO	
M327	Fosfato HR C	1.6 - 13	mg/L P	
M335	Fosfato HR L	5 - 80	mg/L PO₄	PO4
M321	Fosfato HR T	0.33 - 26	mg/L P	
M322	Fosfato HR TT	1 - 20	mg/L P	
M325	Fosfato idr. TT	0.02 - 1.6	mg/L P	
M328	Fosfato LR C	0.02 - 1.6	mg/L P	
M334	Fosfato LR L	0.1 - 10	mg/L PO₄	
M320	Fosfato LR T	0.02 - 1.3	mg/L P	PO4
M319	Fosfato LR T	0.05 - 4	mg/L P	P
M323	Fosfato PP	0.02 - 0.8	mg/L P	PO4
M318	Fosfato tot. HR TT	1.5 - 20	mg/L P	
M317	Fosfato tot. LR TT	0.07 - 3	mg/L P	
M326	Fosfato tot. TT	0.02 - 1.1	mg/L P	
M324	Fosfato TT	0.06 - 5	mg/L P	
M316	Fosfonato PP	0.2 - 125	mg/L PO ₄	
M209	H2O2 50 T	0.01 - 0.5	mg/L H ₂ O ₂	
M214	H2O2 HR L	40 - 500	mg/L H ₂ O ₂	HP2
M213	H2O2 LR L	1 - 50	mg/L H ₂ O ₂	HP1
M210	H2O2 T	0.03 - 3	mg/L H ₂ O ₂	
M204	Hazen 24	10 - 500	mg/L Pt	PtCo
M203	Hazen 50	10 - 500	mg/L Pt	
M207	Idrazina C	0.01 - 0.7	mg/L N ₂ H ₄	
M206	Idrazina L	0.01 - 0.6	mg/L N ₂ H ₄	
			IT 14	

, Test Kit	MD 100	MD 110	MD 200	MD 600, MD 610	MD 640	MultiDirect	PM 600	PM 620	PM 630	SpectroDirect	• XD 7000	XD 7500	Pagina
											•	•	524
	•	•	•	•	•	•	•	•	•				518
					•								1078
					•								1082
	•			•	•	•				•	•	•	396
										•	•	•	402
										•	•	•	410
										•	•	•	418
				•	•	•							852
	•	•		•	•								890
				•	•	•							812
										•			818
				•	•	•							836
				•	•	•							856
				•	•								880
	•	•		•	•	•							806
							•	•	•				800
	•			•	•	•							824
										•	•	•	792
										•	•	•	784
				•	•	•							844
				•	•	•							830
				•	•	•							776
										•	•	•	476
			•	•	•	•		•	•		•	•	498
			•	•	•	•					•	•	492
				•	•	•							482
	•			•	•	•							452
										•	•	•	446
				•	•	•							470
				•	•	•							464

No.	Analyses	Campo di misura	Unità	Display MD 100/110/200
M205	Idrazina P	0.05 - 0.5	mg/L N ₂ H ₄	Hydr
M215	lodio T	0.05 - 3.6	mg/L I	
M212	Ipoclorito di sodio T	0.2 - 16	% NaOCI	
M20	KS4.3 T	0.1 - 4	mmol/L $K_{\rm S4.3}$	S:4.3
M243	Manganese HR PP	0.1 - 18	mg/L Mn	Mn2
M245	Manganese L	0.05 - 5	mg/L Mn	
M242	Manganese LR PP	0.01 - 0.7	mg/L Mn	Mn1
M240	Manganese T	0.2 - 4	mg/L Mn	Mn
M254	Molibdato HR L	1 - 100	mg/L MoO ₄	Mo2
M252	Molibdato HR PP	0.3 - 40	mg/L Mo	MO2
M251	Molibdato LR PP	0.03 - 3	mg/L Mo	Mo1
M250	Molibdato T	1 - 50	mg/L MoO₄	Mo3
M255	Nichel 50 L	0.02 - 1	mg/L Ni	
M256	Nichel L	0.2 - 7	mg/L Ni	
M268	Nitrate HR	1.2 - 35	mg/L N	
M266	Nitrato LR2 TT	0.2 - 15	mg/L N	
M267	Nitrato LR TT	0.5 - 14	mg/L N	
M260	Nitrato T	0.08 - 1	mg/L N	
M265	Nitrato TT	1 - 30	mg/L N	
M271	Nitrite VHR L	25 - 2500	mg/L NO ₂	
M276	Nitrito HR TT	0.3 - 3	mg/L N	
M275	Nitrito LR TT	0.03 - 0.6	mg/L N	
M272	Nitrito PP	0.01 - 0.3	mg/L N	
M270	Nitrito T	0.01 - 0.5	mg/L N	
M290	Ossigeno attivo T	0.1 - 10	mg/L O ₂	
M292	Ossigeno disciolto C	10 - 800	µg/L O₂	O2
M299	Ozono 50 T	0.02 - 0.5	mg/L O ₃	
M301	Ozono PP	0.015 - 2	mg/L O ₃	
M300	Ozono T	0.02 - 2	mg/L O ₃	O3
M70	PHMB T	2 - 60	mg/ILPHMB	
M232	Piombo 10	0.1 - 5	mg/L Pb	

, Test Kit	• MD 100	• MD 110	MD 200	MD 600, MD 610	MD 640	MultiDirect	PM 600	PM 620	PM 630	SpectroDirect	XD 7000	XD 7500	Pagina
	•	•		•	•	•							458
				•	•	•		•	•				502
				•	•	•	•	•	•				488
			•	•	•	•		•	•				34
	•			•	•	•							612
				•	•								616
	•			•	•	•							606
	•			•	•	•							602
	•	•		•	•						•	•	638
				•	•	•							632
				•	•	•				•	•	•	626
				•	•	•							622
										•	•	•	642
										•	•	•	646
										•	•	•	672
										•	•	•	660
										•	•	•	666
•				•	•						•	•	650
				•	•	•							656
				•	•								682
										•	•	•	696
										•	•	•	690
				•	•	•							686
				•	•	•							678
				•	•	•		•	•				730
	•	•		•	•	•							734
										•	•	•	738
				•	•								762
	•	•	•	•	•	•	•	•	•				750
				•	•	•		•	•		•	•	110
										•	•	•	580

No.	Analyses	Campo di misura	Unità	Display MD 100/110/200
M234	Piombo (A) TT	0.1 - 5	mg/L Pb	
M235	Piombo (B) TT	0.1 - 5	mg/L Pb	
M338	Poliacrilati L	1 - 30	mg/L Polya- cryl	POLY
M340	Potassio T	0.7 - 16	mg/L K	
M500	PTSA	10 - 1000	ppb	
M501	PTSA	10 - 400	ppb	
M149	Rame 50 T	0.05 - 1	mg/L Cu	
M151	Rame L	0.05 - 4	mg/L Cu	
M153	Rame PP	0.05 - 5	mg/L Cu	Cu
M150	Rame T	0.05 - 5	mg/L Cu	Cu
M344	SAC 254 nm	0.5 - 50	m ⁻¹	
M345	SAC 436 nm	0.5 - 50	m ⁻¹	
M346	SAC 525 nm	0.5 - 50	m ⁻¹	
M347	SAC 620 nm	0.5 - 50	m ⁻¹	
M363	Selenio	0.05 - 1.6	mg/L Se	
M352	Silicato HR PP	1 - 90	mg/L SiO ₂	SiHr
M353	Silicato L	0.1 - 8	mg/L SiO ₂	
M351	Silicato LR PP	0.1 - 1.6	mg/L SiO ₂	SiLr
M350	Silicato T	0.05 - 4	mg/L SiO ₂	Si
M349	Silica VLR PP	0.005 - 0.5	mg/L SiO ₂	
M361	Solfato HR PP	50 - 1000		
M360	Solfato PP	5 - 100	mg/L SO ₄ 2-	SO4
M355	Solfato T	5 - 100	mg/L SO ₄ 2-	
M368	Solfito 10 T	0.1 - 10	mg/L SO ₃	
M370	Solfito T	0.1 - 5	mg/L SO ₃	
M365	Solfuro T	0.04 - 0.5	mg/L S ²⁻	
M384	Solidi sospesi 24	10 - 750	mg/L TSS	SuS
M383	Solidi sospesi 50	10 - 750	mg/L TSS	
M389	Tannin L	0.5 - 20	mg/L Tannin	
M376	Tensioattivi M. (anion.) TT	0.05 - 2	mg/L SDSA	

, Test Kit	MD 100	MD 110	MD 200	MD 600, MD 610	MD 640	MultiDirect	PM 600	PM 620	PM 630	• SpectroDirect	XD 7000		Pagina
										•	•	•	586
										•	•	•	594
	•	•											900
				•	•	•							906
					•								1070
					•								1074
										•	•	•	332
				•	•						•	•	350
	•			•	•	•		•	•	•	•	•	360
	•	•	•	•	•	•	•	•	•				340
												•	910
										•	•	•	914
										•	•	•	918
										•	•	•	922
										•			968
	•	•		•	•	•							944
				•	•						•	•	950
	•			•	•	•							938
	•			•	•	•							932
										•	•	•	926
				•	•	•				•			964
	•	•		•	•	•		•	•		•	•	960
				•	•	•		•	•		•	•	956
										•	•	•	976
				•	•	•							980
				•	•	•							972
	•			•	•	•							1022
										•	•	•	1016
				•	•								1042
				•	•	•				•	•	•	986

No.	Analyses	Campo di misura	Unità	Display MD 100/110/200
M378	Tensioattivi M. (cation.) TT	0.05 - 1.5	mg/L CTAB	
M377	Tensioattivi M. (non ion.) TT	0.1 - 7.5	mg/L Triton X-100	
M284	TN HR 2 TT	5 - 140	mg/L N	
M281	TN HR TT	5 - 150	mg/L N	
M283	TN LR 2 TT	0.5 - 14	mg/L N	
M280	TN LR TT	0.5 - 25	mg/L N	
M381	TOC HR M. TT	50 - 800	mg/L TOC	
M380	TOC LR M. TT	5 - 80	mg/L TOC	
M386	Torbidità 24	10 - 1000	FAU	
M385	Torbidità 50	5 - 500	FAU	
M388	Triazolo PP	1 - 16	mg/L Benzo- triazole or Tolyltriazole	tri
M390	Urea T	0.1 - 2.5	mg/L Urea	Ur1
M391	Urea T	0.2 - 5	mg/L Urea	Ur2
M332	Valore pH HR T	8.0 - 9.6	рН	
M331	Valore pH L	6.5 - 8.4	рН	PH
M329	Valore pH LR T	5.2 - 6.8	рН	
M330	Valore pH T	6.5 - 8.4	рН	PH
M405	Zinco L	0.1 - 2.5	mg/L Zn	Zn
M400	Zinco T	0.02 - 1	mg/L Zn	

, Test Kit	001	110	500	MD 600, MD 610	340	MultiDirect	009	320	330	SpectroDirect	000.	.200	
, Tes	MD 100	MD 110	MD 200	MD (MD 640	Mult	PM 600	PM 620	PM 630	Spec	XD 7000	XD 7500	Pagina
				•	•	•				•	•	•	998
				•	•	•				•	•	•	992
										•	•	•	724
				•	•	•							710
										•	•	•	718
				•	•	•							702
				•	•	•					•	•	1010
				•	•						•	•	1004
				•	•	•							1032
										•	•	•	1028
	•	•		•	•						•	•	1036
	•		•	•	•	•		•	•				1046
	•												1054
	•	•		•	•	•		•	•		•	•	876
	•	•	•	•	•	•		•	•				870
				•	•	•		•	•		•	•	862
	•	•	•	•	•	•	•	•	•				866
	•	•		•	•						•	•	1066
				•	•	•							1060

 $K_{s4.3}$ T M20 0.1 - 4 mmol/L $K_{s4.3}$ S:4.3 Acido/indicatore

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	610 nm	0.1 - 4 mmol/L K _{s4.3}
SpectroDirect, XD 7000, XD 7500	ø 24 mm	615 nm	0.1 - 4 mmol/L K _{s4.3}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Alka-M-Photometer	Pastiglia / 100	513210BT
Alka-M-Photometer	Pastiglia / 250	513211BT

Campo di applicazione

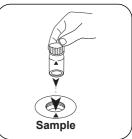
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Note

- 1. I termini alcalinità M, valore M, alcalinità totale e capacità acida $K_{s_{4,3}}$ sono equivalenti.
- Per l'accuratezza del risultato dell'analisi è fondamentale che il volume del campione misuri esattamente 10 ml.

Esecuzione della rilevazione Capacità acida K_{s4.3} con pastiglia

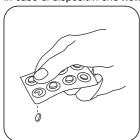
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

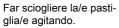


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia ALKA-M-PHOTOMETER.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

36

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato come Capacità acida K_{s4.3}.

Test

Premere il tasto TEST (XD: START).

Metodo chimico

Acido/indicatore

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-6.4527 • 10 ⁻¹	-6.4527 • 10 ⁻¹
b	6.15265 • 10 ⁺⁰	1.32282 • 10+1
С	-4.02416 • 10 ⁺⁰	-1.86017 • 10 ⁺¹
d	1.42949 • 10+0	1.42068 • 10+1
е		
f		

Derivato di

DIN 38409 - H 7-2

Alcalinità M T

M30

5 - 200 mg/L CaCO₃

tΑ

Acido/indicatore

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	610 nm	5 - 200 mg/L CaCO ₃
SpectroDirect, XD 7000, XD 7500	ø 24 mm	615 nm	5 - 200 mg/L CaCO ₃
Scuba II	ø 24 mm		0 - 300 mg/L CaCO₃

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Alka-M-Photometer	Pastiglia / 100	513210BT
Alka-M-Photometer	Pastiglia / 250	513211BT

Campo di applicazione

- · Trattamento acqua potabile
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- · Trattamento acqua di piscina
- · Controllo acqua in vasca

Note

- 1. I termini alcalinità M, valore M, alcalinità totale e capacità acida K_{s43} sono equivalenti.
- Per l'accuratezza del risultato dell'analisi è fondamentale che il volume del campione misuri esattamente 10 ml.

Esecuzione della rilevazione Alcalinità, totale = alcalinità M = valore M con pastiglia

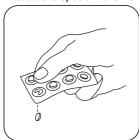
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

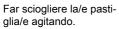


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia ALKA-M-PHOTOMETER.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come alcalinità-m.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	CaCO ₃	1
	°dH	0.056
	°eH	0.07
	°fH	0.1
	°aH	0.058
	K _{S4 3}	0.02

Metodo chimico

Acido/indicatore

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-2.46587 • 10 ⁺¹	-2.46587 • 10 ⁺¹
b	2.67915 • 10+2	5.76017 • 10 ⁺²
С	-1.48158 • 10 ⁺²	-6.84858 • 10 ⁺²
d	5.11097 • 10+1	5.07947 • 10+2
е		
f		

Derivato di

EN ISO 9963-1

Alcalinità M HR T

M31

5 - 500 mg/L CaCO₃

Acido/indicatore

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	610 nm	5 - 500 mg/L CaCO ₃
SpectroDirect, XD 7000, XD 7500	ø 24 mm	615 nm	5 - 500 mg/L CaCO ₃

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fotometro Alka-M-HR	Pastiglia / 100	513240BT
Fotometro Alka-M-HR	Pastiglia / 250	513241BT

Campo di applicazione

- · Trattamento acqua potabile
- · Trattamento acqua di scarico
- Trattamento acqua non depurata
- · Trattamento acqua di piscina
- · Controllo acqua in vasca

Note

 Per verificare il risultato del test controllare se sul fondo della cuvetta si è formato un sottile strato giallo. In caso affermativo miscelare il contenuto capovolgendo la cuvetta per accertarsi che la reazione sia stata completata. Ripetere la misurazione e leggere il risultato del test.

Esecuzione della rilevazione Alcalinità HR, totale = alcalinità M HR = valore M HR con pastiglia

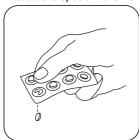
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

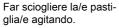


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia ALKA-M-HR Photometer.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di zione al posizionamento. Sul display compare il risultato come Alcalinità-m.

misurazione. Fare atten-

Test

Premere il tasto TEST (XD: START).

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	CaCO ₃	1
	°dH	0.056
	°eH	0.07
	°fH	0.1
	°aH	0.058
	K _{S4.3}	0.02

Metodo chimico

Acido/indicatore

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.56422 • 10 ⁺¹	-2.56422 • 10 ⁺¹
b	6.02918 • 10+2	1.29627 • 10+3
С	-3.78514 • 10 ⁺²	-1.74968 • 10 ⁺³
d	1.37851 • 10+2	1.37002 • 10+3
е		
f		

Derivato di

EN ISO 9963-1

Alcalinità P T

M35

5 - 500 mg/L CaCO₃

Acido/indicatore

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	560 nm	5 - 500 mg/L CaCO ₃
SpectroDirect, XD 7000, XD 7500	ø 24 mm	552 nm	5 - 500 mg/L CaCO ₃

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Alka-P-Photometer	Pastiglia / 100	513230BT
Alka-P-Photometer	Pastiglia / 250	513231BT

Campo di applicazione

- · Trattamento acqua potabile
- Trattamento acqua non depurata

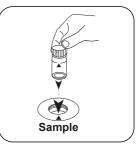
Note

- 1. I termini alcalinità P, valore P, e capacità acida K_{sa}, sono equivalenti.
- Per l'accuratezza del risultato dell'analisi è fondamentale che il volume del campione misuri esattamente 10 ml
- Il presente metodo è stato sviluppato sulla base di una procedura titrimetrica. A
 causa di condizioni collaterali indefinibili, le divergenze rispetto al metodo standard
 possono essere maggiori.
- 4. Con la determinazione dell'alcalinità P ed M è possibile classificare l'alcalinità come idrossido, carbonato e idrogenocarbonato.
- 5. I casi di seguito descritti sono validi soltanto se:
 - a) non sono presenti altri alcali e
 - b) nel campione non sono presenti contemporaneamente idrossidi e idrogenocarbonati. Se la condizione b) non è soddisfatta, fare riferimento a "Deutsche Einheitsverfahren zur Wasser-, Abwasser-, und Schlammuntersuchung, D8".

- Se alcalinità P = 0: idrogenocarbonati = M carbonati = 0 idrossidi = 0
- Se alcalinità P > 0 e alcalinità M > 2p: idrogenocarbonati = M - 2P carbonati = 2P idrossidi = 0
- Se alcalinità P > 0 e alcalinità M < 2P: idrogenocarbonati = 0 carbonati = 2M - 2P idrossidi = 2P - M

Esecuzione della rilevazione Alcalinità P = valore P con pastiglia

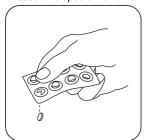
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



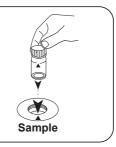
Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia ALKA-P-PHOTOMETER.

Frantumare la/e pastiglia/e con una leggera rotazione.



Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato come Alcalinità-p.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	CaCO ₃	1
	°dH	0.056
	°eH	0.07
	°fH	0.1
	°aH	0.058
	K _{S4.3}	0.02

Metodo chimico

Acido/indicatore

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-5,64325•10°	-4,64325•10°
b	2,19451•10+2	4,7182•10+2
С	-7,83499•10 ⁺¹	-3,62172•10 ⁺²
d	2,24118•10*1	2,24737•10+2
е		
f		

Validazione metodo

Limite di rilevabilità	3.34 mg/L
Limite di quantificazione	10.03 mg/L
Estremità campo di misura	500 mg/L
Sensibilità	167.10 mg/L / Abs
Intervallo di confidenza	23.21 mg/L
Deviazione standard della procedura	10.67 mg/L
Coefficiente di variazione della procedura	4.22 %

Derivato di

DIN 38409 - H-4-2 EN ISO 9963-1

Alluminio T M40

0.01 - 0.3 mg/L Al

AL

Eriocromocianina R

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	530 nm	0.01 - 0.3 mg/L Al
SpectroDirect, XD 7000, XD 7500	ø 24 mm	535 nm	0.01 - 0.3 mg/L Al

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Alluminio No. 1	Pastiglia / 100	515460BT
Alluminio No. 1	Pastiglia / 250	515461BT
Alluminio No. 2	Pastiglia / 100	515470BT
Alluminio No. 2	Pastiglia / 250	515471BT
Set Alluminio No. 1/no. 2#	ciascuna 100	517601BT
Set Alluminio No. 1/no. 2#	ciascuna 250	517602BT

Campo di applicazione

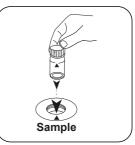
- Trattamento acqua potabile
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua di piscina

Preparazione

- 1. Perché i risultati dell'analisi siano accurati è necessario che il campione abbia una temperatura compresa tra 20 °C e 25 °C.
- Per evitare errori dovuti alla presenza di impurità, prima dell'analisi sciacquare la cuvetta e gli accessori con una soluzione di acido cloridrico (al 20% circa) e successivamente con acqua demineralizzata.

Esecuzione della rilevazione Alluminio con pastiglia

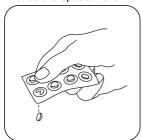
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto **ZERO**.

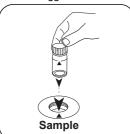
Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

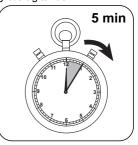
Aggiungere una pastiglia ALUMINIUM No. 1.

Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia ALUMINIUM No. 2.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 5 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Alluminio.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Al	1
mg/l	Al_2O_3	1.8894

Metodo chimico

Eriocromocianina R

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-3.21414 • 10 ⁻²	-3.21414 • 10 ⁻²
b	1.60965 • 10 ⁻¹	3.46075 • 10-1
С	7.15538 • 10 ⁻²	3.30757 • 10-1
d		
е		
f		

Interferenze

Interferenze escludibili

- L'eventuale presenza di fluoruri e polifosfati può far sì che l'analisi dia risultati troppo bassi. In generale tale effetto non è rilevante, a meno che l'acqua non venga fluorurata artificialmente. In questo caso è possibile determinare la concentrazione effettiva di alluminio utilizzando la tabella sottostante.
- Le interferenze da parte di ferro e manganese vengono eliminate da uno speciale agente in pastiglie.

Fluo- ruro	Valore sul display: Alluminio [mg/L]					
[mg/L F]	0,05	0,10	0,15	0,20	0,25	0,30
0,2	0,05	0,11	0,16	0,21	0,27	0,32
0,4	0,06	0,11	0,17	0,23	0,28	0,34
0,6	0,06	0,12	0,18	0,24	0,30	0,37
0,8	0,06	0,13	0,20	0,26	0,32	0,40
1,0	0,07	0,13	0,21	0,28	0,36	0,45
1,5	0,09	0,20	0,29	0,37	0,48	

Validazione metodo

Limite di rilevabilità	0.02 mg/L
Limite di quantificazione	0.044 mg/L
Estremità campo di misura	0.3 mg/L
Sensibilità	0.17 mg/L / Abs
Intervallo di confidenza	0.014 mg/L
Deviazione standard della procedura	0.006 mg/L
Coefficiente di variazione della procedura	3.71 %

Riferimenti bibliografici

Richter, F. Fresenius, Zeitschrift f. anal. Chemie (1943) 126: 426

Secondo

APHA Method 3500-AI B

¹⁾ *Bacchetta compresa

Alluminio PP M50

0.01 - 0.25 mg/L Al

AL

Eriocromocianina R

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	530 nm	0.01 - 0.25 mg/L Al
SpectroDirect, XD 7000, XD 7500	ø 24 mm	535 nm	0.01 - 0.25 mg/L Al

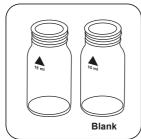
Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Aluminium Set 20 ml	1 pz.	535000

Campo di applicazione

- Trattamento acqua potabile
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua di piscina

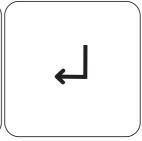

Preparazione

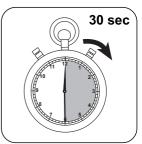
- 1. Perché i risultati dell'analisi siano accurati è necessario che il campione abbia una temperatura compresa tra 20 °C e 25 °C.
- Per evitare errori dovuti alla presenza di impurità, prima dell'analisi sciacquare la cuvetta e gli accessori con una soluzione di acido cloridrico (al 20% circa) e successivamente con acqua demineralizzata.

Esecuzione della rilevazione Alluminio con polvere in bustine Vario

Selezionare il metodo nel dispositivo.

Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.


Immettere 20 ml di campione in un misurino da 100 ml.


Aggiungere una bustina di polvere Vario ALUMI-NIUM ECR F20.

Far sciogliere la polvere agitando.

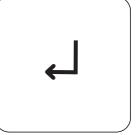
Premere il tasto ENTER.

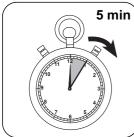
Attendere un tempo di reazione di 30 secondi

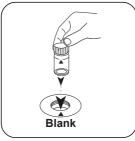
Aggiungere una bustina di Far sciogliere la polvere polvere Vario HEXAMINE F20.

agitando.

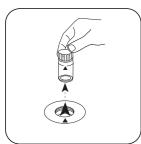
Introdurre 1 gocce di Vario ALUMINIUM ECR Masking Reagent nella cuvetta zero.

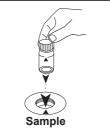



Immettere 10 ml di campione pretrattato in ogni cuvetta.


Chiudere la/e cuvetta/e.

Premere il tasto ENTER.


Attendere un tempo di reazione di 5 minuto/i.


Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Sul display compare il risultato in mg/l di Alluminio.

Premere il tasto **TEST** (XD: **START**).

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Al	1
mg/l	Al ₂ O ₃	1.8894

Metodo chimico

Eriocromocianina R

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	5.35254 • 10 ⁻³	5.35254 • 10 ⁻³
b	1.95468 • 10 ⁻¹	4.20256 • 10 ⁻¹
С		
d		
е		
f		

Interferenze

Interferenze escludibili

 L'eventuale presenza di fluoruri e polifosfati può far sì che l'analisi dia risultati troppo bassi. In generale tale effetto non è rilevante, a meno che l'acqua non venga fluorurata artificialmente. In questo caso è possibile determinare la concentrazione effettiva di alluminio utilizzando la tabella sottostante.

Fluo- ruro	Valore sul display: Alluminio [mg/L]					
[mg/L F]	0,05	0,10	0,15	0,20	0,25	0,30
0,2	0,05	0,11	0,16	0,21	0,27	0,32
0,4	0,06	0,11	0,17	0,23	0,28	0,34
0,6	0,06	0,12	0,18	0,24	0,30	0,37
0,8	0,06	0,13	0,20	0,26	0,32	0,40
1,0	0,07	0,13	0,21	0,28	0,36	0,45
1,5	0,09	0,20	0,29	0,37	0,48	

Riferimenti bibliografici

Richter, F. Fresenius, Zeitschrift f. anal. Chemie (1943) 126: 426

Secondo

APHA Method 3500-AI B

Ammonio T M60

0.02 - 1 mg/L N

Α

Blu di indofenolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
, MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630, Test Kit	ø 24 mm	610 nm	0.02 - 1 mg/L N
SpectroDirect, XD 7000, XD 7500	ø 24 mm	676 nm	0.02 - 1 mg/L N

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Ammonio No. 1	Pastiglia / 100	512580BT
Ammonio No. 1	Pastiglia / 250	512581BT
Ammonio No. 2	Pastiglia / 100	512590BT
Ammonio No. 2	Pastiglia / 250	512591BT
Set Ammonia No. 1/no. 2#	ciascuna 100	517611BT
Set Ammonia No. 1/no. 2#	ciascuna 250	517612BT
Polvere condizionante di ammonio	Polvere / 15 g	460170

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

1. Campioni di acqua di mare:

per i campioni di acqua di mare o acqua salmastra la polvere condizionante di ammonio ha la funzione di evitare fenomeni di sedimentazione (torbidità) durante il test.

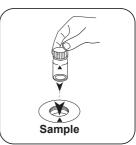
Riempire la cuvetta di campione fino alla marcatura dei 10 ml e aggiungere un cucchiaio di polvere condizionante di ammonio. Chiudere la cuvetta con il coperchio e farla oscillare finché la polvere non si sarà disciolta. Procedere quindi come descritto.

Note

- 1. La pastiglia AMMONIA No. 1 si scioglie completamente soltanto dopo aver aggiunto la pastiglia AMMONIA No. 2.
- La temperatura del campione è importante per il tempo di sviluppo della colorazione.
 A temperature inferiori ai 20 °C il tempo di reazione è di 15 minuti.

Esecuzione della rilevazione Ammonio con pastiglia

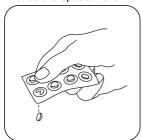
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

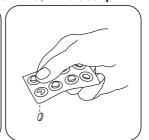
Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

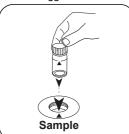
Prelevare la cuvetta dal vano di misurazione.

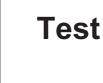

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

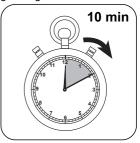
Aggiungere una pastiglia AMMONIA No. 1.

Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia AMMONIA No. 2.


Frantumare la/e pastiglia/e con una leggera rotazione.


Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 10 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ammonio.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NH ₄	1.2878
mg/l	NH₃	1.2158

Metodo chimico

Blu di indofenolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-3.54512 • 10 ⁻²	-3.54512 • 10 ⁻²
b	6.22226 • 10 ⁻¹	1.33779 • 10⁺⁰
С		
d		
е		
f		

Interferenze

Interferenze permanenti

 Solfuri, cianuri, tiocianati, ammine alifatiche e anilina provocano interferenze a concentrazioni particolarmente elevate.

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwendt, Wissenschaftliche Verlagsgesellschaft mbH. Stoccarda 1989

Secondo

APHA Method 4500-NH3 F

^{])}#Bacchetta compresa

Ammonio PP M62 0.01 - 0.8 mg/L N A

Salicilato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	660 nm	0.01 - 0.8 mg/L N
SpectroDirect, XD 7000, XD 7500	ø 24 mm	655 nm	0.01 - 0.8 mg/L N

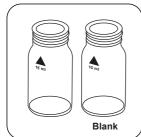
Materiale

Materiale richiesto (in parte facoltativo):

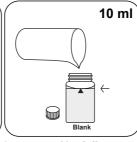
Reagenti	Unità di imbal- laggio	N. ordine
Azoto ammoniacale VARIO, set F10	1 set	535500

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua non depurata

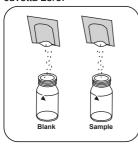

Preparazione

 I campioni di acqua estremamente alcalini o acidi dovrebbero essere regolati su un valore di pH pari a 7 con 0,5 mol/l (1N) di acido solforico o 1 mol/l (1N) di liscivia.



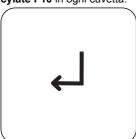
Esecuzione della rilevazione Ammonio con polvere in bustine Vario

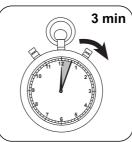
Selezionare il metodo nel dispositivo.

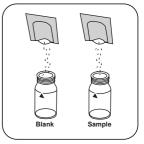

Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.

Immettere 10 ml di acqua demineralizzata nella cuvetta zero.


Immettere 10 ml di campione nella cuvetta del campione.


Immettere una bustina di polvere Ammonium Salicylate F10 in ogni cuvetta.


Chiudere la/e cuvetta/e.

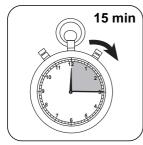

Far sciogliere il contenuto agitando.

Premere il tasto ENTER.

Attendere un tempo di reazione di 3 minuto/i.

Immettere una bustina di polvere Vario Ammonium Cyanurate F10 in ogni cuvetta.

Chiudere la/e cuvetta/e.

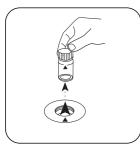


Far sciogliere il contenuto agitando.



Premere il tasto ENTER.

Zero


Attendere un tempo di reazione di 15 minuto/i .

Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Sul display compare il risultato in mg/l di Ammonio.

Premere il tasto TEST (XD: START).

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NH ₄	1.288
mg/l	NH₃	1.22

Metodo chimico

Salicilato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-5.42114 • 10 ⁻²	-5.42114 • 10 ⁻²
b	4.15543 • 10 ⁻¹	8.93417 • 10 ⁻¹
С		
d		
е		
f		

Interferenze

Interferenze permanenti

· Il solfuro intensifica la colorazione.

Interferenze escludibili

- Il ferro interferisce con la rilevazione in qualunque quantità. L'interferenza da parte del ferro può essere eliminata nel modo seguente.
 - a) Rilevazione del ferro nel campione con un test del ferro totale.
 - b) Nel campione standard viene utilizzata, invece dell'acqua demineralizzata, una soluzione standard di ferro alla concentrazione rilevata.
- Interferenze da parte di glicina e idrazina sono piuttosto rare e provocano una colorazione più intensa nel campione trattato. Le torbidità e il colore del campione provocano valori di misura troppo elevati. Per i campioni soggetti a interferenze evidenti si rende necessaria una distillazione.

Interferenze	da / [mg/L]
Ca ²⁺	1000 (CaCO ₃)
Mg ²⁺	6000 (CaCO ₃)
NO ₃ ·	100
NO ₂ ·	12
PO ₄ 3-	100
SO ₄ ²⁻	300

Validazione metodo

Limite di rilevabilità	0.02 mg/L
Limite di quantificazione	0.07 mg/L
Estremità campo di misura	0.08 mg/L
Sensibilità	0.42 mg/L / Abs
Intervallo di confidenza	0.014 mg/L
Deviazione standard della procedura	0.006 mg/L
Coefficiente di variazione della procedura	1.45 %

Derivato di

DIN 38406-E5-1 ISO 7150-1

Cloramina (M) PP

M63

0.02 - 4.5 mg/L NH₂CI as Cl₂

Indophenole method

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640	ø 24 mm	660 nm	0.02 - 4.5 mg/L NH ₂ Cl as Cl ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Monochloramine Set	1 set	535800
VARIO Monochlor F Rgt - 100	Polvere / 100 pz.	531810
VARIO Free Ammonia Reagent Solution - 5 ml	5 mL	531800
VARIO Rochelle soluzione salina, 30 ml h)	30 mL	530640

Campo di applicazione

- · Controllo disinfettante
- · Trattamento acqua potabile
- · Controllo acqua in vasca
- · Alimenti e bevande
- · Others

Note

1. Sviluppo del colore completo - temperatura I periodi di reazione indicati nel manuale si riferiscono ad una temperatura del campione compresa tra 12° e 14°C. Poiché il periodo di reazione è fortemente influenzato dalla temperatura del campione, è necessario regolare entrambi i periodi di reazione secondo la seguente tabella:

Temperatura del campione	
°F	reazione in x min
41	10
45	9
47	8
50	8
54	7
57	7
61	6
64	5
68	5
73	2.5
77	2
> 77	2
	°F 41 45 47 50 54 57 61 64 68 73

- 2. Premere il tasto [Enter] per annullare un periodo di reazione.
- 3. Tenere il flacone in verticale e premere lentamente.
- Per determinare la concentrazione di ammoniaca si calcola la differenza tra la mono cloramina (T1) e la somma di mono cloramina e ammoniaca (T2). Se T2 supera il limite dell'intervallo, viene visualizzato il seguente messaggio: N[NH₂Cl] + N[NH₃] > 0.9 mg/L

In questo caso il campione deve essere diluito e la misurazione deve essere ripetuta.

Esecuzione della rilevazione Biossido di cloro, in presenza di cloro con pastiglia

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: in presenza di Cloro

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: in presenza di Cloro

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

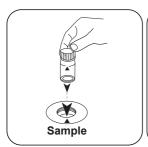
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

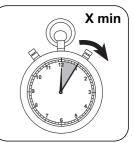
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una bustina di polvere Monochlor FRGT.



Aggiungere una bustina di Chiudere la/e cuvetta/e.

Far sciogliere il contenuto agitando. (20 sec.)

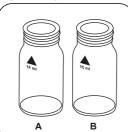


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

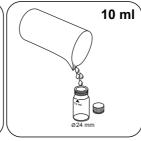
Premere il tasto **ENTER**. (XD: avvio del timer)

Tempo di reazione X min secondo la tabella. Attendere il periodo di reazione.

Premere il tasto **TEST** (XD: **START**).


Sul display compare il risultato in mg/l di Monocloramina - Cloro Cl [NH₂Cl].

Esecuzione della rilevazione Biossido di cloro, in assenza di cloro con pastiglia


Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: con ammoniaca libera

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Preparare due cuvette pulite da Ammoniaca mm. Contrassegnare una cuvetta come cuvetta zero.

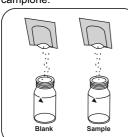


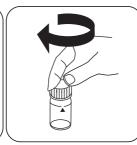
Immettere 10 ml di campione in ogni cuvetta.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta Ammoniaca nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO. Prelevare la cuvetta dal vano di misurazione.


Introdurre 1 gocce di Free Ammonia Reagent Solution nella cuvetta del campione.

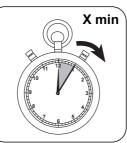

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (approx. 15 sec).

Immettere contemporaneamente una bustina di polvere Monochlor FRGT in ogni cuvetta.



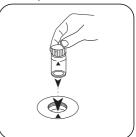
Chiudere la/e cuvetta/e.



Far sciogliere il contenuto agitando. (20 sec.)

Premere il tasto ENTER. (XD: avvio del timer)

Tempo di reazione X min secondo la tabella. Attendere il periodo di reazione.



Posizionare la cuvetta Cloramina nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Prelevare la cuvetta dal vano di misurazione.

Posizionare la cuvetta Ammonia nel vano di misurazione. Fare attenzione al posizionamento.

Test

START).

Premere il tasto TEST (XD: START).

Sul display compare il risultato in mg/l di Monocloramina - Cloro CI [NH2CI] e mg/l di Ammoniaca libera - Azoto N [NH₃].

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Cl_2	1
mg/l	NH ₂ Cl	0.72598
mg/l	N[NH ₂ Cl]	0.19754
mg/l	NH₃	0.24019

Metodo chimico

Indophenole method

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-5,8124 · 10 ⁻²	-5,8124 · 10 ⁻²
b	1.80357 · 10°	3.87768 · 10°
С	-	-
d	-	-
е	-	-
f	-	-

Interferenze

Interferenze escludibili

I disturbi causati dalle precipitazioni causate da una durezza del magnesio superiore a $400\ mg\ /\ I\ CaCO_3\ possono\ essere\ eliminati\ aggiungendo\ 5\ gocce\ di\ soluzione\ di\ sale\ di\ Rochelle.$

da / [mg/L]
1
10
100
15
1000
18.000

Interferenze	da / [mg/L]
Chlorine Dioxide (ClO ₂)	5
Copper (Cu)	10
Dichloramine (Cl ₂)	10
Fluoride (F ⁻)	5
Free Chloride (Cl ₂)	10
Glycine (N)	1
Iron (II) (Fe ²⁺)	10
Iro (III) (Fe ³⁺)	10
Lead (Pb)	10
Permanganate	3
Nitrate (N)	100
Nitrite (N)	50
Sulfide	0.5
Phosphate (PO ₄)	100
Silica (SiO ₂)	100
Sulfate (SO ₄ ²⁺)	2600
Sulfite (SO ₃ ²⁻)	50
Ozone	1
Tyrosine (N)	1
Urea (N)	10
Zinc (Zn)	5

Validazione metodo

Limite di rilevabilità	0.010 mg/L
Limite di quantificazione	0.03 mg/L
Estremità campo di misura	4.5 mg/L
Sensibilità	1.78 mg/L / Abs
Intervallo di confidenza	0.044 mg/L
Deviazione standard della procedura	0.018 mg/L
Coefficiente di variazione della procedura	0.78 %

Cloro (libero) e monocloramina

M64

0.02 - 4.50 mg/L Cl₂

CL2

Indophenole method

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, PM 620	ø 24 mm	660 nm	0.02 - 4.50 mg/L Cl ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Monochloramine Set	1 set	535800
VARIO Free Chlorine Reagent Solution - 30 ml	30 mL	531820
VARIO Monochlor F Rgt - 100	Polvere / 100 pz.	531810
VARIO Rochelle soluzione salina, 30 ml ^{h)}	30 mL	530640

Campo di applicazione

- · Controllo disinfettante
- · Trattamento acqua potabile
- · Controllo acqua in vasca
- · Alimenti e bevande
- Others

Note

1. Sviluppo del colore completo - temperatura I periodi di reazione indicati nel manuale si riferiscono ad una temperatura del campione compresa tra 12° e 14°C. Poiché il periodo di reazione è fortemente influenzato dalla temperatura del campione, è necessario regolare entrambi i periodi di reazione secondo la sequente tabella:

Temperatura del campione		
°F	reazione in x min	
41	10	
45	9	
47	8	
50	8	
54	7	
57	7	
61	6	
64	5	
68	5	
73	2.5	
77	2	
> 77	2	
	°F 41 45 47 50 54 57 61 64 68 73	

- 2. Premere il tasto [Enter] per annullare un periodo di reazione.
- 3. Tenere il flacone in verticale e premere lentamente.
- 4. Per determinare la concentrazione di cloro si calcola la differenza tra la monocloramina e la somma di monocloramina e cloro. Se un valore misurato supera il limite dell'intervallo, viene visualizzato il seguente messaggio:

 $Cl_2[NH_2Cl] + Cl_2 > 4.5 \text{ mg/L}$

In questo caso il campione deve essere diluito e la misurazione deve essere ripetuta.

Esecuzione della rilevazione Biossido di cloro, in presenza di cloro con pastiglia

Selezionare il metodo nel dispositivo. Selezionare inoltre la determinazione: in presenza di Cloro

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

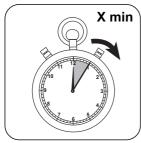
Prelevare la cuvetta dal vano di misurazione.

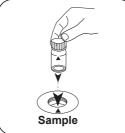
Introdurre 5 gocce di Free Chlorine Reagent Solution nella cuvetta del campione.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (15 sec.).

Aggiungere una bustina di polvere Monochlor FRGT.


Chiudere la/e cuvetta/e.

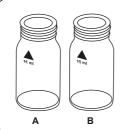

Far sciogliere il contenuto agitando. (20 sec.)

Premere il tasto ENTER. (XD: avvio del timer)

Tempo di reazione X min secondo la tabella. Attendere il periodo di reazione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di cloro libero.

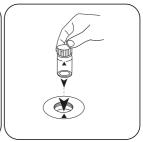
Premere il tasto TEST (XD: START).


Esecuzione della rilevazione cloro libero e monocloramina

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: Cloro libero

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui sequenti dispositivi: senza Cloro



Preparare due cuvette pulite da Cloramina mm. Contrassegnare una cuvetta come cuvetta zero.

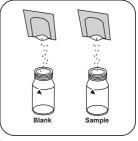
Immettere 10 ml di campione in ogni cuvetta.

Posizionare la cuvetta Cloro nel vano di misurazione. Fare attenzione al posizionamento.

Zero

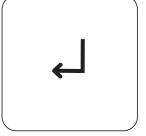
Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

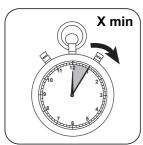

Introdurre 5 gocce di Free Chlorine Reagent Solution nella cuvetta del campione.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (ca. 15 sec).


Immettere contemporaneamente una bustina di polvere Monochlor FRGT in ogni cuvetta.

Chiudere la/e cuvetta/e.



Far sciogliere il contenuto agitando. (20 sec.)

Premere il tasto **ENTER**. (XD: avvio del timer)

Tempo di reazione X min secondo la tabella. Attendere il periodo di reazione.

Posizionare la **cuvetta** Cloramina nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Prelevare la cuvetta dal vano di misurazione.

Posizionare la **cuvetta** Cloro nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Cloro e mg/l Monocloramina - Cloro Cl [NH,Cl].

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Cl_2	1
mg/l	NH ₂ CI	0.72598
mg/l	N[NH ₂ CI]	0.19754
mg/l	NH₃	0.24019

Metodo chimico

Indophenole method

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-5,8124 · 10 ⁻²	-5,8124 · 10 ⁻²
b	1.80357 · 10°	3.87768 · 10°
С	-	-
d	-	-
е	-	-
f	-	-

Interferenze

Interferenze escludibili

I disturbi causati dalle precipitazioni causate da una durezza del magnesio superiore a 400 mg / I CaCO₃ possono essere eliminati aggiungendo 5 gocce di soluzione di sale di Rochelle.

Interferenze	da / [mg/L]
Alanine (N)	1
Aluminium (Al)	10
Bromide (Br)	100
Bromine (Br ₂)	15
Calcium (CaCO ₃)	1000
Chloride (Cl ⁻)	18.000

Interferenze	da / [mg/L]
Chlorine Dioxide (ClO ₂)	5
Copper (Cu)	10
Dichloramine (Cl ₂)	10
Fluoride (F ⁻)	5
Glycine (N)	1
Iron (II) (Fe ²⁺)	10
Iron (III) (Fe ³⁺)	10
Lead (Pb)	10
Permanganate	3
Nitrate (N)	100
Nitrite (N)	50
Sulfide	0.5
Phosphate (PO ₄)	100
Silica (SiO ₂)	100
Sulfate (SO ₄ ²⁺)	2600
Sulfite (SO ₃ ² -)	50
Ozone	1
Tyrosine (N)	1
Urea (N)	10
Zinc (Zn)	5

Validazione metodo

Limite di rilevabilità	0.010 mg/L
Limite di quantificazione	0.03 mg/L
Estremità campo di misura	4.5 mg/L
Sensibilità	1.78 mg/L / Abs
Intervallo di confidenza	0.044 mg/L
Deviazione standard della procedura	0.018 mg/L
Coefficiente di variazione della procedura	0.78 %

Ammonio LR TT

M65

0.02 - 2.5 mg/L N

Salicilato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	660 nm	0.02 - 2.5 mg/L N
SpectroDirect, XD 7000, XD 7500	ø 16 mm	655 nm	0.02 - 2.5 mg/L N

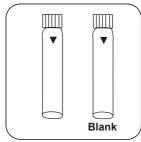
Materiale

Materiale richiesto (in parte facoltativo):

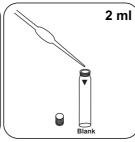
Reagenti	Unità di imbal- laggio	N. ordine
VARIO AM Vial Test, set di reagenti scala bassa	1 set	535600

Campo di applicazione

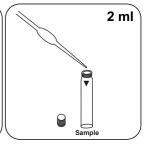
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

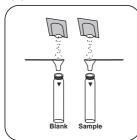

Preparazione

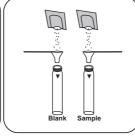
1. Le acque fortemente alcaline o acide dovrebbero essere regolate prima dell'analisi su un valore di pH di circa 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).

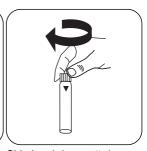


Esecuzione della rilevazione Ammonio LR con test in cuvetta Vario


Selezionare il metodo nel dispositivo.

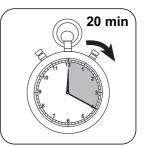

Preparare due cuvette per Immettere 2 ml di acqua reagenti. Contrassegnare una cuvetta come cuvetta zero.


demineralizzata nella cuvetta zero.


Immettere 2 ml di campione nella cuvetta del campione.

Immettere una bustina di polvere Vario AMMONIA Salicylate F5 in ogni cuvetta.

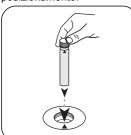
Immettere una bustina di polvere Vario AMMONIA Cyanurate F5 in ogni cuvetta.


Chiudere la/e cuvetta/e.

Far sciogliere il contenuto agitando.

Premere il tasto ENTER.

Attendere un tempo di reazione di 20 minuto/i .


Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.

Zero

Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare atten-

Test

Premere il tasto TEST (XD: START).

zione al posizionamento.

Sul display compare il risultato in mg/l di Ammonio.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NH ₄	1.29
ma/l	NH ₃	1.22

Metodo chimico

Salicilato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm	
а	-1.54654 • 10 ⁻¹	
b	1.45561 • 10⁺⁰	
С		
d		
е		
f		

Interferenze

Interferenze escludibili

Il ferro interferisce con la rilevazione e può essere eliminato nel modo seguente:
 Determinare la concentrazione di ferro totale e utilizzare per la produzione della
 cuvetta zero, invece dell'acqua distillata, una soluzione standard di ferro alle concentrazioni rilevate.

Validazione metodo

Limite di rilevabilità	0.01 mg/L
Limite di quantificazione	0.04 mg/L
Estremità campo di misura	2.5 mg/L
Sensibilità	1.49 mg/L / Abs
Intervallo di confidenza	0.061 mg/L
Deviazione standard della procedura	0.025 mg/L
Coefficiente di variazione della procedura	2.02 %

Derivato di

DIN 38406-E5-1 ISO 7150-1

M66

Ammonio HR TT

1.0 - 50 mg/L N

Salicilato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	660 nm	1.0 - 50 mg/L N
SpectroDirect, XD 7000, XD 7500	ø 16 mm	655 nm	1.0 - 50 mg/L N

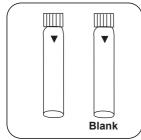
Materiale

Materiale richiesto (in parte facoltativo):

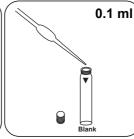
Reagenti	Unità di imbal- laggio	N. ordine
VARIO AM Vial Test, set di reagenti high range F5	1 set	535650

Campo di applicazione

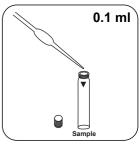
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata

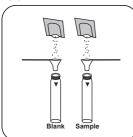

Preparazione

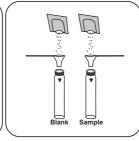
1. Le acque fortemente alcaline o acide dovrebbero essere regolate prima dell'analisi su un valore di pH di circa 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).

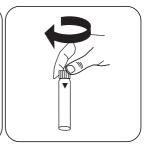


Esecuzione della rilevazione Ammonio HR con test in cuvetta Vario


Selezionare il metodo nel dispositivo.

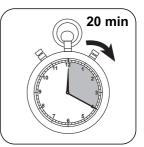

Preparare due cuvette per Immettere 0.1 ml di acqua reagenti. Contrassegnare una cuvetta come cuvetta zero.


demineralizzata nella cuvetta zero.

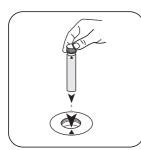

Immettere 0.1 ml di campione nella cuvetta del campione.

Immettere una bustina di polvere Vario AMMONIA Salicylate F5 in ogni cuvetta.

Immettere una bustina di polvere Vario AMMONIA Cyanurate F5 in ogni cuvetta.

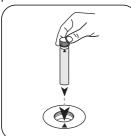

Chiudere la/e cuvetta/e.

Far sciogliere il contenuto agitando.



Premere il tasto ENTER.

Attendere un tempo di reazione di 20 minuto/i .


Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Zero

Premere il tasto **ZERO**.

Prelevare la **cuvetta** dal vano di misurazione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Sul display compare il risultato in mg/l di Ammonio.

Test

Premere il tasto **TEST** (XD: **START**).

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NH₄	1.29
mg/l	NH ₃	1.22

Metodo chimico

Salicilato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm
а	-3.25421 • 10 ⁺⁰
b	3.62204 • 10 ⁺¹
С	
d	
е	
f	

Interferenze

Interferenze escludibili

- Il ferro interferisce con la rilevazione e può essere eliminato nel modo seguente:
 Determinare la concentrazione di ferro totale e utilizzare per la produzione della
 cuvetta zero, invece dell'acqua distillata, una soluzione standard di ferro alle concentrazioni rilevate.
- In presenza di cloro, il campione deve essere trattato con tiosolfato di sodio. Con 0,3 mg/L Cl₂, in un campione di acqua da 1 litro si aggiunge una goccia di una soluzione di tiosolfato di sodio da 0,1 mol/l.

Validazione metodo

Limite di rilevabilità	0.59 mg/L
Limite di quantificazione	1.78 mg/L
Estremità campo di misura	50 mg/L
Sensibilità	36.82 mg/L / Abs
Intervallo di confidenza	3.66 mg/L
Deviazione standard della procedura	1.51 mg/L
Coefficiente di variazione della procedura	5.93 %

Derivato di

DIN 38406-E5-1 ISO 7150-1

Arsenico M68

0.02 - 0.6 mg/L As

Dietilditiocarbammato d'argento

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 20 mm	507 nm	0.02 - 0.6 mg/L As

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal-	N. ordine
	laggio	

Per i prodotti chimici vedere le istruzioni, disponibili presso il proprio rivenditore di prodotti chimici

Campo di applicazione

- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

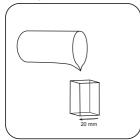
È necessario acquistare i seguenti reagenti:

- 1. Acido solforico al 40 % p.a. (H₂SO₄, numero CAS: 7664-93-6)
- 8,33 g ioduro di potassio (KI, numero CAS: 7681-11-0) in 50 ml di acqua desalinizzata
 - Nota: al buio può essere conservato per ca. 1 settimana
- 3. Sciogliere 4,0 g cloruro stannoso (II) biidrato (SnCl₂ 2H₂O, numero CAS: 10025-69-1) in 10 ml di acido cloridrico al 25% (HCl, numero CAS: 7647-01-0)
- 4. 2,0 g zinco (Zn, numero CAS: 7440-66-6; 0,3-1,5 mm granulare)
- 5. Soluzione di assorbimento:
 - 0,25 g dietiltiocarbammato d'argento ($C_sH_{10}AgNS_2$, numero CAS: 1470-61-7) e sciogliere 0,02 g di brucina ($C_{23}H_{26}N_2O_4$, numero CAS: 357-57-3) in 100 ml di 1-metil-2-pirrolidone p.a. (As < 10 ppb, Sb < 10 ppb, C_sH_0NO numero CAS: 872-50-4)
 - e conservare al riparo dalla luce.

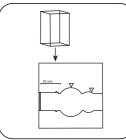
Se non si scioglie tutto completamente, allora mescolare per almeno 1 ora e infine filtrare per ottenere una soluzione limpida.

Note

- Durante l'intera procedura si devono adottare misure di sicurezza adeguate e una buona tecnica di laboratorio.
- Acquistare i reagenti da un rivenditore di sostanze chimiche specializzato. Per indicazioni sullo smaltimento e sulla manipolazione dei reagenti fare riferimento alle rispettive schede tecniche di sicurezza.
- 3. Utilizzare soltanto dispositivi in vetro perfettamente asciutti.
- 4. Uso di una cuvetta rettangolare con un percorso ottico di 20 mm (n. ordine: 60 10 50). Posizionamento: inserire la cuvetta a sinistra nel vano cuvette.
- 5. Immagazzinare il dietilditiocarbammato d'argento a 4 °C.
- 6. Al buio a max. 20 °C la soluzione assorbente si conserva per circa 1 settimana.

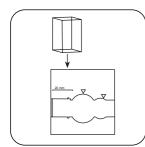

Esecuzione della rilevazione Arsenico(III,IV)

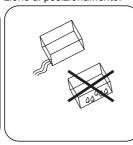
Selezionare il metodo nel dispositivo.

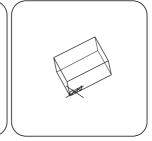

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Preparazione del campione: osservare scrupolosamente i tempi di reazione!

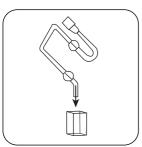
- 1. Aspirare l'apparecchiatura di reazione asciutta con la cappa (vapori tossici!).
- 2. Immettere 50 ml di campione con una pipetta in una beuta da 100 ml (NS 29/32).
- 3. Aggiungere al campione 30 ml di acido solforico, 2,0 ml di soluzione di ioduro di potassio e 0,3 ml di soluzione di stagno(II)cloruro.
- 4. Chiudere la beuta con il tappo, agitare e lasciar riposare per 15 minuti.
- 5. Pesare e preparare 2,0 g di zinco .
- 6. Immettere esattamente **5,0 ml di soluzione assorbente** nel tubo di assorbimento (utilizzare una pipetta tarata).
- Una volta trascorso il tempo di reazione di 15 minuti, immettere la quantità di zinco preparata nella beuta e chiuderla immediatamente con il tubo di assorbimento preparato.
- 8. Lo sviluppo del triidruro di arsenico (aspirazione!) ha inizio. 60 minuti Attendere un tempo di reazione di .

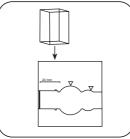

Riempire una cuvetta da 20 mm con acqua demineralizzata.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.


Svuotare la cuvetta.


Asciugare bene la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Riempire la cuvetta da 20 mm con la soluzione assorbente colorata.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di Arsenico.

Test

Premere il tasto TEST (XD: START).

Metodo chimico

Dietilditiocarbammato d'argento

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 20 mm
а	-6.96705 • 10 ⁺⁰
b	4.41627 • 10+2
С	
d	
е	
f	

Interferenze

Interferenze permanenti

- 1. L'antimonio, il selenio e il tellurio reagiscono come l'arsenico.
- 2. Il tiosolfato interferisce con la rilevazione.

Riferimenti bibliografici

G. Ackermann, J. Köthe: Fresenius Z. Anal. Chem. 323 (1986), 135

Derivato di

DIN EN 26595 ISO 6595

PHMB T M70

2 - 60 mg/ILPHMB

Tampone/indicatore

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630, XD 7000, XD 7500	ø 24 mm	560 nm	2 - 60 mg/ILPHMB

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fotometro PHMB	Pastiglia / 100	516100BT
Fotometro PHMB	Pastiglia / 250	516101BT

Campo di applicazione

· Controllo acqua in vasca

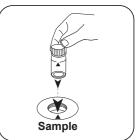
Note

- Al termine della rilevazione è necessario sciacquare immediatamente le cuvette e pulirle con una spazzola.
- In caso di utilizzo prolungato le cuvette e l'agitatore possono assumere una colorazione blu. Questa colorazione può essere eliminata pulendo le cuvette e l'agitatore con un detergente da laboratorio. Successivamente risciacquare abbondantemente con acqua corrente e quindi con acqua demineralizzata.
- 3. Con questa rilevazione il risultato dell'analisi viene influenzato dalla durezza e dalla capacità acida del campione di acqua. Questo metodo viene regolato utilizzando un'acqua avente la seguente composizione:

Durezza calcica: 2 mmol/l Capacità acida: 2,4 mmol/l.

Esecuzione della rilevazione PHMB (biguanidi) con pastiglia

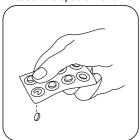
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

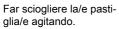


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia PHMB PHOTOMETER.



Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di PHMB.

Metodo chimico

Tampone/indicatore

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-2.00454 • 10 ⁺¹	-2.00454 • 10 ⁺¹
b	1.29751 • 10 ⁺²	2.78966 • 10 ⁺²
С	-4.47145 • 10 ⁺¹	-2.06693 • 10 ⁺²
d	-1.07518 • 10 ⁺²	-1.06855 • 10 ⁺³
е	1.42602 • 10 ⁺²	3.04706 • 10 ⁺³
f		

Bromo 10 T

M78

0.1 - 3 mg/L Br₂

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 10 mm	510 nm	0.1 - 3 mg/L Br ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio ^{e)}	Pastiglia / 500	515742BT

Campo di applicazione

- · Controllo disinfettante
- · Trattamento acqua non depurata
- · Controllo acqua in vasca
- · Trattamento acqua di piscina

Preparazione

1. Pulizia delle cuvette:

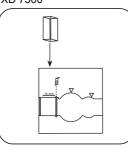
Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella successiva rilevazione di ossidanti (ad es. ozono, cloro) si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.

- Nella preparazione del campione occorre evitare la degassificazione del bromo, ad es. utilizzando pipette e agitando. L'analisi deve essere eseguita subito dopo il prelievo del campione.
- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Note

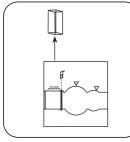
Modificando la lunghezza della cuvetta è possibile estendere il range di misura:

- Cuvetta da 10 mm: 0,1 mg/L 3 mg/L, risoluzione: 0,01
- Cuvetta da 20 mm: 0,05 mg/L 1,5 mg/L, risoluzione: 0,01
- Cuvetta da 50 mm: 0,02 mg/L 0,6 mg/L, risoluzione: 0,001

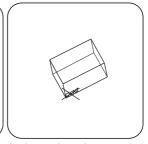

Esecuzione della rilevazione Bromo con pastiglia

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 10 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

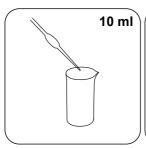
Prelevare la **cuvetta** dal vano di misurazione.

Svuotare la cuvetta.

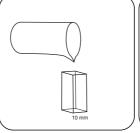
Asciugare bene la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

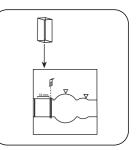
Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.



Aggiungere una pastiglia DPD No. 1.



Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.



Aggiungere 10 ml di campione.

Riempire una cuvetta da 10 mm con il campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Bromo.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 10 mm	
а	-3.47814 • 10 ⁻²	
b	8.22863 • 10+0	
С	7.07422 • 10+0	
d		
е		
f		

Interferenze

Interferenze permanenti

- Tutti gli ossidanti presenti nei campioni reagiscono come il bromo dando risultati troppo elevati.
- Le concentrazioni maggiori di 22 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Derivato di

US EPA 330.5 (1983) APHA Method 4500 CI-G

el Reagente ausiliario, in alternativa a DPD n. 1 / no 3 in caso di torbidità del campione a causa di alto contenuto di ioni di calcio e / o alta conduttività

Bromo 50 T M79

0.05 - 1 mg/L Br₂

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	510 nm	0.05 - 1 mg/L Br ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT

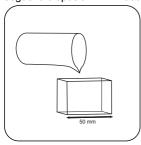
Campo di applicazione

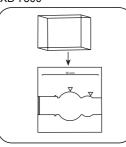
- · Controllo disinfettante
- · Trattamento acqua non depurata
- · Controllo acqua in vasca
- · Trattamento acqua di piscina

Preparazione

1. Pulizia delle cuvette:

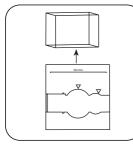
Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella successiva rilevazione di ossidanti (ad es. ozono, cloro) si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.

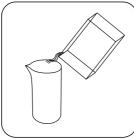

- Nella preparazione del campione occorre evitare la degassificazione del bromo, ad es. utilizzando pipette e agitando. L'analisi deve essere eseguita subito dopo il prelievo del campione.
- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

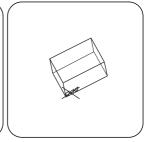

Esecuzione della rilevazione Bromo con pastiglia

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

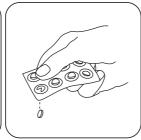

Riempire una cuvetta da 50 mm con il campione.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

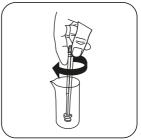

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

Svuotare la cuvetta.

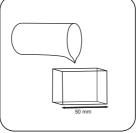


Asciugare bene la cuvetta.

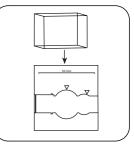

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.

Aggiungere una pastiglia DPD No. 1.



Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.



Aggiungere 10 ml di campione.

Riempire una cuvetta da 50 mm con il campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Bromo.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 50 mm
а	-2.45723 • 10 ⁻²
b	3.75449 • 10+0
С	
d	
е	
f	

Interferenze

Interferenze permanenti

- Tutti gli ossidanti presenti nei campioni reagiscono come il bromo dando risultati troppo elevati.
- Le concentrazioni maggiori di 22 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Derivato di

US EPA 330.5 (1983) APHA Method 4500 CI-G

^{*}Reagente ausiliario, in alternativa a DPD n. 1 / no 3 in caso di torbidità del campione a causa di alto contenuto di ioni di calcio e / o alta conduttività

 Bromo T
 M80

 0.05 - 13 mg/L Br₂
 Br

 DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	530 nm	0.05 - 13 mg/L Br ₂
SpectroDirect, XD 7000, XD 7500	ø 24 mm	510 nm	0.05 - 13 mg/L Br ₂
Scuba II	ø 24 mm	530 nm	0.2 - 13 mg/L Br ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio ^{e)}	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT

Campo di applicazione

- Controllo disinfettante
- · Trattamento acqua non depurata
- · Controllo acqua in vasca
- · Trattamento acqua di piscina

Preparazione

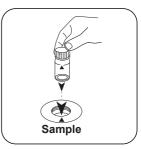
1. Pulizia delle cuvette:

Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella successiva rilevazione di ossidanti (ad es. ozono, cloro) si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.

- Nella preparazione del campione occorre evitare la degassificazione del bromo, ad es. utilizzando pipette e agitando. L'analisi deve essere eseguita subito dopo il prelievo del campione.
- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione Bromo con pastiglia

Selezionare il metodo nel dispositivo.

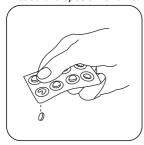

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.



Prelevare la cuvetta dal vano di misurazione.

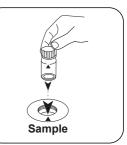
Svuotare la cuvetta finché non rimangono alcune gocce.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia DPD No. 1.

Frantumare la/e pastiglia/e con una leggera rotazione.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .



Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Bromo.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	4.51215 • 10 ⁻²	4.51215 • 10 ⁻²
b	3.39914 • 10+0	7.30815 • 10⁺⁰
С	3.68532 • 10 ⁻¹	1.70354 • 10⁺⁰
d	1.00204 • 10-1	9.95865 • 10 ⁻¹
е		
f		

Interferenze

Interferenze permanenti

- Tutti gli ossidanti presenti nei campioni reagiscono come il bromo dando risultati troppo elevati.
- Le concentrazioni maggiori di 22 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Derivato di

US EPA 330.5 (1983) APHA Method 4500 CI-G

^{*}Reagente ausiliario, in alternativa a DPD n. 1 / no 3 in caso di torbidità del campione a causa di alto contenuto di ioni di calcio e / o alta conduttività

Bromo PP M81

0.05 - 4.5 mg/L Br₂

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	530 nm	0.05 - 4.5 mg/L Br ₂
XD 7000, XD 7500	ø 24 mm	510 nm	0.05 - 4.5 mg/L Br ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Cloro totale DPD F10	Polvere / 100 pz.	530120

Campo di applicazione

- · Controllo disinfettante
- Trattamento acqua non depurata
- · Controllo acqua in vasca
- · Trattamento acqua di piscina

Preparazione

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella successiva rilevazione di ossidanti (ad es. ozono, cloro) si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Nella preparazione del campione occorre evitare la degassificazione del bromo, ad es. utilizzando pipette e agitando. L'analisi deve essere eseguita subito dopo il prelievo del campione.
- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione Bromo con polvere in bustine

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Chlorine TOTAL DPD/ F10.

Miscelare il contenuto capovolgendo (20 sec.).

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 3 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Bromo.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-4.54564 • 10 ⁻²	-4.54564 • 10 ⁻²
b	3.79613 • 10+0	8.16168 • 10 ⁺⁰
С	4.48111 • 10 ⁻¹	2.07139 • 10+0
d	-1.33013 • 10 ⁻¹	-1.32193 • 10 ⁺⁰
е		
f		

Interferenze

Interferenze permanenti

- Tutti gli ossidanti presenti nei campioni reagiscono come il bromo dando risultati troppo elevati.
- Le concentrazioni maggiori di 22 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Derivato di

US EPA 330.5 (1983) APHA Method 4500 CI-G

Boro T M85

0.1 - 2 mg/L B

Azometina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	430 nm	0.1 - 2 mg/L B
SpectroDirect, XD 7000, XD 7500	ø 24 mm	450 nm	0.1 - 2 mg/L B

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Boro No. 1	Pastiglia / 100	515790BT
Boro No. 2	Pastiglia / 100	515800BT
Boro No. 2	Pastiglia / 250	515801BT
Set Boron No. 1/no. 2#	ciascuna 100	517681BT
Set Boron No. 1/no. 2#	ciascuna 200	517682BT

Campo di applicazione

- · Trattamento acqua non depurata
- Trattamento acqua di scarico
- · Trattamento acqua potabile

Preparazione

- 1. La soluzione acquosa campione dovrebbe avere un valore di pH compreso tra 6 e 7.
- Lo sviluppo della colorazione dipende dalla temperatura. La temperatura del campione deve misurare 20 °C ± 1 °C.

Note

1. Attenersi scrupolosamente all'ordine con cui aggiungere le pastiglie.

Esecuzione della rilevazione Boro con pastiglia

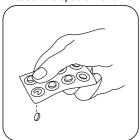
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

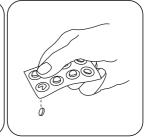
Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

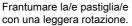


Premere il tasto ZERO.

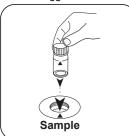
Prelevare la cuvetta dal vano di misurazione.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

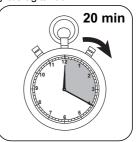
Aggiungere una pastiglia BORON No. 1.


Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia BORON No 2..



Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 20 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Boro.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	В	1
mg/l	H ₃ BO ₃	5.72

Metodo chimico

Azometina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-1.20451 • 10 ⁺⁰	-1.20451 • 10 ⁺⁰
b	7.17234 • 10 ⁺⁰	1.54205 • 10+1
С	-1.04549 • 10 ⁺¹	-4.83279 • 10 ⁺¹
d	8.83702 • 10 ⁺⁰	8.78256 • 10+1
е	-2.59333 • 10 ⁺⁰	-5.5413 • 10 ⁺¹
f		

Interferenze

Interferenze escludibili

1. Le interferenze devono essere eliminate tramite agenti in pastiglie (EDTA).

Riferimenti bibliografici

Hofer, A., Brosche, E. & Heidinger, R. Z. Anal. Chem. (1971) 253: 117

Derivato di

ISO 9390

¹⁾ *Bacchetta compresa

Cadmio M. TT

M87

0.025 - 0.75 mg/L Cd

Cadion

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	525 nm	0.025 - 0.75 mg/L Cd

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test Cadmio in cuvetta Spectroquant 1.14834.0001 d	25 pz.	420750

Campo di applicazione

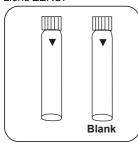
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- Galvanizzazione

Preparazione

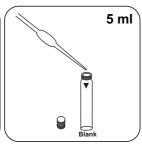
- Prima di eseguire il test, è necessario leggere le istruzioni originali e i consigli di sicurezza forniti con il kit per il test (le MSDS sono disponibili sulla homepage di www.merckmillipore.com).
- Con la procedura di test descritta, vengono determinati solo ioni Cd²⁺. Per determinare il cadmio colloidale, indisciolto e legato in modo complesso, è innanzitutto necessaria la digestione.
- 3. Il valore del pH del campione deve attestarsi tra 3 e 11.

Note

- 1. Questo metodo è adattato da MERCK.
- 2. Spectroquant® è un marchio commerciale registrato dell'azienda MERCK KGaA.
- Durante l'intera procedura devono essere adottate opportune precauzioni di sicurezza e una buona tecnica di laboratorio.
- 4. I volumi di campioni e reagenti devono essere misurati con l'ausilio di un'idonea pipetta graduata (classe A).
- Poiché la reazione dipende dalla temperatura, la temperatura del campione deve attestarsi tra 10 e 40 °C.
- I reagenti devono essere conservati in contenitori chiusi a una temperatura di +15 °C - +25 °C



Esecuzione della rilevazione Cadmio con Cell Test MERCK Spectroquant®, n. 1.14834.0001

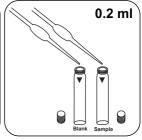

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7500, XD 7500

Con i seguenti dispositivi, per questo metodo non è necessario eseguire una misurazione ZERO:

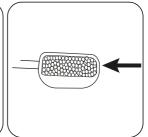
Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Immettere 5 ml di acqua demineralizzata nella cuvetta zero.

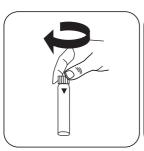

Immettere 5 ml di campione nella cuvetta del campione.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

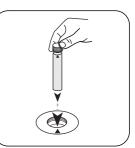

Immettere 0.2 ml di soluzione Reagente Cd-1K in ogni cuvetta.

Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo.

Aggiungere un micro cucchiaio raso di Reagente Cd-2K ciascuno.

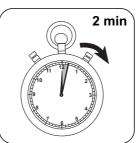


Chiudere la/e cuvetta/e.


Far sciogliere il contenuto agitando.

Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.



Prelevare la **cuvetta** dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cadmio.

Metodo chimico

Cadion

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm
а	1.03645 • 10*1
b	4.81917 • 10+2
С	
d	
е	
f	

Interferenze

Interferenze	da / [mg/L]
Al	25
Ca ²⁺	1000
Cr ₂ O ₇ ²⁻	100
Cu ²⁺	10
Fe³+	1
Mg ²⁺	1000
Mn ²⁺	10
NH ₄ ⁺	100
Ni ²⁺	0,5
Pb ²⁺	100
PO ₄ 3-	100
Zn ²⁺	0,5
NaCl	0,005
NaNO ₃	0,05
Na ₂ SO ₄	0,005

Riferimenti bibliografici

H. Watanabe, H. Ohmori (1979), Dual-wavelength spectrophotometric determination of cadmium with cadion, Talanta, 26 (10), 959-961

^dSpectroquant[®] è un marchio registrato della Ditta MERCK KGaA

Cloruro T M90

0.5 - 25 mg/L CI

CL-1

Nitrato d'argento / torbidità

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	530 nm	0.5 - 25 mg/L Cl ⁻
SpectroDirect, XD 7000, XD 7500	ø 24 mm	450 nm	0.5 - 25 mg/L Cl

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Cloruro T1	Pastiglia / 100	515910BT
Cloruro T1	Pastiglia / 250	515911BT
Cloruro T2	Pastiglia / 100	515920BT
Cloruro T2	Pastiglia / 250	515921BT
Set Cloruro T1/T2 #	ciascuna 100	517741BT
Set Cloruro T1/T2 #	ciascuna 250	517742BT

Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- Galvanizzazione

Preparazione

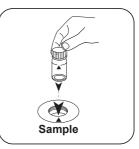
 Le acque fortemente alcaline dovrebbero essere neutralizzate prima dell'analisi, eventualmente con acido nitrico.

Note

1. Concentrazioni particolarmente elevate di elettroliti e composti organici hanno effetti diversi sulla reazione di precipitazione.

Esecuzione della rilevazione Cloruro con pastiglia

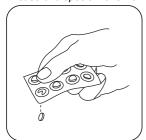
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

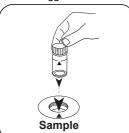
Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

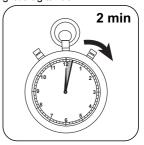
Aggiungere una pastiglia CHOLORIDE T1.

Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia CHLORIDE T2.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloruro.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Cl	1
mg/l	NaCl	1.65

Metodo chimico

Nitrato d'argento / torbidità

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-1.74125 • 10 ⁺⁰	-1.74125 • 10 ⁺⁰
b	1.28236 • 10+1	2.75707 • 10+1
С		
d		
е		
f		

Interferenze

Interferenze permanenti

- 1. Gli ioni che in ambiente acido formano precipitati con il nitrato d'argento, ad es. bromuro, ioduro e tiocianato, provocano interferenze.
- Singole particelle non sono imputabili alla presenza di cloruro. Il cloruro provoca un intorbidimento distribuito finemente dall'aspetto lattiginoso. Miscelando o agitando eccessivamente si producono forti turbolenze che provocano la formazione di fiocchi di grandi dimensioni, la cui conseguenza potrebbero essere risultati troppo bassi.
- 3. Il cianuro, lo iodio e il bromo vengono determinati anch'essi come cloruro. Il cromato e il bicromato interferiscono e devono essere ridotti allo stato cromico o rimossi.

Derivato di

DIN 38405

[®]*Bacchetta compresa

Cloruro L (B)

M91

5.00 - 60 mg/L Cl

Ferro(III)-tiocianato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 24 mm	455 nm	5.00 - 60 mg/L Cl ⁻

Materiale

Materiale richiesto (in parte facoltativo):

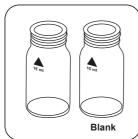
Reagenti	Unità di imbal- laggio	N. ordine
Cloruro, test con reagente	1 pz.	2419031

Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- Galvanizzazione

Preparazione

- Nell'esecuzione della rilevazione, il campione e i reagenti devono essere possibilmente a temperatura ambiente.
- 2. Il valore di pH del campione deve essere compreso tra 3 e 9.


Note

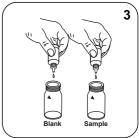
1. I reagenti devono essere conservati chiusi a una temperatura compresa tra +4 °C e +8 °C (frigorifero).

Esecuzione della rilevazione Cloruro, test con reagente

Selezionare il metodo nel dispositivo.

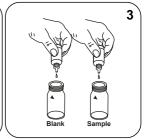
Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.

Immettere 10 ml di acqua demineralizzata nella cuvetta zero.


Immettere 1 ml di campione nella cuvetta.

Riempire una cuvetta da 24 mm con **9 ml di acqua** demineralizzata.

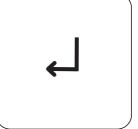
Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

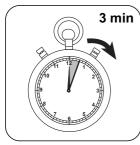

Immettere 3 gocce di soluzione Chloride-51 in ogni cuvetta.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

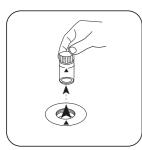
Immettere 3 gocce di soluzione Chloride-52 in ogni cuvetta.




Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Premere il tasto ENTER.


Attendere un tempo di reazione di 3 minuto/i

Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di Cloruro.

Premere il tasto TEST (XD: START).

Test

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Cl ⁻	1
mg/l	NaCl	1.65

Metodo chimico

Ferro(III)-tiocianato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-4.54503 • 10 ⁺⁰	-4.54503 • 10 ⁺⁰
b	4.04636 • 10+1	8.69967 • 10+1
С	8.94686 • 10+1	4.13569 • 10 ⁺²
d		
е		
f		

Interferenze

Interferenze permanenti

 Sostanze riducenti quali solfito e tiosolfato, che riducono il ferro (III) a ferro (II) o il mercurio (II) a mercurio (I), possono interferire. Il cianuro, lo iodio e il bromo producono un'interferenza positiva.

Derivato di

APHA Method 4500-CI- E

Cloruro L (A)

M92

0.5 - 20 mg/L Cl

CL-

Tiocianato mercurico / nitrato ferrico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, XD 7000,	ø 24 mm	430 nm	0.5 - 20 mg/L Cl ⁻
XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

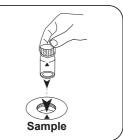
Reagenti	Unità di imbal- laggio	N. ordine
Set di reagenti per cloruro	1 pz.	56R018490

Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- Galvanizzazione

Esecuzione della rilevazione Cloruro con reagente liquido

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

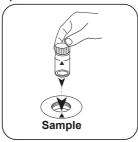
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

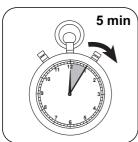
Aggiungere 20 gocce di KS251 (Chloride Reagenz A).

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere 20 gocce di KS253 (Chloride Reagenz B).

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloruro.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Cl ⁻	1
mg/l	NaCl	1.65

Metodo chimico

Tiocianato mercurico / nitrato ferrico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	1.53241 • 10⁺⁰	1.53241 • 10+0
b	-1.29813 • 10 ⁺¹	-2.79098 • 10 ⁺¹
С	4.02483 • 10+1	1.86048 • 10+2
d	-3.11237 • 10 ⁺¹	-3.09319 • 10 ⁺²
е	9.1645 • 10⁺0	1.95823 • 10 ⁺²
f		

Interferenze

Interferenze permanenti

 Sostanze riducenti quali solfito e tiosolfato, che riducono il ferro (III) a ferro (II) o il mercurio (II) a mercurio (I), possono interferire. Il cianuro, lo iodio e il bromo producono un'interferenza positiva.

Derivato di

DIN 15682-D31 DIN ISO 15923-1 D49 5 - 250 mg/L Cl^{- i)}

CL-2

Nitrato d'argento / torbidità

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100	ø 24 mm	530 nm	5 - 250 mg/L Cl ⁻¹⁾

Materiale

Materiale richiesto (in parte facoltativo):

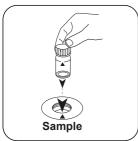
Reagenti	Unità di imbal- laggio	N. ordine
Cloruro T1	Pastiglia / 100	515910BT
Cloruro T1	Pastiglia / 250	515911BT
Cloruro T2	Pastiglia / 100	515920BT
Cloruro T2	Pastiglia / 250	515921BT
Set Cloruro T1/T2 #	ciascuna 100	517741BT
Set Cloruro T1/T2 #	ciascuna 250	517742BT

Campo di applicazione

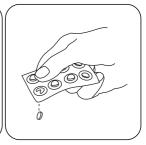
- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- Galvanizzazione

Esecuzione della rilevazione Cloruro con pastiglia

Selezionare il metodo nel dispositivo.

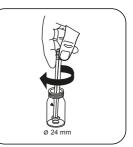

Immettere 1 ml di campione nella cuvetta.

Immettere acqua demineralizzata nella cuvetta fino a raggiungere la tacca dei 10 ml.


Chiudere la/e cuvetta/e.

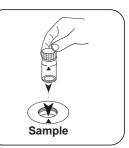
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

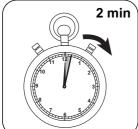
Premere il tasto **ZERO**.


Aggiungere una pastiglia CHLORIDE T1.

Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia CHLORIDE T2.


Frantumare la/e pastiglia/e con una leggera rotazione.



Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Attendere un **tempo di** reazione di 2 minuto/i.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Cloruro.

Metodo chimico

Nitrato d'argento / torbidità

¹⁾ Elevato intervallo di misurazione grazie alla diluizione | ¹⁾ *Bacchetta compresa

M98

Cloro 10 T

0.1 - 6 mg/L Cl₂

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 10 mm	510 nm	0.1 - 6 mg/L Cl ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 3	Pastiglia / 100	511080BT
DPD No. 3	Pastiglia / 250	511081BT
DPD No. 3	Pastiglia / 500	511082BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 100	515730BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 250	515731BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 500	515732BT
DPD No. 4	Pastiglia / 100	511220BT
DPD No. 4	Pastiglia / 250	511221BT
DPD No. 4	Pastiglia / 500	511222BT

Standards disponibles

Titolo	Unità di imballaggio	N. ordine
ValidCheck Cloro 1,5 mg/l	1 pz.	48105510

Campo di applicazione

- Trattamento acqua di scarico
- Controllo disinfettante
- · Acqua di caldaia
- Acqua di raffreddamento
- · Trattamento acqua non depurata
- Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile

Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione del cloro, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

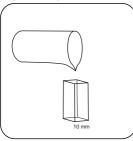
Preparazione

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Per la singola rilevazione del cloro libero e del cloro totale è opportuno utilizzare un apposito kit di cuvette per ciascuna procedura (vedere EN ISO 7393-2, par. 5.3).
- 3. Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5. I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

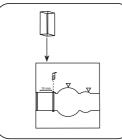
Note

Modificando la lunghezza della cuvetta è possibile estendere il range di misura:

- Cuvetta da 10 mm: 0,1 mg/L 6 mg/L, risoluzione: 0,01
- Cuvetta da 20 mm: 0,05 mg/L 3 mg/L, risoluzione: 0,01
- Cuvetta da 50 mm: 0,02 mg/L 1,2 mg/L, risoluzione: 0,001

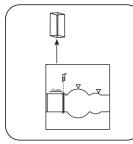

Esecuzione della rilevazione Cloro, libero con compressa

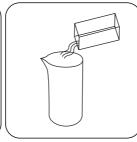
Selezionare il metodo nel dispositivo.

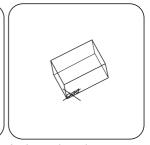

Selezionare inoltre la determinazione: libero

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

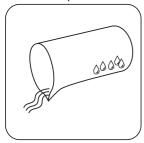
seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 10 mm con il campione.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

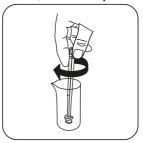

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.



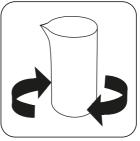
Svuotare la cuvetta.

Asciugare bene la cuvetta.

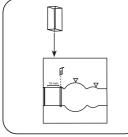

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.

Aggiungere una pastiglia DPD No. 1.



Frantumare la/e pastiglia/e con una leggera rotazione.

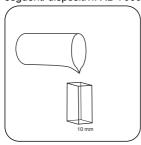

Aggiungere 10 ml di campione.

Far sciogliere la/e pastiglia/e agitando.

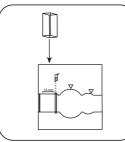
Riempire una cuvetta da 10 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).


Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloro libero.

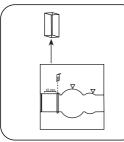
Esecuzione della rilevazione Cloro, totale con compressa

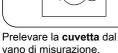

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: totale

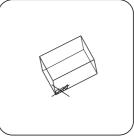
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 10 mm con il campione.




Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

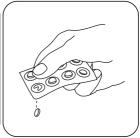
Premere il tasto ZERO.



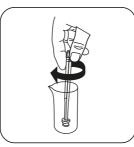


Svuotare la cuvetta.

Asciugare bene la cuvetta.

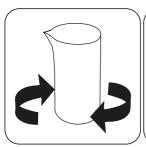

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.


Aggiungere una pastiglia DPD No. 1.

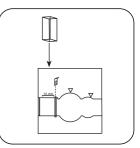
Aggiungere una pastiglia DPD No. 3.

In alternativa al DPD No. 1 e No. 3 tablet, un DPD No. 4 tablet può essere aggiunto.

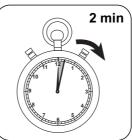


Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere 10 ml di campione.



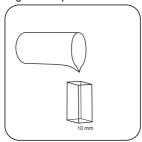
Far sciogliere la/e pastiglia/e agitando.



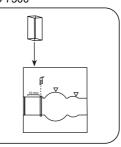
Riempire una cuvetta da 10 mm con il campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: Attendere un **tempo di START**). reazione di 2 minuto/i .


Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloro totale.

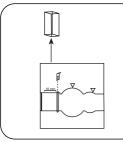
Esecuzione della rilevazione Cloro, determinazione differenziata con compressa

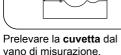

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: differenziato

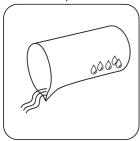
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui sequenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 10 mm con il campione.




Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

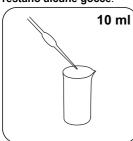
Premere il tasto ZERO.



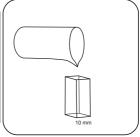
Svuotare la cuvetta.

Asciugare bene la cuvetta.

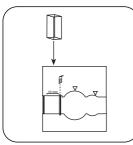
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.

Aggiungere una pastiglia DPD No. 1.

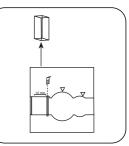

Frantumare la/e pastiglia/e con una leggera rotazione.

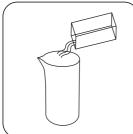
Aggiungere 10 ml di campione.



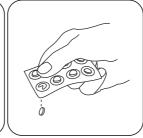
Far sciogliere la/e pastiglia/e agitando.

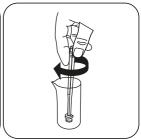
Riempire una cuvetta da 10 mm con il campione.

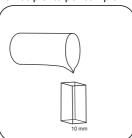


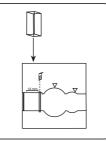

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test


Premere il tasto TEST (XD: Prelevare la cuvetta dal START).


vano di misurazione.


Versare nuovamente l'intera soluzione campione nel recipiente per campioni.


Aggiungere una pastiglia DPD No. 3.

Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Riempire una cuvetta da 10 mm con il campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: START).

Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cloro libero, mg/l cloro combinato, mg/l cloro totale.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 10 mm
а	-7.25624 • 10 ⁻²
b	4.18101 • 10+0
С	-1.3065 • 10 ⁺⁰
d	1.84562 • 10 ⁺⁰
е	
f	

Interferenze

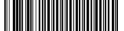
Interferenze permanenti

 Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.

Interferenze escludibili

- Le interferenze da parte di rame e ferro(III) devono essere eliminate con EDTA.
- In caso di campioni con un elevato tenore di calcio* e/o un'elevata conducibilità*, utilizzando le pastiglie di reagenti potrebbe verificarsi un intorbidimento del campione con conseguenti errori di misurazione. In questo caso si possono utilizzare in alternativa la pastiglia di reagente DPD No. 1 High Calcium e la pastiglia di reagente DPD No. 3 High Calcium.
 - *Non è possibile indicare i valori esatti in quanto l'intorbidimento dipende dal tipo e dalla composizione dell'acqua campione.
- Se si utilizzano pastiglie, le concentrazioni di cloro maggiori di 10 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione deve essere diluito con acqua priva di cloro. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Riferimenti bibliografici


Photometrische Analyseverfahren, Schwendt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

Secondo

EN ISO 7393-2

«Reagente ausiliario, in alternativa a DPD n. 1 / no 3 in caso di torbidità del campione a causa di alto contenuto di ioni di calcio e / o alta conduttività

Cloro 50 T

M99

0.02 - 0.5 mg/L Cl₂ a)

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	510 nm	0.02 - 0.5 mg/L Cl ₂ ^{a)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 3	Pastiglia / 100	511080BT
DPD No. 3	Pastiglia / 250	511081BT
DPD No. 3	Pastiglia / 500	511082BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 100	515730BT
DPD No. 3 High Calcium e)	Pastiglia / 250	515731BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 500	515732BT
DPD No. 4	Pastiglia / 100	511220BT
DPD No. 4	Pastiglia / 250	511221BT
DPD No. 4	Pastiglia / 500	511222BT

Standards disponibles

Titolo	Unità di imballaggio	N. ordine
ValidCheck Cloro 1,5 mg/l	1 pz.	48105510

Campo di applicazione

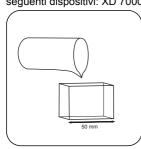
- Trattamento acqua di scarico
- Controllo disinfettante
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua non depurata
- Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile

Prelievo del campione

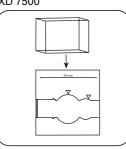
- Nella preparazione del campione occorre evitare la degassificazione del cloro, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

Preparazione

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Per la singola rilevazione del cloro libero e del cloro totale è opportuno utilizzare un apposito kit di cuvette per ciascuna procedura (vedere EN ISO 7393-2, par. 5.3).
- 3. Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5. I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

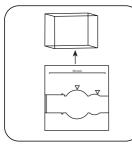


Esecuzione della rilevazione Cloro, libero con compressa


Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: libero

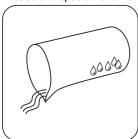
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.



Svuotare la cuvetta.

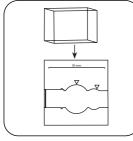
Asciugare bene la cuvetta.

Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.



Aggiungere una pastiglia DPD No. 1.

Frantumare la/e pastiglia/e con una leggera rotazione.


Aggiungere 10 ml di campione.

Far sciogliere la/e pastiglia/e agitando.

Riempire una cuvetta da 50 mm con il campione.

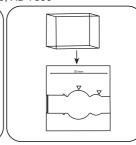
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Test

Sul display compare il risultato in mg/l di Cloro libero.

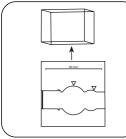
Esecuzione della rilevazione Cloro, totale con compressa

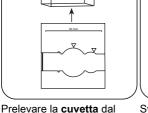

Selezionare il metodo nel dispositivo. Selezionare inoltre la determinazione: totale

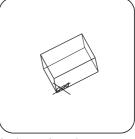
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 50 mm con il campione.



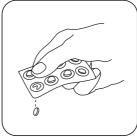

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

vano di misurazione.


Svuotare la cuvetta.

Asciugare bene la cuvetta.

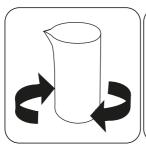

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.

Aggiungere una pastiglia DPD No. 1.

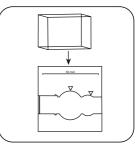
Aggiungere una pastiglia DPD No. 3.

In alternativa al DPD No. 1 e No. 3 tablet, un DPD No. 4 tablet può essere aggiunto.

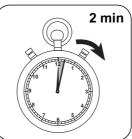


Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere 10 ml di campione.



Far sciogliere la/e pastiglia/e agitando.

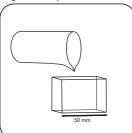


Riempire una cuvetta da 50 mm con il campione.

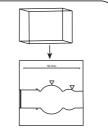
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START). reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloro totale.


Esecuzione della rilevazione Cloro, determinazione differenziata con compressa

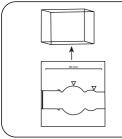
Selezionare il metodo nel dispositivo.


Selezionare inoltre la determinazione: differenziato

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 50 mm con il campione.

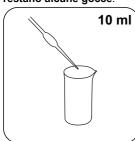


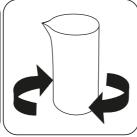
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

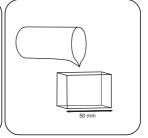
Premere il tasto ZERO.

Svuotare la cuvetta.

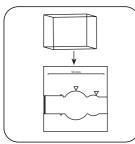
Asciugare bene la cuvetta.


Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.


Aggiungere una pastiglia DPD No. 1.

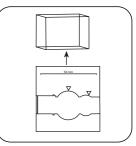

Frantumare la/e pastiglia/e con una leggera rotazione.

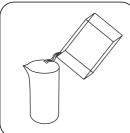
Aggiungere 10 ml di campione.



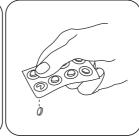
Far sciogliere la/e pastiglia/e agitando.

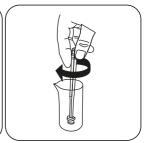
Riempire una cuvetta da 50 mm con il campione.



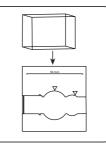

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

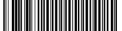

Premere il tasto TEST (XD: Prelevare la cuvetta dal START).


vano di misurazione.

Versare nuovamente l'intera soluzione campione nel recipiente per campioni.


Aggiungere una pastiglia DPD No. 3.

Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.


Riempire una cuvetta da 50 mm con il campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: START).

Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cloro libero, mg/l cloro combinato, mg/l cloro totale.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 50 mm
а	-2.01515 • 10 ⁻²
b	7.71349 • 10 ⁻¹
С	-1.14318 • 10 ⁻¹
d	
е	
f	

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.

Interferenze escludibili

- Le interferenze da parte di rame e ferro(III) devono essere eliminate con EDTA.
- In caso di campioni con un elevato tenore di calcio* e/o un'elevata conducibilità*, utilizzando le pastiglie di reagenti potrebbe verificarsi un intorbidimento del campione con conseguenti errori di misurazione. In questo caso si possono utilizzare in alternativa la pastiglia di reagente DPD No. 1 High Calcium e la pastiglia di reagente DPD No. 3 High Calcium.
 - *Non è possibile indicare i valori esatti in quanto l'intorbidimento dipende dal tipo e dalla composizione dell'acqua campione.
- Se si utilizzano pastiglie, le concentrazioni di cloro maggiori di 10 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione deve essere diluito con acqua priva di cloro. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Interferenze	da / [mg/L]
CrO ₄ ²⁻	0,01
MnO ₂	0,01

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwendt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

Secondo

EN ISO 7393-2

^{a)}Determinazione di libero, vincolato, totale possibile | ^{a)}Reagente ausiliario, in alternativa a DPD n. 1 / no 3 in caso di torbidità del campione a causa di alto contenuto di ioni di calcio e / o alta conduttività

Cloro T M100
0.01 - 6.0 mg/L Cl₂ a) CL6
DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	530 nm	0.01 - 6.0 mg/L Cl ₂ ^{a)}
SpectroDirect	ø 24 mm	510 nm	0.02 - 6.0 mg/L Cl ₂ ^{a)}
Scuba II	ø 24 mm	530 nm	0.1 - 6.0 mg/L Cl ₂ a)
XD 7000, XD 7500	ø 24 mm	510 nm	0.01 - 6.0 mg/L Cl ₂ a)

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 3	Pastiglia / 100	511080BT
DPD No. 3	Pastiglia / 250	511081BT
DPD No. 3	Pastiglia / 500	511082BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 100	515730BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 250	515731BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 500	515732BT
DPD No. 4	Pastiglia / 100	511220BT
DPD No. 4	Pastiglia / 250	511221BT
DPD No. 4	Pastiglia / 500	511222BT
Confezione di ricarica Suba II	1 pz.	525600

Standards disponibles

Titolo	Unità di imballaggio	N. ordine
ValidCheck Cloro 1,5 mg/l	1 pz.	48105510

Campo di applicazione

- · Trattamento acqua di scarico
- · Controllo disinfettante
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua non depurata
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile

Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione del cloro, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

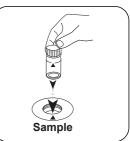
Preparazione

- Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Per la singola rilevazione del cloro libero e del cloro totale è opportuno utilizzare un apposito kit di cuvette per ciascuna procedura (vedere EN ISO 7393-2, par. 5.3).
- 3. Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5. I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione Cloro, libero con compressa

Selezionare il metodo nel dispositivo.

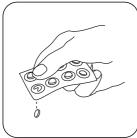
Selezionare inoltre la determinazione: libero


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

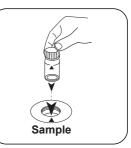
Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta finché non rimangono alcune gocce.

Aggiungere una pastiglia DPD No. 1.

Frantumare la/e pastiglia/e con una leggera rotazione.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .



Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD:

START).

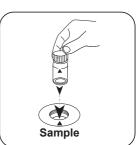
Sul display compare il risultato in mg/l di Cloro libero.

Esecuzione della rilevazione Cloro, totale con compressa

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: totale

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

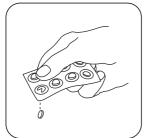

seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

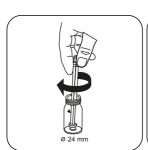
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Zero


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta finché non rimangono alcune gocce.


Aggiungere una pastiglia DPD No. 1.

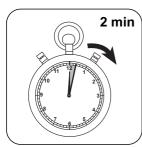
Aggiungere una pastiglia DPD No. 3.

In alternativa al DPD No. 1 e No. 3 tablet, un DPD No. 4 tablet può essere aggiunto.

Frantumare la/e pastiglia/e con una leggera rotazione.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .

Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: START).

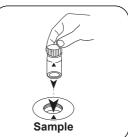
Attendere un tempo di reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloro totale.

Esecuzione della rilevazione Cloro, determinazione differenziata con compressa

Selezionare il metodo nel dispositivo.

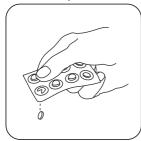
Selezionare inoltre la determinazione: differenziato


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.


Zero

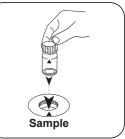
Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta finché non rimangono alcune gocce.

Aggiungere una pastiglia DPD No. 1.

Frantumare la/e pastiglia/e con una leggera rotazione.


Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

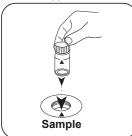
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

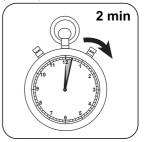
Test

Premere il tasto **TEST** (XD: START).

Prelevare la cuvetta dal vano di misurazione.

Aggiungere una pastiglia DPD No. 3.




Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

START).

Premere il tasto TEST (XD: Attendere un tempo di reazione di 2 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cloro libero, mg/l cloro combinato, mg/l cloro totale.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-5.41232 • 10 ⁻²	-5.41232 • 10 ⁻²
b	1.78498 • 10⁺⁰	3.83771 • 10 ⁺⁰
С	-8.7417 • 10 ⁻²	-4.04085 • 10 ⁻¹
d	1.08323 • 10-1	1.07655 • 10 ⁺⁰
е		
f		

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.

Interferenze escludibili

- Le interferenze da parte di rame e ferro(III) devono essere eliminate con EDTA.
- In caso di campioni con un elevato tenore di calcio* e/o un'elevata conducibilità*, utilizzando le pastiglie di reagenti potrebbe verificarsi un intorbidimento del campione con conseguenti errori di misurazione. In questo caso si possono utilizzare in alternativa la pastiglia di reagente DPD No. 1 High Calcium e la pastiglia di reagente DPD No. 3 High Calcium.
 - *Non è possibile indicare i valori esatti in quanto l'intorbidimento dipende dal tipo e dalla composizione dell'acqua campione.
- Se si utilizzano pastiglie, le concentrazioni di cloro maggiori di 10 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. Se la concentrazione di cloro è troppo elevata, il campione deve essere diluito con acqua priva di cloro. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Interferenze	da / [mg/L]
CrO ₄ ²⁻	0.01
MnO ₂	0.01

Validazione metodo

Limite di rilevabilità	0.02 mg/L
Limite di quantificazione	0.06 mg/L
Estremità campo di misura	6 mg/L
Sensibilità	2.05 mg/L / Abs
Intervallo di confidenza	0.04 mg/L
Deviazione standard della procedura	0.019 mg/L
Coefficiente di variazione della procedura	0.87 %

Conforme

EN ISO 7393-2

^{a)}Determinazione di libero, vincolato, totale possibile | ^{a)}Reagente ausiliario, in alternativa a DPD n. 1 / no 3 in caso di torbidità del campione a causa di alto contenuto di ioni di calcio e / o alta conduttività

Cloro L M101
0.02 - 4.0 mg/L Cl₂ a) CL6
DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	530 nm	0.02 - 4.0 mg/L Cl ₂ ^{a)}
SpectroDirect	ø 24 mm	510 nm	0.02 - 3 mg/L Cl ₂ a)
XD 7000, XD 7500	ø 24 mm	510 nm	0.02 - 4.0 mg/L Cl ₂ ^{a)}
, Test Kit	ø 24 mm		0.02 - 4.0 mg/L Cl ₂ a)

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD 1 soluzione tampone, bottiglia blu	15 mL	471010
Soluzione tampone DPD 1	100 mL	471011
DPD 1 Soluzione tampone in confezione da 6	1 pz.	471016
DPD 1 soluzione reagente, bottiglia verde	15 mL	471020
Soluzione reagente DPD 1	100 mL	471021
DPD 1 Soluzione reagente in confezione da 6	1 pz.	471026
DPD 3 soluzione, bottiglia rossa	15 mL	471030
Soluzione DPD 3	100 mL	471031
DPD 3 Soluzione in confezione da 6	1 pz.	471036
Set di reagenti DPD	1 pz.	471056

Standards disponibles

Titolo	Unità di imballaggio	N. ordine
ValidCheck Cloro 1,5 mg/l	1 pz.	48105510

Campo di applicazione

- Trattamento acqua di scarico
- Controllo disinfettante
- · Acqua di caldaia
- Acqua di raffreddamento
- · Trattamento acqua non depurata
- Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile

Prelievo del campione


- Nella preparazione del campione occorre evitare la degassificazione del cloro, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

Preparazione

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Per la singola rilevazione del cloro libero e del cloro totale è opportuno utilizzare un apposito kit di cuvette per ciascuna procedura (vedere EN ISO 7393-2, par. 5.3).
- 3. Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5. I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

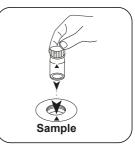
Note

- 1. Dopo l'uso bisogna richiudere immediatamente le boccette contagocce con i rispettivi tappi dello stesso colore.
- Conservare al fresco il kit di reagenti a una temperatura compresa tra +6 °C e +10 °C.

Esecuzione della rilevazione Cloro, libero con reagente liquido

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: libero


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

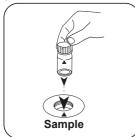
Prelevare la cuvetta dal vano di misurazione.

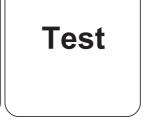
Svuotare la cuvetta.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 6 gocce di DPD 1 Buffer Solution.

Aggiungere 2 gocce di DPD 1 Reagent Solution.


Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml.


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare atten-

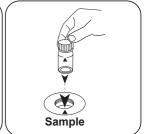
Premere il tasto **TEST** (XD: **START**).

zione al posizionamento. Sul display compare il risultato in mg/l di Cloro libero.

Esecuzione della rilevazione Cloro, totale con reagente liquido

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: totale

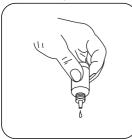

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Zero



Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta.

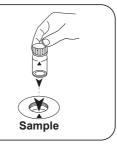
Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella

Aggiungere 6 gocce di DPD 1 Buffer Solution.

Aggiungere 2 gocce di DPD 1 Reagent Solution.

Aggiungere 3 gocce di DPD 3 Solution .

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

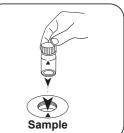
Attendere un tempo di reazione di 2 minuto/i.

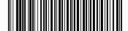
Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloro totale.

Esecuzione della rilevazione Cloro, differenziato con reagente liquido

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: differenziato


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Zero

Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

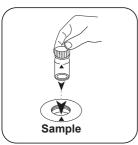
Svuotare la cuvetta.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella

Aggiungere 6 gocce di DPD 1 Buffer Solution.

Aggiungere 2 gocce di DPD 1 Reagent Solution.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .



Chiudere la/e cuvetta/e.

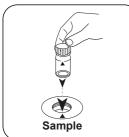
Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

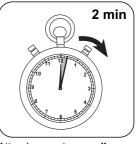
Test

Premere il tasto TEST (XD: Prelevare la cuvetta dal START).

vano di misurazione.


Aggiungere 3 gocce di DPD 3 Solution .

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cloro libero, mg/l cloro combinato, mg/l cloro totale.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-4.53212 • 10 ⁻²	-4.53212 • 10 ⁻²
b	1.78637 • 10 ⁺⁰	3.8407 • 10+0
С	-1.14952 • 10 ⁻¹	-5.31366 • 10 ⁻¹
d	1.21371 • 10 ⁻¹	1.20623 • 10⁺0
е		
f		

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.

Interferenze escludibili

- Le interferenze da parte di rame e ferro(III) devono essere eliminate con EDTA.
- Se si utilizzano reagenti liquidi, le concentrazioni di cloro maggiori di 4 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione deve essere diluito con acqua priva di cloro. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Interferenze	da / [mg/L]	
CrO ₄ ²⁻	0,01	
MnO ₃	0.01	

Conforme

EN ISO 7393-2

^{a)}Determinazione di libero, vincolato, totale possibile

Cloro HR T $0.1 - 10 \text{ mg/L Cl}_2$ ^{a)}

M103 CL10

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	530 nm	0.1 - 10 mg/L Cl ₂ ^{a)}

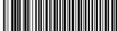
Materiale

DPD

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1 HR	Pastiglia / 100	511500BT
DPD No. 1 HR	Pastiglia / 250	511501BT
DPD No. 1 HR	Pastiglia / 500	511502BT
DPD No. 3 HR	Pastiglia / 100	511590BT
DPD No. 3 HR	Pastiglia / 250	511591BT
DPD No. 3 HR	Pastiglia / 500	511592BT
Set DPD No. 1 HR/No. 3 HR #	ciascuna 100	517791BT
Set DPD No. 1 HR/No. 3 HR #	ciascuna 250	517792BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 100	515730BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 250	515731BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 500	515732BT

Campo di applicazione


- · Trattamento acqua di scarico
- · Controllo disinfettante
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua non depurata
- Controllo acqua in vasca
- · Trattamento acqua di piscina

Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione del cloro, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

Preparazione

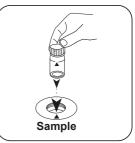
- Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Per la singola rilevazione del cloro libero e del cloro totale è opportuno utilizzare un apposito kit di cuvette per ciascuna procedura (vedere EN ISO 7393-2, par. 5.3).
- 3. Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5. I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione Cloro HR, libero con compressa

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: libero

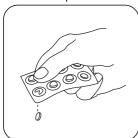
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui


seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta finché non rimangono alcune gocce.

Aggiungere una pastiglia DPD No. 1 HR

Frantumare la/e pastiglia/e con una leggera rotazione.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD:

START).

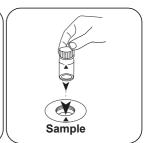
Sul display compare il risultato in mg/l di Cloro libero.

Esecuzione della rilevazione Cloro HR, totale con compressa

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: totale

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

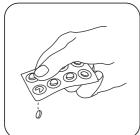

seguenti dispositivi: XD 7000, XD 7500

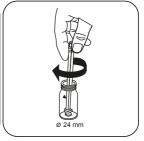
Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Zero




Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

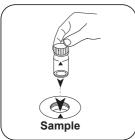
Svuotare la cuvetta finché non rimangono alcune gocce.

Aggiungere una pastiglia DPD No. 1 HR .

Aggiungere una pastiglia DPD No. 3 HR .

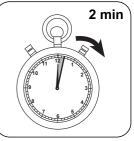
Frantumare la/e pastiglia/e con una leggera rotazione.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .



Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.



Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

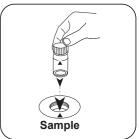
reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloro totale.

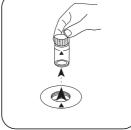
Esecuzione della rilevazione Cloro HR, determinazione differenziata con compressa

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: differenziato


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.


Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

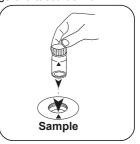
Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

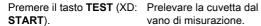
Svuotare la cuvetta finché non rimangono alcune gocce.

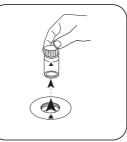
Aggiungere una pastiglia DPD No. 1 HR.

Frantumare la/e pastiglia/e con una leggera rotazione.

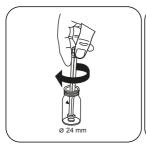

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .

Chiudere la/e cuvetta/e.



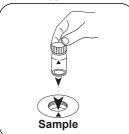

Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

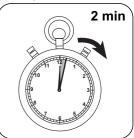


vano di misurazione.

Aggiungere una pastiglia DPD No. 3 HR.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cloro libero, mg/l cloro combinato, mg/l cloro totale.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	4.46524 • 10 ⁻²	4.46524 • 10 ⁻²
b	1.50355 • 10+0	3.23263 • 10⁺0
С	9.34178 • 10 ⁻²	4.31824 • 10 ⁻¹
d		
е		
f		

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.

Interferenze escludibili

- Le interferenze da parte di rame e ferro(III) devono essere eliminate con EDTA.
- In caso di campioni con un elevato tenore di calcio* e/o un'elevata conducibilità*, utilizzando le pastiglie di reagente potrebbe verificarsi un intorbidimento del campione con conseguenti errori di misurazione. In questo caso si possono utilizzare in alternativa la pastiglia di reagente DPD No. 1 High Calcium e la pastiglia di reagente DPD No. 3 High Calcium.

*Non è possibile indicare i valori esatti in quanto l'intorbidimento dipende dal tipo e dalla composizione dell'acqua campione.

Conforme

EN ISO 7393-2

^aDeterminazione di libero, vincolato, totale possibile | ^aReagente ausiliario, in alternativa a DPD n. 1 / no 3 in caso di torbidità del campione a causa di alto contenuto di ioni di calcio e / o alta conduttività | ^aBacchetta compresa

Cloro HR 10 T

M104

0.1 - 10 mg/L Cl₂ a)

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 10 mm	510 nm	0.1 - 10 mg/L Cl ₂ ^{a)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1 HR	Pastiglia / 100	511500BT
DPD No. 1 HR	Pastiglia / 250	511501BT
DPD No. 1 HR	Pastiglia / 500	511502BT
DPD No. 3 HR	Pastiglia / 100	511590BT
DPD No. 3 HR	Pastiglia / 250	511591BT
DPD No. 3 HR	Pastiglia / 500	511592BT
Set DPD No. 1 HR/No. 3 HR #	ciascuna 100	517791BT
Set DPD No. 1 HR/No. 3 HR #	ciascuna 250	517792BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 100	515730BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 250	515731BT
DPD No. 3 High Calcium e)	Pastiglia / 500	515732BT

Campo di applicazione

- Trattamento acqua di scarico
- Controllo disinfettante
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua non depurata
- · Controllo acqua in vasca
- Trattamento acqua di piscina

Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione del cloro, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

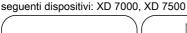
Preparazione

- Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Per la singola rilevazione del cloro libero e del cloro totale è opportuno utilizzare un apposito kit di cuvette per ciascuna procedura (vedere EN ISO 7393-2, par. 5.3).
- 3. Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5. I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Note

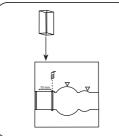
Modificando la lunghezza della cuvetta è possibile estendere il range di misura:

- Cuvetta da 10 mm: 0,1 mg/L 10 mg/L, risoluzione: 0,01
- Cuvetta da 20 mm: 0,05 mg/L 5 mg/L, risoluzione: 0,01
- Cuvetta da 50 mm: 0,02 mg/L 2 mg/L, risoluzione: 0,001

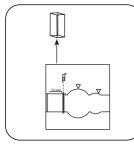


Esecuzione della rilevazione Cloro HR, libero con compressa

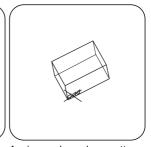
Selezionare il metodo nel dispositivo.


Selezionare inoltre la determinazione: libero

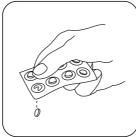
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui


Riempire una cuvetta da 10 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

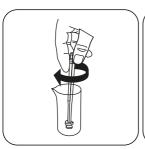

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

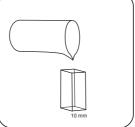

Svuotare la cuvetta.

Asciugare bene la cuvetta.

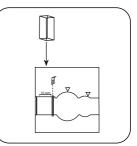
Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.



Aggiungere una pastiglia DPD No.1 HR .



Aggiungere 10 ml di campione.



Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Riempire una cuvetta da 10 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

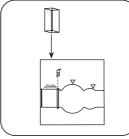
Premere il tasto **TEST** (XD:

START).

Sul display compare il risultato in mg/l di Cloro libero.

Esecuzione della rilevazione Cloro HR, totale con compressa

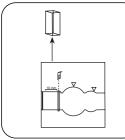
Selezionare il metodo nel dispositivo.


Selezionare inoltre la determinazione: totale

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

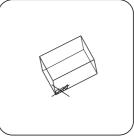
seguenti dispositivi: XD 7000, XD 7500

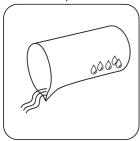
Riempire una cuvetta da 10 mm con il campione.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

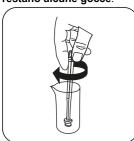
Premere il tasto ZERO.

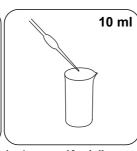


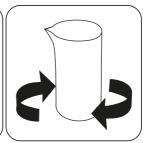


Svuotare la cuvetta.

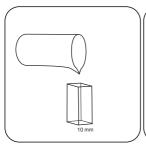
Asciugare bene la cuvetta.


Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.

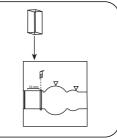

Aggiungere una pastiglia DPD No.1 HR.


Aggiungere una pastiglia DPD No.3 HR.

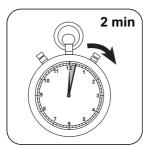
Frantumare la/e pastiglia/e con una leggera rotazione.



Aggiungere 10 ml di campione.



Far sciogliere la/e pastiglia/e agitando.


Riempire una cuvetta da 10 mm con il campione.

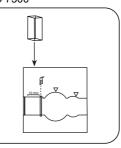
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloro totale.

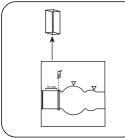
Esecuzione della rilevazione Cloro HR, determinazione differenziata con compressa

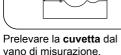

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: differenziata

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui sequenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 10 mm con il campione.

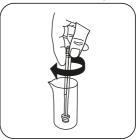


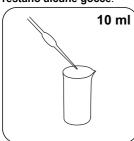

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

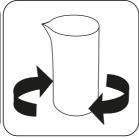
Premere il tasto ZERO.



Svuotare la cuvetta.

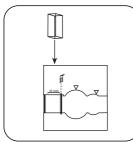

Asciugare bene la cuvetta.


Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.


Aggiungere una pastiglia DPD No.1 HR.

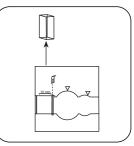
Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere 10 ml di campione.



Far sciogliere la/e pastiglia/e agitando.

Riempire una cuvetta da 10 mm con il campione.

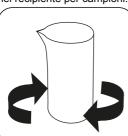


Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

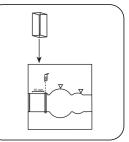
Test

Premere il tasto TEST (XD: Prelevare la cuvetta dal START).

vano di misurazione.


Versare nuovamente l'intera soluzione campione nel recipiente per campioni.

Aggiungere una pastiglia DPD No.3 HR.


Frantumare la/e pastiglia/e con una leggera rotazione.

Far sciogliere la/e pastiglia/e agitando.

Riempire una cuvetta da 10 mm con il campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cloro libero, mg/l cloro combinato, mg/l cloro totale.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 10 mm
а	1.42151 • 10 ⁻¹
b	3.06749 • 10+0
С	4.92199 • 10 ⁻¹
d	
е	
f	

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.

Interferenze escludibili

- Le interferenze da parte di rame e ferro(III) devono essere eliminate con EDTA.
- In caso di campioni con un elevato tenore di calcio* e/o un'elevata conducibilità*, utilizzando le pastiglie di reagente potrebbe verificarsi un intorbidimento del
 campione con conseguenti errori di misurazione. In questo caso si possono utilizzare in alternativa la pastiglia di reagente DPD No. 1 High Calcium e la pastiglia di
 reagente DPD No. 3 High Calcium.
 - *Non è possibile indicare i valori esatti in quanto l'intorbidimento dipende dal tipo e dalla composizione dell'acqua campione.

Interferenze	da / [mg/L]
CrO ₄ ²⁻	0,01
MnO ₂	0,01

Conforme

EN ISO 7393-2

^aDeterminazione di libero, vincolato, totale possibile | ^oReagente ausiliario, in alternativa a DPD n. 1 / no 3 in caso di torbidità del campione a causa di alto contenuto di ioni di calcio e / o alta conduttività | ^a*Bacchetta compresa

Cloro HR (KI) T 5 - 200 mg/L Cl₂ Kl/acido M105 CLHr

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	530 nm	5 - 200 mg/L Cl ₂
SpectroDirect, XD 7000, XD 7500	ø 16 mm	470 nm	5 - 200 mg/L Cl ₂

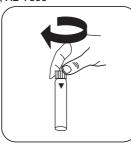
Materiale

Materiale richiesto (in parte facoltativo):

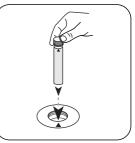
Reagenti	Unità di imbal- laggio	N. ordine
Cloro HR (KI)	Pastiglia / 100	513000BT
Cloro HR (KI)	Pastiglia / 250	513001BT
Acidificante GP	Pastiglia / 100	515480BT
Acidificante GP	Pastiglia / 250	515481BT
Set Cloro HR (KI)/Acidificante GP#	ciascuna 100	517721BT
Set Cloro HR (KI)/Acidificante GP#	ciascuna 250	517722BT
Cloro HR (KI)	Pastiglia / 100	501210
Cloro HR (KI)	Pastiglia / 250	501211

Campo di applicazione

- · Trattamento acqua di scarico
- · Controllo disinfettante
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua non depurata
- Trattamento acqua di piscina


Esecuzione della rilevazione Cloro HR (KI) con pastiglia

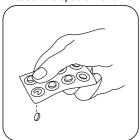
Selezionare il metodo nel dispositivo.

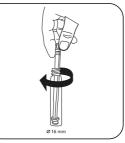

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 16 mm con **8 ml di** campione.



Chiudere la/e cuvetta/e.

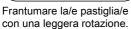

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



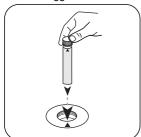
Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

Aggiungere una pastiglia Chlorine HR (KI).


Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia ACIDIFYING GP.



Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di Cloro.

Test Premere il tasto TEST (XD:

START).

Metodo chimico

KI/acido

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
a	-3.51241 • 10 ⁻¹
b	8.04513 • 10+1
С	1.53448 • 10+0
d	
е	
f	

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.

Validazione metodo

Limite di rilevabilità	1.29 mg/L
Limite di quantificazione	3.86 mg/L
Estremità campo di misura	200 mg/L
Sensibilità	83.96 mg/L / Abs
Intervallo di confidenza	1.14 mg/L
Deviazione standard della procedura	0.45 mg/L
Coefficiente di variazione della procedura	0.45 %

Derivato di

EN ISO 7393-3

¹⁾*Bacchetta compresa

Cloro PP M110

0.02 - 2 mg/L Cl₂ a) CL2

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	530 nm	0.02 - 2 mg/L Cl ₂ ^{a)}
SpectroDirect, XD 7000, XD 7500	ø 24 mm	510 nm	0.02 - 2 mg/L Cl ₂ ^{a)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Cloro libero DPD F10	Polvere / 100 pz.	530100
Cloro libero DPD F10	Polvere / 1000 pz.	530103
Cloro totale DPD F10	Polvere / 100 pz.	530120
Cloro totale DPD F10	Polvere / 1000 pz.	530123

Standards disponibles

Titolo	Unità di imballaggio	N. ordine
ValidCheck Cloro 1,5 mg/l	1 pz.	48105510

Campo di applicazione

- Trattamento acqua di scarico
- Controllo disinfettante
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua non depurata
- Controllo acqua in vasca
- Trattamento acqua di piscina
- · Trattamento acqua potabile

Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione del cloro, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

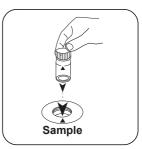
Preparazione

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Per la singola rilevazione del cloro libero e del cloro totale è opportuno utilizzare un apposito kit di cuvette per ciascuna procedura (vedere EN ISO 7393-2, par. 5.3).
- 3. Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5. I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione cloro libero con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: libero


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

10 ml

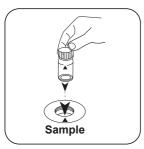
Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.


Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Chlorine FREE-DPD/ F10.

Miscelare il contenuto capovolgendo (20 sec.).

Test

Posizionare la cuvetta del campione nel vano di misurazione. Fare atten-

Premere il tasto **TEST** (XD: **START**).

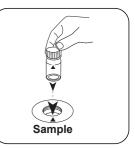
zione al posizionamento.

Sul display compare il risultato in mg/l di Cloro libero.

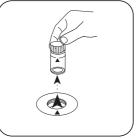
Esecuzione della rilevazione cloro totale con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: totale

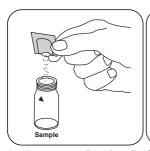

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.



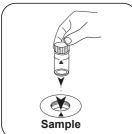
Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.



polvere Chlorine TOTAL-DPD/ F10

Aggiungere una bustina di Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (20 sec.).

Test

3 min

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

START).

Premere il tasto TEST (XD: Attendere un tempo di reazione di 3 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloro totale.

Esecuzione della rilevazione Cloro differenziato con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: differenziato

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

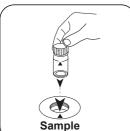
Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

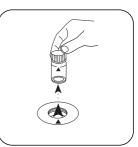
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.



Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Chlorine FREE-DPD/ F10.


Miscelare il contenuto capovolgendo (20 sec.).

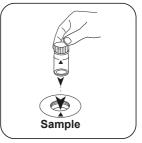
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: START).

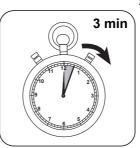
Prelevare la cuvetta dal vano di misurazione.

Pulire a fondo la cuvetta e il Riempire una cuvetta coperchio della cuvetta.

da 24 mm con 10 ml di campione.


Aggiungere una bustina di polvere TOTAL-DPD/ F10.

Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo (20 sec.).

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di reazione di 3 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cloro libero, mg/l cloro combinato, mg/l cloro totale.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-3.94263•10 ⁻²	-3.94263•10 ⁻²
b	1.70509•10+0	3.66594•10+0
С		
d		
е		
f		

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.

Interferenze escludibili

- Le interferenze da parte di rame e ferro(III) devono essere eliminate con EDTA.
- Se si utilizzano Powder Packs, le concentrazioni di cloro maggiori di 2 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione deve essere diluito con acqua priva di cloro. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Interferenze	da / [mg/L]		
CrO ₄ ²⁻	0,01		
MnO ₂	0,01		

Validazione metodo

Limite di rilevabilità	0.01 mg/L
Limite di quantificazione	0.03 mg/L
Estremità campo di misura	2 mg/L
Sensibilità	1.68 mg/L / Abs
Intervallo di confidenza	0.033 mg/L
Deviazione standard della procedura	0.014 mg/L
Coefficiente di variazione della procedura	1.34 %

Conforme

EN ISO 7393-2

^{a)}Determinazione di libero, vincolato, totale possibile

Cloro HR PP M111

0.1 - 8 mg/L Cl₂ a) CL8

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, PM 620, PM 630	Multicuvetta, Tipo 3	530 nm	0.1 - 8 mg/L Cl ₂ ^{a)}
MD 100	Multicuvetta, Tipo 2	530 nm	0.1 - 8 mg/L Cl ₂ ^{a)}

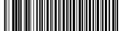
Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Cloro libero DPD F10	Polvere / 100 pz.	530100
Cloro libero DPD F10	Polvere / 1000 pz.	530103
Cloro totale DPD F10	Polvere / 100 pz.	530120
Cloro totale DPD F10	Polvere / 1000 pz.	530123

Campo di applicazione

- Trattamento acqua di scarico
- · Controllo disinfettante
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua non depurata
- · Controllo acqua in vasca
- · Trattamento acqua di piscina



Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione del cloro, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

Preparazione

- Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nel rilevamento del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Per la singola rilevazione del cloro libero e del cloro totale è opportuno utilizzare un apposito kit di cuvette per ciascuna procedura (vedere EN ISO 7393-2, par. 5.3).
- 3. Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5. I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione cloro libero HR con confezioni in polvere

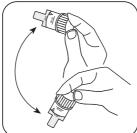
Selezionare inoltre la determinazione: libero Selezionare il metodo nel dispositivo.

Riempire una cuvetta da 10 mm con 5 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.


Prelevare la **cuvetta** dal vano di misurazione.

Aggiungere al campione due bustine di polvere Chlorine FREE-DPD / F10.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (20 sec.).

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Cloro libero.

Esecuzione della rilevazione cloro totale HR con confezioni in polvere

Selezionare inoltre la determinazione: totale Selezionare il metodo nel dispositivo.

Riempire una cuvetta da 10 mm con 5 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Prelevare la **cuvetta** dal vano di misurazione.

Aggiungere al campione due bustine di polvere Chlorine TOTAL-DPD / F10.

Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo (20 sec.).

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: Attendere un **tempo di START**). reazione di 3 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloro totale.

Esecuzione della rilevazione Cloro libero HR differenziato con confezioni in polvere

Selezionare il metodo nel dispositivo. Selezionare inoltre la determinazione: differenziato

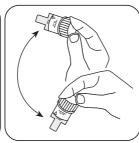
Riempire una cuvetta da 10 mm con 5 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Zero

Prelevare la cuvetta dal vano di misurazione.



Aggiungere al campione due bustine di polvere Chlorine FREE-DPD / F10.

Premere il tasto ZERO.

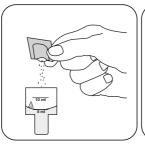
Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (20 sec.).


Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

vano di misurazione.

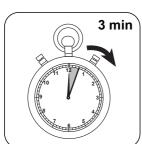


Pulire a fondo la cuvetta e il coperchio della cuvetta.


Riempire una cuvetta da 10 mm con 5 ml di campione.

Aggiungere al campione due bustine di polvere Chlorine TOTAL-DPD / F10.

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo (20 sec.).

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 3 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cloro libero, mg/l cloro combinato, mg/l cloro totale.

Metodo chimico

DPD

Appendice

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.

Interferenze escludibili

- · Le interferenze da parte di rame e ferro(III) devono essere eliminate con EDTA.
- Se si utilizzano Powder Packs, le concentrazioni di cloro maggiori di 8 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione deve essere diluito con acqua priva di cloro. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Conforme

EN ISO 7393-2

^{a)}Determinazione di libero, vincolato, totale possibile

Cloro MR PP M113

0.02 - 3.5 mg/L Cl₂ ^{a)} CL2

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	530 nm	0.02 - 3.5 mg/L Cl ₂ ^{a)}
SpectroDirect, XD 7000, XD 7500	ø 24 mm	510 nm	0.02 - 3.5 mg/L Cl ₂ ^{a)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Cloro libero DPD F10	Polvere / 100 pz.	530180
VARIO Cloro libero DPD F10	Polvere / 1000 pz.	530183
VARIO Cloro totale DPD F10	Polvere / 100 pz.	530190
VARIO Cloro totale DPD F10	Polvere / 1000 pz.	530193

Standards disponibles

Titolo	Unità di imballaggio	N. ordine
ValidCheck Cloro 1,5 mg/l	1 pz.	48105510

Campo di applicazione

- Trattamento acqua di scarico
- Controllo disinfettante
- · Acqua di caldaia
- Acqua di raffreddamento
- · Trattamento acqua non depurata
- Controllo acqua in vasca
- Trattamento acqua di piscina
- Trattamento acqua potabile

Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione del cloro, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

Preparazione

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Per la singola rilevazione del cloro libero e del cloro totale è opportuno utilizzare un apposito kit di cuvette per ciascuna procedura (vedere EN ISO 7393-2, par. 5.3).
- 3. Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5. I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

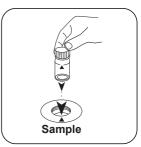
Note

 I reagenti in polvere utilizzati sono contrassegnati in blu per una facile identificazione. La polvere per la determinazione del cloro libero porta una linea chiusa e una linea tratteggiata. La polvere per la determinazione del cloro totale ha due linee chiuse.

Esecuzione della rilevazione cloro libero MR con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: libero


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

Riempire una cuvetta da 24 mm con **10 ml di** campione.

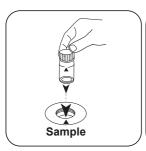
Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Aggiungere una bustina di polvere VARIO Chlorine FREE-DPD/ F10.



Aggiungere una bustina di Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (20 sec.).

Test

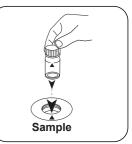
Posizionare la cuvetta del campione nel vano di misurazione. Fare atten-

Premere il tasto TEST (XD: START).

zione al posizionamento.

Sul display compare il risultato in mg/l di Cloro libero.

Esecuzione della rilevazione Chlorine differentiated MR with powder packs


Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: differenziato

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

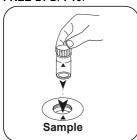
Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

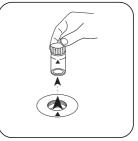
Riempire una cuvetta da 24 mm con 10 ml di campione.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.



Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere VARIO Chlorine FREE-DPD/ F10.


Miscelare il contenuto capovolgendo (20 sec.).

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

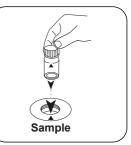
START).

Premere il tasto TEST (XD: Prelevare la cuvetta dal vano di misurazione.

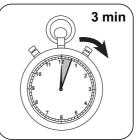
Pulire a fondo la cuvetta e il Riempire una cuvetta coperchio della cuvetta.

da 24 mm con 10 ml di campione.

Aggiungere una bustina di polvere Chlorine TOTAL-DPD/ F10.



Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo (20 sec.).

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

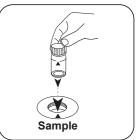
Premere il tasto **TEST** (XD: Attendere un **tempo di START**). reazione di 3 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cloro libero, mg/l cloro combinato, mg/l cloro totale.

Esecuzione della rilevazione cloro totale MR con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: totale


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

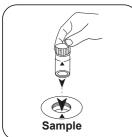
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

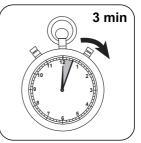
Zero

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.





Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere VARIO Chlorine TOTAL-DPD/ F10.

Miscelare il contenuto capovolgendo (20 sec.).

Test

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 3 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cloro totale.

Metodo chimico

DPD

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-9.48367•10 ⁻³	-9.48367•10 ⁻³
b	1.5024•10⁺0	3.23016•10 ⁺⁰
С	9.28696•10-2	4.2929•10 ⁻¹
d		
е		
f		

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.

Interferenze escludibili

- Le interferenze da parte di rame e ferro(III) devono essere eliminate con EDTA.
- Se si utilizzano Powder Packs, le concentrazioni di cloro maggiori di 4 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione deve essere diluito con acqua priva di cloro. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Interferenze	da / [mg/L]
CrO ₄ ²⁻	0,01
MnO ₂	0,01

Validazione metodo

Limite di rilevabilità	0.01 mg/L
Limite di quantificazione	0.03 mg/L
Estremità campo di misura	3.5 mg/L
Sensibilità	1.7 mg/L / Abs
Intervallo di confidenza	0.014 mg/L
Deviazione standard della procedura	0.006 mg/L
Coefficiente di variazione della procedura	0.34 %

^{a)}Determinazione di libero, vincolato, totale possibile

Biossido di cloro 50 T

M119

0.05 - 1 mg/I CIO₂

DPD/glicina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	510 nm	0.05 - 1 mg/l ClO ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 3	Pastiglia / 100	511080BT
DPD No. 3	Pastiglia / 250	511081BT
DPD No. 3	Pastiglia / 500	511082BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 100	515730BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 250	515731BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 500	515732BT
Set DPD No. 1/no. 3#	ciascuna 100	517711BT
Set DPD No. 1/no. 3#	ciascuna 250	517712BT
Set DPD No. 1/glicina #	ciascuna 100	517731BT
Set DPD No. 1/glicina #	ciascuna 250	517732BT
Set DPD No. 1/no. 3 High Calcium#	ciascuna 100	517781BT
Set DPD No. 1/no. 3 High Calcium#	ciascuna 250	517782BT
Glicina ^{f)}	Pastiglia / 100	512170BT
Glicina ^{f)}	Pastiglia / 250	512171BT

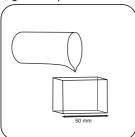
Campo di applicazione

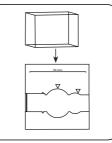
- · Trattamento acqua di scarico
- · Controllo disinfettante
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua non depurata
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile

Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

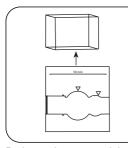
Preparazione


- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del Biossido di cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

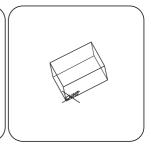

Esecuzione della rilevazione Biossido di cloro, in assenza di cloro con pastiglia

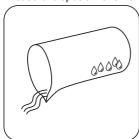
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

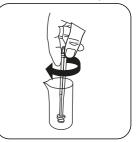

Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

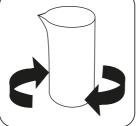

Premere il tasto ZERO.


Prelevare la **cuvetta** dal vano di misurazione.

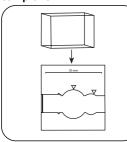
Svuotare la cuvetta.


Asciugare bene la cuvetta.

Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.


Aggiungere una pastiglia DPD No. 1.

Frantumare la/e pastiglia/e con una leggera rotazione.



Aggiungere 10 ml di campione.

Far sciogliere la/e pastiglia/e agitando.

Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare atten-

START).

zione al posizionamento.

Sul display compare il risultato in mg/l di Biossido di cloro.

Metodo chimico

DPD/glicina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 50 mm
а	1.25575 • 10 ⁻²
b	3.13095 • 10+0
С	
d	
е	
f	

Interferenze

Interferenze permanenti

1. Tutti gli ossidanti presenti nei campioni danno risultati troppo elevati.

Interferenze escludibili

- Le concentrazioni di biossido di cloro maggiori di 19 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito con acqua priva di biossido di cloro. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).
- 2. Torbidità: In caso di campioni con un elevato tenore di ioni di calcio* (e/o un'elevata umidità dell'aria*), utilizzando la pastiglia DPD No. 1 potrebbe verificarsi un intorbidimento del campione con conseguenti errori di misurazione. In questo caso si può utilizzare in alternativa la pastiglia di reagente DPD No. 1 High Calcium.
 *Non è possibile indicare i valori esatti in quanto l'intorbidimento dipende dal tipo e dalla composizione dell'acqua campione.

Derivato di

DIN 38408, parte 5

[®]/Reagente ausiliario, in alternativa a DPD n. 1 / no 3 in caso di torbidità del campione a causa di alto contenuto di ioni di calcio e / o alta conduttività | [®]/Reagente ausiliario, è inoltre necessario per la determinazione di bromo, biossido di cloro o ozono in presenza di cloro | [®]/
Bacchetta compresa

Biossido di cloro T

0.02 - 11 mg/l ClO₂

DPD/glicina

M120 CLO2

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	530 nm	0.02 - 11 mg/l ClO ₂
SpectroDirect	ø 24 mm	510 nm	0.05 - 2.5 mg/l ClO ₂
XD 7000, XD 7500	ø 24 mm	510 nm	0.02 - 11 mg/l ClO ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 3	Pastiglia / 100	511080BT
DPD No. 3	Pastiglia / 250	511081BT
DPD No. 3	Pastiglia / 500	511082BT
Glicina ⁿ	Pastiglia / 100	512170BT
Glicina ^{f)}	Pastiglia / 250	512171BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 100	515730BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 250	515731BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 500	515732BT
DPD No. 1 Alto Calcio ^{e)}	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio ^{e)}	Pastiglia / 500	515742BT
Set DPD No. 1/no. 3#	ciascuna 100	517711BT
Set DPD No. 1/no. 3#	ciascuna 250	517712BT
Set DPD No. 1/glicina #	ciascuna 100	517731BT
Set DPD No. 1/glicina #	ciascuna 250	517732BT
Set DPD No. 1/no. 3 High Calcium#	ciascuna 100	517781BT
Set DPD No. 1/no. 3 High Calcium#	ciascuna 250	517782BT

Campo di applicazione

- · Trattamento acqua di scarico
- · Controllo disinfettante
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua non depurata
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile

Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

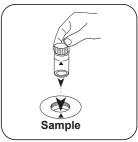
Preparazione

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del Biossido di cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione Biossido di cloro, in assenza di cloro con pastiglia

Selezionare il metodo nel dispositivo.

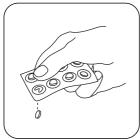
Selezionare inoltre la determinazione: senza Cloro


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta finché non rimangono alcune gocce.

Aggiungere una pastiglia DPD No.1.

Frantumare la/e pastiglia/e con una leggera rotazione.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

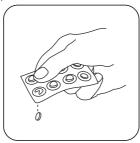
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD:

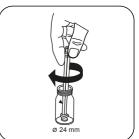
START).

Sul display compare il risultato in mg/l di Biossido di cloro.

Esecuzione della rilevazione Biossido di cloro, in presenza di cloro con pastiglia


Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: in presenza di Cloro

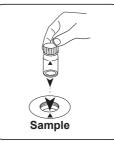

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

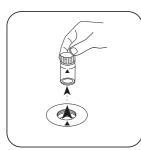
Aggiungere una pastiglia GLYCINE.

Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Riempire una seconda cuvetta con 10 ml di campione.


Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

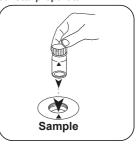


Prelevare la cuvetta dal vano di misurazione.

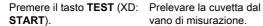
Svuotare la cuvetta.

Aggiungere una pastiglia DPD No. 1.

Frantumare la/e pastiglia/e con una leggera rotazione.

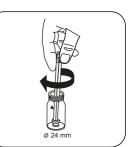

Immettere la soluzione di glicina preparata nella cuvetta preparata.

Chiudere la/e cuvetta/e.



Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

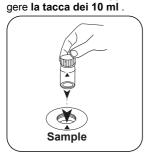

vano di misurazione.

Pulire a fondo la cuvetta e il coperchio della cuvetta.

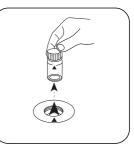
campione nella cuvetta.

Immettere alcune gocce di Aggiungere una pastiglia DPD No. 1.

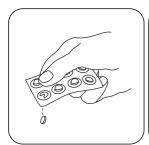
Frantumare la/e pastiglia/e con una leggera rotazione.


Immettere il campione nella cuvetta fino a raggiun-

Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

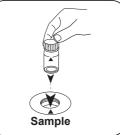
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.



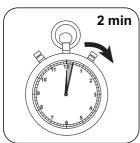
Premere il tasto **TEST** (XD: START).

Prelevare la cuvetta dal vano di misurazione.

Aggiungere una pastiglia DPD No.3.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Biossido di cloro.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	CIO ₂	1
mg/l	Cl ₂ frei	0.525
mg/l	Cl ₂ geb.	0.525
mg/l	ges. Cl ₂	0.525

Metodo chimico

DPD/glicina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-8.24762 • 10 ⁻²	-8.24762 • 10 ⁻²
b	3.33567 • 10+0	7.17169 • 10 ⁺⁰
С	-1.16192 • 10 ⁻¹	-5.37098 • 10 ⁻¹
d	1.95263 • 10-1	1.9406 • 10+0
е		
f		

Interferenze

Interferenze permanenti

1. Tutti gli ossidanti presenti nei campioni danno risultati troppo elevati.

Interferenze escludibili

1. Le concentrazioni di biossido di cloro maggiori di 19 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito con acqua priva di biossido di cloro. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta.

Derivato di

DIN 38408, parte 5

Biossido di cloro PP 0.04 - 3.8 mg/l CIO₂ M122 CLO2

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	530 nm	0.04 - 3.8 mg/l ClO ₂
XD 7000, XD 7500	ø 24 mm	510 nm	0.04 - 3.8 mg/l ClO ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Cloro libero DPD F10	Polvere / 100 pz.	530100
Cloro libero DPD F10	Polvere / 1000 pz.	530103
Glicina ^{f)}	Pastiglia / 100	512170BT
Glicina ^{f)}	Pastiglia / 250	512171BT
VARIO Glicina Reagente VARIO 10 %, 29 ml	29 mL	532210

Campo di applicazione

- · Trattamento acqua di scarico
- · Controllo disinfettante
- · Acqua di caldaia
- · Acqua di raffreddamento
- · Trattamento acqua non depurata
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile

Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

Preparazione

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del Biossido di cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione Biossido di cloro, in assenza di cloro con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: senza Cloro

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

seguenti dispositivi: XD 7000, XD 7500

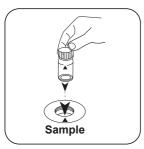
Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.


Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Chlorine FREE-DPD / F10.

Miscelare il contenuto capovolgendo (20 sec.).

Test

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

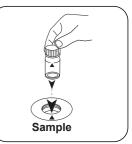
Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Biossido di cloro.

Esecuzione della rilevazione Biossido di cloro, in presenza di cloro con confezioni in polvere

Selezionare il metodo nel dispositivo.

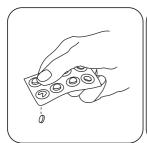
Selezionare inoltre la determinazione: in presenza di Cloro


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di campione**.

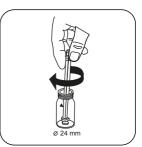
Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.



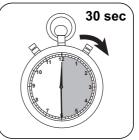
Aggiungere una pastiglia GLYCINE.

o aggiungere 4 gocce di GLYCINE Reagent.

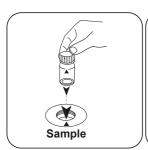
Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.


Aggiungere una bustina di polvere Chlorine-Free-DPD/ F10.

Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo (20 sec.).

Attendere un tempo di reazione di 30 secondi.

Test

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Biossido di cloro.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-5.31232 • 10 ⁻²	-5.31232 • 10 ⁻²
b	3.27999 • 10+0	7.05198 • 10+0
С	2.13647 • 10 ⁻¹	9.87583 • 10 ⁻¹
d		
е		
f		

Interferenze

Interferenze permanenti

1. Tutti gli ossidanti presenti nei campioni danno risultati troppo elevati.

Interferenze escludibili

 Le concentrazioni di biossido di cloro maggiori di 3,8 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito con acqua priva di biossido di cloro. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Derivato di

DIN 38408, parte 5

Reagente ausiliario, è inoltre necessario per la determinazione di bromo, biossido di cloro o ozono in presenza di cloro

Cromo 50 PP

M124

0.005 - 0.5 mg/L Crb)

Difenilcarbazide

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	542 nm	0.005 - 0.5 mg/L Cr ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Reagente persolfato per CR	Polvere / 100 pz.	537300
Cromo esavalente	Polvere / 100 pz.	537310
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

Campo di applicazione

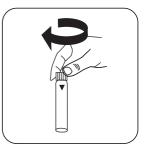
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- Galvanizzazione
- · Trattamento acqua potabile

Preparazione

1. Il valore di pH del campione deve essere compreso tra 3 e 9.

Note

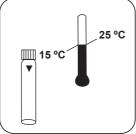
 Nella prima parte del test viene determinata la concentrazione di cromo totale. Nella seconda parte viene determinata la concentrazione di cromo(VI). La concentrazione di cromo(III) si ottiene dalla differenza tra i due valori.


Digestione Cromo con confezioni in polvere

Riempire una cuvetta da 16 mm con 10 ml di campione.

Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere PERSULFT.RGT FOR CR.

Miscelare il contenuto capovolgendo.

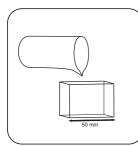

Sottoporre a digestione la/e cuvetta/e nel termoreattore preriscaldato per 120 minuti a 100 °C

Prelevare la cuvetta dal termoreattore. (Attenzione: la cuvetta è bollente!)

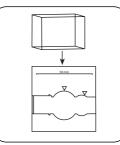
Miscelare il contenuto capovolgendo.

Lasciar raffreddare la/e cuvetta/e a temperatura ambiente.

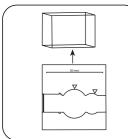
Esecuzione della rilevazione Cromo (VI) con confezioni in polvere

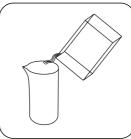

Selezionare il metodo nel dispositivo.

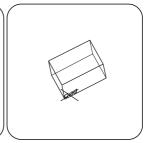
Selezionare inoltre la determinazione: Cr(VI)


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

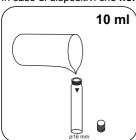
sequenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto **ZERO**.

Prelevare la **cuvetta** dal vano di misurazione.



Svuotare la cuvetta.

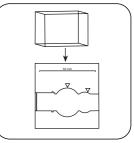
Asciugare bene la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

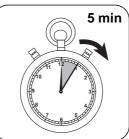
Riempire una cuvetta da 16 mm con **10 ml di** campione.

Aggiungere una bustina di polvere CHROMIUM HEXAVALENT.

Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo.

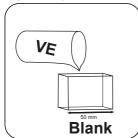


Riempire la cuvetta da 50 mm con il campione preparato.

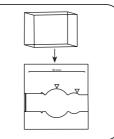
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 5 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cr(VI).


Esecuzione della rilevazione Cromo, totale (Cr(III) + Cr(VI)) con confezioni in polvere

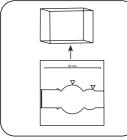
Selezionare il metodo nel dispositivo.

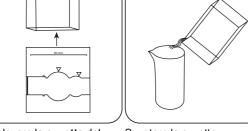

Selezionare inoltre la determinazione: Cr(III + VI)

Per la determinazione di Cromo, totale (Cr(III) + Cr(VI) eseguire la digestione descritta.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 50 mm con acqua demineralizzata.




Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

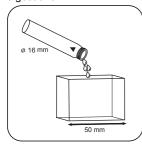
Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta.

Asciugare bene la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.



Immettere una bustina di polvere Chromium HEXA-VALENT nella cuvetta di digestione.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

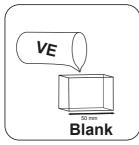
Riempire la cuvetta da 50 mm con il campione preparato.

START).

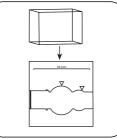
Premere il tasto TEST (XD: Attendere un tempo di reazione di 5 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cromo totale.

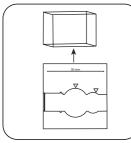
Esecuzione della rilevazione Cromo, differenziato, con confezioni in polvere


Selezionare il metodo nel dispositivo.

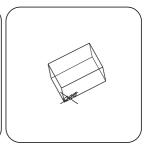
Selezionare inoltre la determinazione: differenziato


Per la determinazione di Cromo, differenziato eseguire la digestione descritta.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con acqua demineralizzata.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

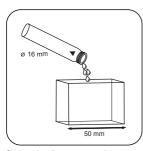
Prelevare la **cuvetta** dal vano di misurazione.

Svuotare la cuvetta.

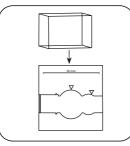
Asciugare bene la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

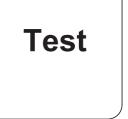
Immettere una bustina di polvere Chromium HEXA-VALENT nella cuvetta di digestione.



Chiudere la/e cuvetta/e.

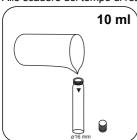


Miscelare il contenuto capovolgendo.



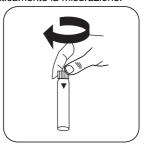
Riempire la cuvetta da 50 mm con il campione preparato.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto **TEST** (XD: **START**).

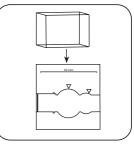
Attendere un tempo di reazione di 5 minuto/i.


Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.

Riempire una seconda cuvetta con 10 ml di campione.

Aggiungere una bustina di polvere CHROMIUM HEXAVALENT.

Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo.

Riempire la cuvetta da 50 mm con il campione preparato.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 5 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cr(VI); mg/l Cr(III); mg/l Cr cromo totale.

Metodo chimico

Difenilcarbazide

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 50 mm	
а	-6.54461 • 10 ⁺⁰	
b	2.44266 • 10+2	
С	6.29996 • 10 ⁺⁰	
d		
е		
f		

Interferenze

Interferenze permanenti

 Per informazioni sulle interferenze dei metalli e delle sostanze riducenti o ossidanti, in particolare in acque fortemente inquinate, vedere DIN 38 405 - D 24 e Standard Methods of Water and Wastewater, 20th Edition, 1998.

Derivato di

DIN 18412 US EPA 218.6

^{b)}Reattore richiesto per COD (150 ° C), TOC (120 ° C) e cromo totale, - fosfato, azoto, (100 ° C)

Cromo PP

M125

0.02 - 2 mg/L Crb)

Difenilcarbazide

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	530 nm	0.02 - 2 mg/L Cr ^{b)}
SpectroDirect, XD 7000, XD 7500	ø 16 mm	542 nm	0.02 - 2 mg/L Cr ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Reagente persolfato per CR	Polvere / 100 pz.	537300
Cromo esavalente	Polvere / 100 pz.	537310
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- Galvanizzazione
- · Trattamento acqua potabile

Preparazione

1. Il valore di pH del campione deve essere compreso tra 3 e 9.

Note

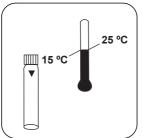
 Nella prima parte del test viene determinata la concentrazione di cromo totale. Nella seconda parte viene determinata la concentrazione di cromo(VI). La concentrazione di cromo(III) si ottiene dalla differenza tra i due valori.

Digestione Cromo con confezioni in polvere

Riempire una cuvetta da 16 mm con 10 ml di campione.

Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere PERSULFT.RGT FOR CR.

Miscelare il contenuto capovolgendo.


Sottoporre a digestione la/e cuvetta/e nel termoreattore preriscaldato per 120 minuti a 100 °C

Prelevare la cuvetta dal termoreattore. (Attenzione: la cuvetta è bollente!)

Miscelare il contenuto capovolgendo.

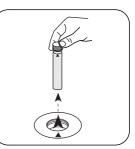
Lasciar raffreddare la/e cuvetta/e a temperatura ambiente.

Esecuzione della rilevazione Cromo, differenziato, con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: differenziato

Per la determinazione di Chromium, differentiated eseguire la digestione descritta. Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500



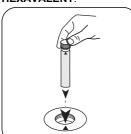
Posizionare la cuvetta pretrattata nel vano di misurazione. Fare attenzione al posizionamento.

Zero

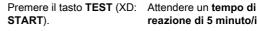
Premere il tasto ZERO.

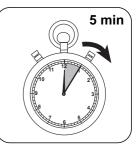
Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Aggiungere una bustina di polvere CHROMIUM HEXAVALENT.

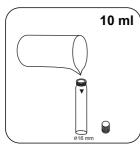
Chiudere la/e cuvetta/e.




Miscelare il contenuto capovolgendo.

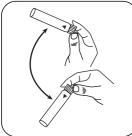
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test



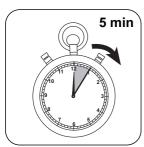
reazione di 5 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.


Riempire una seconda cuvetta con 10 ml di campione.

Aggiungere una bustina di polvere CHROMIUM HEXAVALENT.


Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

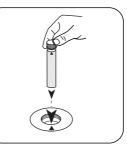
Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cr(VI); Cr(III); Cr Cromo totale.

Esecuzione della rilevazione Cromo (VI) con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: Cr(VI)


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 16 mm con **10 ml di** campione.

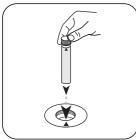
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una bustina di polvere CHROMIUM HEXAVALENT.



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 5 minuto/i .

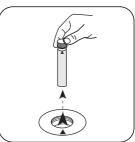
Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cr(VI).

Esecuzione della rilevazione Cromo, totale (Cr(III) + Cr(VI), con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: Cr(III + VI)

Per la determinazione di Cromo, totale (Cr(III)+ Cr(VI)) eseguire la digestione descritta.

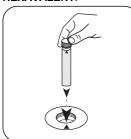

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

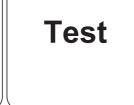
Posizionare la cuvetta pretrattata nel vano di misurazione. Fare attenzione al posizionamento.

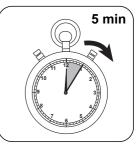
Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Aggiungere una bustina di polvere CHROMIUM HEXAVALENT.


Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 5 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Cromo totale.

Metodo chimico

Difenilcarbazide

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	-2.66512 • 10 ⁻²
b	8.73906 • 10 ⁻¹
С	9.34973 • 10 ⁻²
d	
е	
f	

Interferenze

Interferenze permanenti

 Per informazioni sulle interferenze dei metalli e delle sostanze riducenti o ossidanti, in particolare in acque fortemente inquinate, vedere DIN 38 405 - D 24 e Standard Methods of Water and Wastewater, 20th Edition, 1998.

Secondo

DIN 3805 - D24

Derivato di

DIN 18412 US EPA 218.6

 $^{^{\}text{b}}$ Reattore richiesto per COD (150 $^{\circ}$ C), TOC (120 $^{\circ}$ C) e cromo totale, - fosfato, azoto, (100 $^{\circ}$ C)

CSB LR TT M130

3 - 150 mg/L CODb)

Lr

Dichromate / H₂SO₄

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	430 nm	3 - 150 mg/L COD ^{b)}
SpectroDirect, XD 7000, XD 7500	ø 16 mm	443 nm	3 - 150 mg/L COD ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
COD LR	25 pz.	2420720
COD LR, senza mercurio	25 pz.	2420710
COD LR	150 pz.	2420725

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

Campo di applicazione

- · Trattamento acqua non depurata
- · Trattamento acqua di scarico

Note

- 1. La cuvetta zero è stabile se conservata al buio.
- 2. La cuvetta zero e la cuvetta di reazione devono appartenere allo stesso lotto.
- Le cuvette non devono essere introdotte calde nel vano cuvette. I valori di misura più stabili vengono rilevati se le cuvette vengono lasciate riposare per tutta la notte.

Rimozione di alta concentrazione di cloruro nei campioni di COD

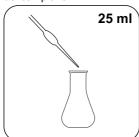
Se il contenuto di cloruro supera la tolleranza del test utilizzato, possono verificarsi interferenze durante la determinazione del COD. Per evitare questo problema, è necessario eseguire il seguente pretrattamento del campione: **Accessori**:

- · 2 beute da 300 ml con attacco NS 29/32
- 2 assorbitore di HCl secondo DIN 38409
- 2 tappi in vetro con NS 29/32
- · Pipette per 20 ml e 25 ml
- · Agitatori magnetici e barre di agitazione magnetiche
- Termometro (campo di misura: 0 100°C)
- Bagno di ghiaccio

Reagenti:

- 12 14 g di calce sodata
- 50 ml H₂SO₄ (95 97%, 1,84 g/ml, senza COD)
- Acido cloridrico 10%, per pulire l'assorbitore dai residui di calce

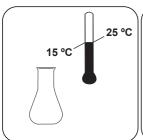
Il lavoro deve essere eseguito sotto una cappa di aspirazione!


Immettere **20 ml di campione** nella recipiente del campione.

Lasciar raffreddare il campione a temperatura ambiente.

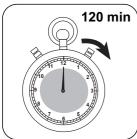
Immettere 20 ml di campione nella recipiente del campione.

Immettere 25 ml di campione nella recipiente del campione.



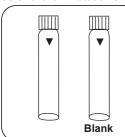
Non miscelare il contenuto!

Lasciar raffreddare il campione a temperatura ambiente.

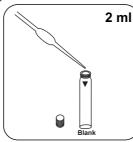

Lasciar raffreddare la/e cuvetta/e a temperatura ambiente.

Aggiungere 6 - 7 g di polvere soda lime.

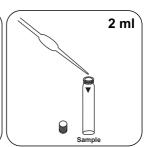
Miscelare il contenuto capovolgendo con cautela.


Riscaldare il campione per 120 minuti o finché non si sarà sciolto completamente.

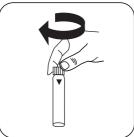
Utilizzare questo campione per l'analisi della COD. Questo pretrattamento ha diluito il campione originale di un fattore di 2,05.


Campione di COD= Visualizzazione COD x 2,05

Esecuzione della rilevazione CSB LR con test in cuvetta Vario

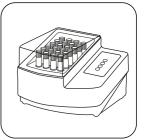

Selezionare il metodo nel dispositivo.

Preparare due **cuvette per reagenti**. Contrassegnare una cuvetta come cuvetta zero.

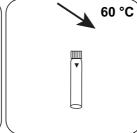


Immettere 2 ml di acqua demineralizzata nella cuvetta zero.

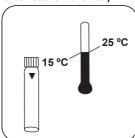
Immettere 2 ml di campione nella cuvetta del campione.

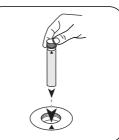


Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo con cautela. Attenzione: sviluppo di calore!

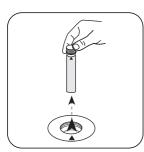
Sottoporre a digestione la/e cuvetta/e nel termoreattore preriscaldato per 120 minuti a 150 °C


Prelevare la cuvetta dal la cuvetta è bollente!)

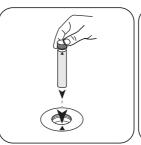

Lasciar raffreddare la/e termoreattore. (Attenzione: cuvetta/e fino a circa 60 °C. capovolgendo.

Miscelare il contenuto

Lasciare prima raffreddare la cuvetta a temperatura ambiente e successivamente misurare.



Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di COD.

Metodo chimico

Dichromate / H₂SO₄

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
a	2.16352 • 10 ⁺²
b	-2.71531 • 10 ⁺²
С	
d	
е	
f	

Interferenze

Interferenze permanenti

 In casi eccezionali gli ingredienti per i quali la capacità di ossidazione del reagente non è sufficiente possono portare a risultati troppo bassi.

Interferenze escludibili

- Per evitare errori di misurazione dovuti a sostanze in sospensione è importante inserire le cuvette nel vano di misura con cautela, in quanto sul fondo delle cuvette si forma un precipitato imputabile al metodo stesso.
- Prima di eseguire l'analisi è necessario che le pareti esterne delle cuvette siano pulite e asciutte. Eventuali impronte delle dita o gocce d'acqua sulla cuvetta provocano errori di misurazione.
- Nella versione standard, il cloruro interferisce da una concentrazione di 1000 mg/L.
 Nella versione senza mercurio, il disturbo dipende dalla concentrazione di cloruri e dal COD. Le concentrazioni da 100 mg/L di cloruro possono portare a disturbi significativi qui.

Validazione metodo

Limite di rilevabilità	3.2 mg/L
Limite di quantificazione	9.7 mg/L
Estremità campo di misura	150 mg/L
Sensibilità	-272 mg/L / Abs
Intervallo di confidenza	3.74 mg/L
Deviazione standard della procedura	1.55 mg/L
Coefficiente di variazione della procedura	2.02 %

Conforme

ISO 15705:2002

Secondo

ISO 15705:2002 DIN 38409 parte 41

 $^{^{\}text{b}}$ Reattore richiesto per COD (150 $^{\circ}$ C), TOC (120 $^{\circ}$ C) e cromo totale, - fosfato, azoto, (100 $^{\circ}$ C)

CSB MR TT M131

20 - 1500 mg/L CODb)

Mr

Dichromate / H₂SO₄

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	610 nm	20 - 1500 mg/L COD ^{b)}
SpectroDirect, XD 7000, XD 7500	ø 16 mm	596 nm	20 - 1500 mg/L COD ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
COD MR	25 pz.	2420721
COD MR, senza mercurio	25 pz.	2420711
COD MR	150 pz.	2420726
COD MR, senza mercurio	150 pz.	2420716

Sono necessari inoltre i seguenti accessori.

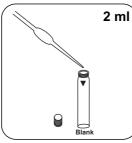
Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

Campo di applicazione

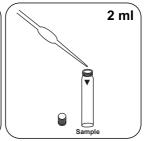
- · Trattamento acqua non depurata
- · Trattamento acqua di scarico


Note

- 1. La cuvetta zero è stabile se conservata al buio. La cuvetta zero e la cuvetta di reazione devono appartenere allo stesso lotto.
- 2. Le cuvette non devono essere introdotte calde nel vano cuvette. I valori di misura più stabili vengono rilevati se le cuvette vengono lasciate riposare per tutta la notte.
- Se si desidera una maggiore precisione, per i campioni con un CSB minore di 100 mg/L si consiglia di utilizzare il kit di cuvette CSB LR.



Esecuzione della rilevazione CSB MR con test in cuvetta Vario

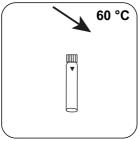

Selezionare il metodo nel dispositivo.

Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Immettere 2 ml di acqua demineralizzata nella cuvetta zero.

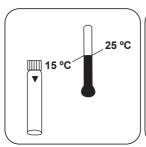
Immettere 2 ml di campione nella cuvetta del campione.

Chiudere la/e cuvetta/e.

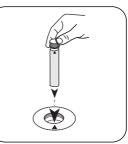

Miscelare il contenuto capovolgendo con cautela. Attenzione: sviluppo di calore!

Sottoporre a digestione la/e cuvetta/e nel termoreattore preriscaldato per 120 minuti a 150 °C .

Prelevare la cuvetta dal la cuvetta è bollente!)



Lasciar raffreddare la/e termoreattore. (Attenzione: cuvetta/e fino a circa 60 °C. capovolgendo.



Miscelare il contenuto

Lasciare prima raffreddare la cuvetta a temperatura ambiente e successivamente misurare.


Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: START).

Test

Sul display compare il risultato in mg/l di COD.

Metodo chimico

Dichromate / H₂SO₄

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm	
а	-1.04251 • 10 ⁺¹	
b	2.09975 • 10+3	
С		
d		
е		
f		

Interferenze

Interferenze permanenti

 In casi eccezionali gli ingredienti per i quali la capacità di ossidazione del reagente non è sufficiente possono portare a risultati troppo bassi.

Interferenze escludibili

- Per evitare errori di misurazione dovuti a sostanze in sospensione è importante inserire le cuvette nel vano di misura con cautela, in quanto sul fondo delle cuvette si forma un precipitato imputabile al metodo stesso.
- Prima di eseguire l'analisi è necessario che le pareti esterne delle cuvette siano pulite e asciutte. Eventuali impronte delle dita o gocce d'acqua sulla cuvetta provocano errori di misurazione.
- Nella versione standard, il cloruro interferisce da una concentrazione di 1000 mg/L.
 Nella versione senza mercurio, il disturbo dipende dalla concentrazione di cloruri e dal COD. Le concentrazioni da 100 mg/L di cloruro possono portare a disturbi significativi qui. Per rimuovere alte concentrazioni di cloruro nei campioni COD, vedere il metodo M130 COD LR TT.

Validazione metodo

Limite di rilevabilità	8.66 mg/L
Limite di quantificazione	25.98 mg/L
Estremità campo di misura	1500 mg/L
Sensibilità	2,141 mg/L / Abs
Intervallo di confidenza	18.82 mg/L
Deviazione standard della procedura	7.78 mg/L
Coefficiente di variazione della procedura	1.04 %

Conforme

ISO 15705:2002

Secondo

ISO 15705:2002 DIN 38409 parte 43

 $^{^{\}text{b}}$ Reattore richiesto per COD (150 $^{\circ}$ C), TOC (120 $^{\circ}$ C) e cromo totale, - fosfato, azoto, (100 $^{\circ}$ C)

CSB HR TT M132

200 - 15000 mg/L CODb)

Hr

Dichromate / H₂SO₄

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, SpectroDirect	ø 16 mm	610 nm	200 - 15000 mg/L COD ^{b)}
SpectroDirect, XD 7000, XD 7500	ø 16 mm	602 nm	200 - 15000 mg/L COD ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

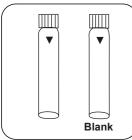
Reagenti	Unità di imbal- laggio	N. ordine
COD HR	25 pz.	2420722
COD HR, senza mercurio	25 pz.	2420712
COD HR	150 pz.	2420727

Sono necessari inoltre i seguenti accessori.

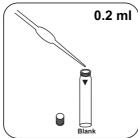
Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

Campo di applicazione

- · Trattamento acqua non depurata
- · Trattamento acqua di scarico


Note

- 1. La cuvetta zero è stabile se conservata al buio. La cuvetta zero e la cuvetta di reazione devono appartenere allo stesso lotto.
- Le cuvette non devono essere introdotte calde nel vano cuvette. I valori di misura più stabili vengono rilevati se le cuvette vengono lasciate riposare per tutta la notte.
- Se si desidera una maggiore precisione, per i campioni con un CSB minore di 1 g/ L si consiglia di utilizzare il kit di cuvette CSB MR, mentre per campioni con CSB maggiore 0,1 g/L il kit di cuvette CSB LR.



Esecuzione della rilevazione CSB HR con test in cuvetta Vario

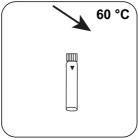
Selezionare il metodo nel dispositivo.

Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Immettere 0.2 ml di acqua demineralizzata nella cuvetta zero.

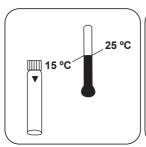
Immettere 0.2 ml di campione nella cuvetta del campione.

Chiudere la/e cuvetta/e.

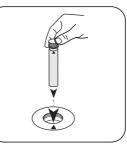

Miscelare il contenuto capovolgendo con cautela. Attenzione: sviluppo di calore!

Sottoporre a digestione la/e cuvetta/e nel termoreattore preriscaldato per 120 minuti a 150 °C .

Prelevare la cuvetta dal la cuvetta è bollente!)



Lasciar raffreddare la/e termoreattore. (Attenzione: cuvetta/e fino a circa 60 °C. capovolgendo.



Miscelare il contenuto

Lasciare prima raffreddare la cuvetta a temperatura ambiente e successivamente misurare.

Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

izionare la **cuvetta**Premere il tasto **TEST** (XD:

START).

Test

Sul display compare il risultato in mg/l di COD.

Metodo chimico

Dichromate / H₂SO₄

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm	
а	-3.10235 • 10 ⁺²	
b	2.1173 • 10+4	
С	1.64139 • 10 ⁺²	
d		
е		
f		

Interferenze

Interferenze permanenti

 In casi eccezionali gli ingredienti per i quali la capacità di ossidazione del reagente non è sufficiente possono portare a risultati troppo bassi.

Interferenze escludibili

- Per evitare errori di misurazione dovuti a sostanze in sospensione è importante inserire le cuvette nel vano di misura con cautela, in quanto sul fondo delle cuvette si forma un precipitato imputabile al metodo stesso.
- Prima di eseguire l'analisi è necessario che le pareti esterne delle cuvette siano pulite e asciutte. Eventuali impronte delle dita o gocce d'acqua sulla cuvetta provocano errori di misurazione.
- Nella versione standard, il cloruro interferisce da una concentrazione di 10000 mg/L.
 Nella versione senza mercurio, il disturbo dipende dalla concentrazione di cloruri e dal COD. Le concentrazioni da 100 mg/L di cloruro possono portare a disturbi significativi qui. Per rimuovere alte concentrazioni di cloruro nei campioni COD, vedere il metodo M130 COD LR TT.

Validazione metodo

Limite di rilevabilità	112.81 mg/L
Limite di quantificazione	338.43 mg/L
Estremità campo di misura	15 g/L
Sensibilità	21,164 mg/L / Abs
Intervallo di confidenza	70.48 mg/L
Deviazione standard della procedura	27.84 mg/L
Coefficiente di variazione della procedura	0.37 %

Conforme

ISO 15705:2002

Secondo

ISO 15705:2002

 $^{^{\}text{b}}\textsc{Reattore}$ richiesto per COD (150 $^{\circ}$ C), TOC (120 $^{\circ}$ C) e cromo totale, - fosfato, azoto, (100 $^{\circ}$ C)

CSB LMR TT

M133

15 - 300 mg/L CODb)

LMr

Dichromate / H₂SO₄

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	430 nm	15 - 300 mg/L COD ^{b)}
SpectroDirect, XD 7000, XD 7500	ø 16 mm	445 nm	15 - 300 mg/L CODb)

Materiale

Materiale richiesto (in parte facoltativo):

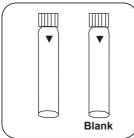
Reagenti	Unità di imbal- laggio	N. ordine
COD LMR	25 pz.	2423120

Sono necessari inoltre i seguenti accessori.

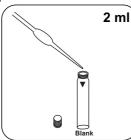
Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

Campo di applicazione

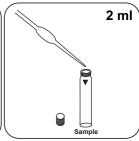
- · Trattamento acqua non depurata
- · Trattamento acqua di scarico

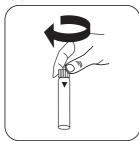

Note

- La cuvetta zero è stabile se conservata al buio. La cuvetta zero e la cuvetta di reazione devono appartenere allo stesso lotto.
- Le cuvette non devono essere introdotte calde nel vano cuvette. I valori di misura più stabili vengono rilevati se le cuvette vengono lasciate riposare per tutta la notte.



Esecuzione della rilevazione CSB LMR con test in cuvetta

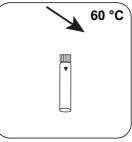

Selezionare il metodo nel dispositivo.


Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Immettere 2 ml di acqua demineralizzata nella cuvetta zero.

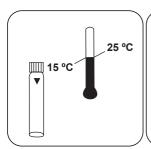
Immettere 2 ml di campione nella cuvetta del campione.

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo con cautela. Attenzione: sviluppo di calore!

Sottoporre a digestione la/e cuvetta/e nel termoreattore preriscaldato per 120 minuti a 150 °C

Prelevare la cuvetta dal termoreattore. (Attenzione: la cuvetta è bollente!)



Lasciar raffreddare la/e cuvetta/e fino a circa 60 °C. capovolgendo.

Miscelare il contenuto

Lasciare prima raffreddare la cuvetta a temperatura ambiente e successivamente misurare.

Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di COD.

Metodo chimico

Dichromate / H₂SO₄

Appendice

Interferenze

Interferenze permanenti

 In casi eccezionali gli ingredienti per i quali la capacità di ossidazione del reagente non è sufficiente possono portare a risultati troppo bassi.

Interferenze escludibili

- Per evitare errori di misurazione dovuti a sostanze in sospensione è importante inserire le cuvette nel vano di misura con cautela, in quanto sul fondo delle cuvette si forma un precipitato imputabile al metodo stesso.
- Prima di eseguire l'analisi è necessario che le pareti esterne delle cuvette siano pulite e asciutte. Eventuali impronte delle dita o gocce d'acqua sulla cuvetta provocano errori di misurazione.
- Nella versione standard, il cloruro interferisce da una concentrazione di 1000 mg/L.
 Nella versione senza mercurio, il disturbo dipende dalla concentrazione di cloruri e dal COD. Le concentrazioni da 100 mg/L di cloruro possono portare a disturbi significativi qui. Per rimuovere alte concentrazioni di cloruro nei campioni COD, vedere il metodo M130 COD LR TT.

Conforme

ISO 15705:2002

Secondo

ISO 15705:2002 DIN 38409 parte 41

^{b)}Reattore richiesto per COD (150 ° C), TOC (120 ° C) e cromo totale, - fosfato, azoto, (100 ° C)

Rame 50 T

M149

0.05 - 1 mg/L Cu^{a)}

Bichinolina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	559 nm	0.05 - 1 mg/L Cu ^{a)}

Materiale

Materiale richiesto (in parte facoltativo):

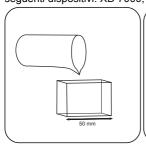
Reagenti	Unità di imbal- laggio	N. ordine
Rame No. 1	Pastiglia / 100	513550BT
Rame No. 1	Pastiglia / 250	513551BT
Rame No. 2	Pastiglia / 100	513560BT
Rame No. 2	Pastiglia / 250	513561BT
Set Rame No. 1/no. 2#	ciascuna 100	517691BT
Set Rame No. 1/no. 2#	ciascuna 250	517692BT

Campo di applicazione

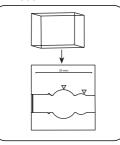
- · Acqua di raffreddamento
- · Acqua di caldaia
- · Trattamento acqua di scarico
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile
- Galvanizzazione

Preparazione

1. Le acque fortemente alcaline o acide dovrebbero essere regolate prima dell'analisi su un valore di pH da 4 a 6.

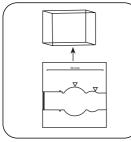


Esecuzione della rilevazione Rame, libero con pastiglia


Selezionare il metodo nel dispositivo.

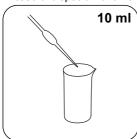
Selezionare inoltre la determinazione: libero

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.


Prelevare la **cuvetta** dal vano di misurazione.

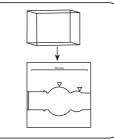
Svuotare la cuvetta.


Asciugare bene la cuvetta.

Riempire un recipiente per campioni adeguato con **10 ml di campione**.



Aggiungere una pastiglia COPPER No. 1.



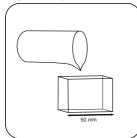
Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

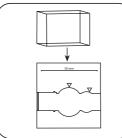
Test

Premere il tasto **TEST** (XD: **START**).

zione al posizionamento. Sul display compare il risultato in mg/l di Rame libero.

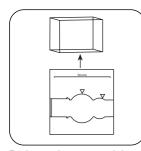

Esecuzione della rilevazione Rame, totale con pastiglia

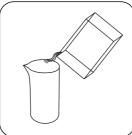
Selezionare il metodo nel dispositivo.

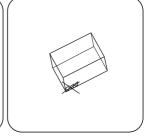

Selezionare inoltre la determinazione: totale

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

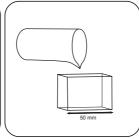
Svuotare la cuvetta.

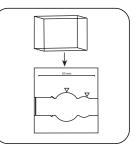


Asciugare bene la cuvetta.



Riempire un recipiente per campioni adeguato con **10 ml di campione**.


Aggiungere una pastiglia COPPER No. 1.


Aggiungere una pastiglia COPPER No. 2.

Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

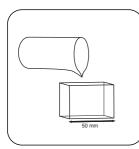
Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

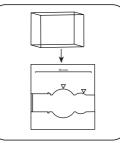
Premere il tasto TEST (XD:

START).

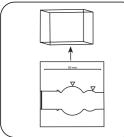
Sul display compare il risultato in mg/l di Rame totale.


Esecuzione della rilevazione Rame, differenziato con pastiglia

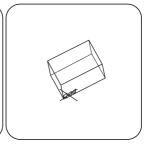
Selezionare il metodo nel dispositivo.

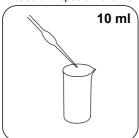

Selezionare inoltre la determinazione: differenziato

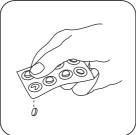
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

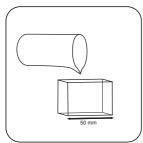

Premere il tasto ZERO.


Prelevare la **cuvetta** dal vano di misurazione.

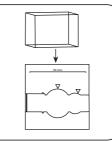

Svuotare la cuvetta.

Asciugare bene la cuvetta.

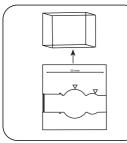
Riempire un recipiente per campioni adeguato con **10 ml di campione**.



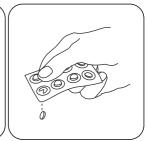
Aggiungere una pastiglia COPPER No. 1.



Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

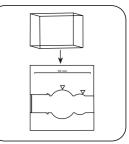

Riempire una cuvetta da 50 mm con il campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto **TEST** (XD: **START**).


Prelevare la **cuvetta** dal vano di misurazione.

Versare nuovamente l'intera soluzione campione nel recipiente per campioni.


Aggiungere una pastiglia COPPER No. 2.

Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Rame libero; Rame combinato; Rame totale.

Metodo chimico

Bichinolina

Appendice

Interferenze

Interferenze permanenti

1. Cianuro e Argento interferiscono con la rilevazione.

Validazione metodo

0.009 mg/L
0.028 mg/L
1 mg/L
1.62 mg/L / Abs
0.009 mg/L
0.004 mg/L
0.71 %

Riferimenti bibliografici

Photometrische Analyse, Lange/Vedjelek, Verlag Chemie 1980

^{a)}Determinazione di libero, vincolato, totale possibile | ⁱ⁾*Bacchetta compresa

Rame T M150
0.05 - 5 mg/L Cu^{a)} Cu
Bichinolina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	560 nm	0.05 - 5 mg/L Cu ^{a)}
SpectroDirect, XD 7000, XD 7500	ø 24 mm	559 nm	0.05 - 5 mg/L Cu ^{a)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Rame No. 1	Pastiglia / 100	513550BT
Rame No. 1	Pastiglia / 250	513551BT
Rame No. 2	Pastiglia / 100	513560BT
Rame No. 2	Pastiglia / 250	513561BT
Set Rame No. 1/no. 2#	ciascuna 100	517691BT
Set Rame No. 1/no. 2#	ciascuna 250	517692BT

Campo di applicazione

- · Acqua di raffreddamento
- · Acqua di caldaia
- · Trattamento acqua di scarico
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile
- Galvanizzazione

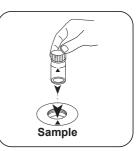
Preparazione

1. Le acque fortemente alcaline o acide dovrebbero essere regolate prima dell'analisi su un valore di pH da 4 a 6.

Esecuzione della rilevazione Rame, libero con pastiglia

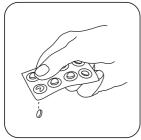
Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: libero


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

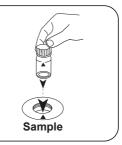

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

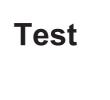
Prelevare la cuvetta dal vano di misurazione.

Aggiungere una pastiglia COPPER No. 1.

Frantumare la/e pastiglia/e con una leggera rotazione.



Chiudere la/e cuvetta/e.



Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

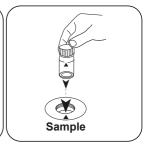
Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Rame libero.

Esecuzione della rilevazione Rame, totale con pastiglia

Selezionare il metodo nel dispositivo.

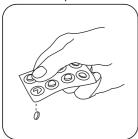
Selezionare inoltre la determinazione: totale


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Zero

Premere il tasto ZERO.

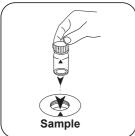
Prelevare la cuvetta dal vano di misurazione.

Aggiungere una pastiglia COPPER No. 1.

Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

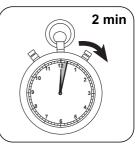
Aggiungere una pastiglia COPPER No. 2.

Frantumare la/e pastiglia/e con una leggera rotazione.



Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.



Posizionare la cuvetta del campione nel vano di misurazione. Fare atten-

zione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

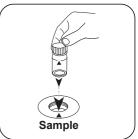
reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Rame totale.

Esecuzione della rilevazione Rame, determinazione differenziata con pastiglia

Selezionare il metodo nel dispositivo.

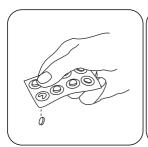
Selezionare inoltre la determinazione: differenziato


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

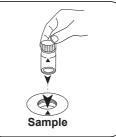
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.



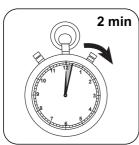
Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Aggiungere una pastiglia COPPER No. 1.

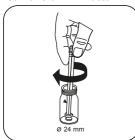

Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

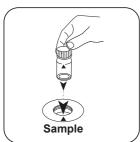
Premere il tasto **TEST** (XD: **START**).


Attendere un tempo di reazione di 2 minuto/i.

Prelevare la cuvetta dal vano di misurazione.

Aggiungere una pastiglia COPPER No. 2.

Frantumare la/e pastiglia/e con una leggera rotazione.



Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 1 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Rame libero; Rame combinato; Rame totale.

Metodo chimico

Bichinolina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-4.78562 • 10 ⁻²	-5.12445 • 10 ⁻²
b	3.79263 • 10⁺0	8.20998 • 10+0
С		
d		
е		
f		

Interferenze

Interferenze permanenti

1. Cianuro CN⁻ e Argento Ag⁺ interferiscono con la rilevazione.

Validazione metodo

Limite di rilevabilità	0.05 mg/L
Limite di quantificazione	0.15 mg/L
Estremità campo di misura	5 mg/L
Sensibilità	3.8 mg/L / Abs
Intervallo di confidenza	0.026 mg/L
Deviazione standard della procedura	0.011 mg/L
Coefficiente di variazione della procedura	0.42 %

Riferimenti bibliografici

Photometrische Analyse, Lange/Vedjelek, Verlag Chemie 1980

^{a)}Determinazione di libero, vincolato, totale possibile | ⁱ⁾*Bacchetta compresa

Rame L M151

0.05 - 4 mg/L Cu^{a)}

Acido bicinconinico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640,	ø 24 mm	560 nm	0.05 - 4 mg/L Cu ^{a)}
XD 7000. XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Set di reagenti per rame (libero + totale)	1 pz.	56R023355
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Asta di agitazione e cucchiaio per la polvere	1 pz.	56A006601

Campo di applicazione

- · Acqua di raffreddamento
- · Acqua di caldaia
- · Trattamento acqua di scarico
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile
- Galvanizzazione

Preparazione

- 1. Le acque fortemente alcaline o acide dovrebbero essere regolate prima dell'analisi su un valore di pH da 4 a 6.
- Per il dosaggio corretto si deve utilizzare il cucchiaio dosatore fornito in dotazione con i reagenti.

Esecuzione della rilevazione Rame, libero con reagente liquido

Selezionare il metodo nel dispositivo.

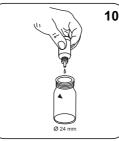
Selezionare inoltre la determinazione: libero


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

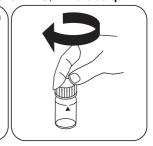
Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

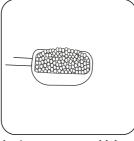

Prelevare la cuvetta dal vano di misurazione.

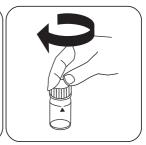
Tenere le boccette contagocce in posizione verticale e introdurre, premendo Reagent 1). lentamente, gocce della stessa dimensione nella cuvetta

Aggiungere 10 gocce di KS240 (Coppercol

Chiudere la/e cuvetta/e.

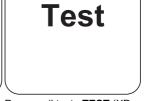
Miscelare il contenuto capovolgendo.


Aggiungere 10 gocce di KS241 (Coppercol Reagent 2).


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Aggiungere un cucchiaio dosatore di KP242 (Coppercol Reagent 3).


Chiudere la/e cuvetta/e.

Far sciogliere la polvere capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Rame libero.

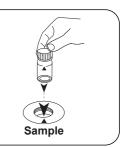
Esecuzione della rilevazione Rame, totale con reagente liquido

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: totale

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

seguenti dispositivi: XD 7000, XD 7500



Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Zero

Premere il tasto ZERO.

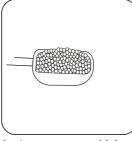
Prelevare la cuvetta dal vano di misurazione.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo Reagent 1). lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 10 gocce di KS240 (Coppercol

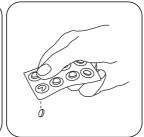
Chiudere la/e cuvetta/e.

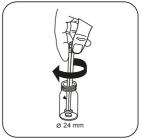
Miscelare il contenuto capovolgendo.


Aggiungere 10 gocce di KS241 (Coppercol Reagent 2).

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

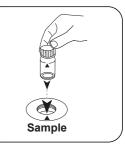

Aggiungere un cucchiaio dosatore di KP242 (Coppercol Reagent 3).


Chiudere la/e cuvetta/e.

Far sciogliere la polvere capovolgendo.

Aggiungere una pastiglia COPPER No.2.

Frantumare la/e pastiglia/e con una leggera rotazione.




Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD:

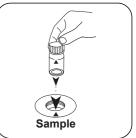
START).

Sul display compare il risultato in mg/l di Rame totale.

Esecuzione della rilevazione Rame, differenziato con reagente liquido

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: differenziato

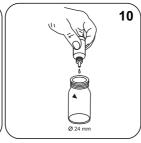

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

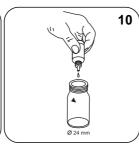
Zero



Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

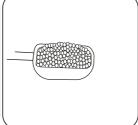
Tenere le boccette contagocce in posizione verticale e introdurre, premendo Reagent 1). lentamente, gocce della stessa dimensione nella cuvetta.


Aggiungere 10 gocce di KS240 (Coppercol

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

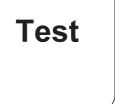
Aggiungere 10 gocce di KS241 (Coppercol Reagent 2).

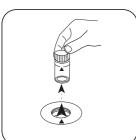


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Aggiungere un cucchiaio dosatore di KP242 (Coppercol Reagent 3).

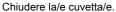

Chiudere la/e cuvetta/e.


Far sciogliere la polvere capovolgendo.

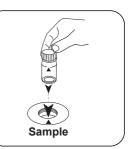

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

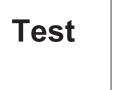
Premere il tasto **TEST** (XD: **START**).

Prelevare la cuvetta dal vano di misurazione.


Aggiungere una pastiglia COPPER No. 2.

Frantumare la/e pastiglia/e con una leggera rotazione.





Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Rame libero; Rame combinato; Rame totale.

Metodo chimico

Acido bicinconinico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.55142 • 10 ⁻³	-2.55142 • 10 ⁻³
b	4.00888 • 10 ⁺⁰	8.61909 • 10+0
С		
d		
е		
f		

Interferenze

Interferenze permanenti

1. Cianuro CN⁻ e Argento Ag⁺ interferiscono con la rilevazione.

Riferimenti bibliografici

S. Nakano, Y. Zasshi, 82 486 - 491 (1962) [Chemical Abstracts, 58 3390e (1963)]

Derivato di

APHA Method 3500Cu

^{a)}Determinazione di libero, vincolato, totale possibile

Rame PP M153

0.05 - 5 mg/L Cu

Cu

Acido bicinconinico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630, SpectroDirect, XD 7000, XD 7500	ø 24 mm	560 nm	0.05 - 5 mg/L Cu

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Cu1 F10	Polvere / 100 pz.	530300
VARIO Cu1 F10	Polvere / 1000 pz.	530303

Campo di applicazione

- · Acqua di raffreddamento
- · Acqua di caldaia
- · Trattamento acqua di scarico
- · Controllo acqua in vasca
- Trattamento acqua di piscina
- · Trattamento acqua potabile
- Galvanizzazione

Preparazione

- 1. Per la rilevazione del rame totale è necessaria una digestione.
- Le acque fortemente acide (pH 2 o inferiore) dovrebbero essere portate prima dell'analisi entro un range di pH compreso tra 4 e 6 (con 8 mol/l di soluzione di idrossido di potassio KOH).

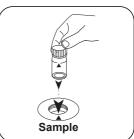
Attenzione: Con valori di pH maggiori di 6 il rame può precipitare.

Note

1. L'accuratezza non viene modificata da eventuale polvere non disciolta.

Esecuzione della rilevazione Rame libero con polvere in bustine Vario

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

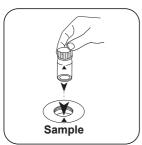
Chiudere la/e cuvetta/e.

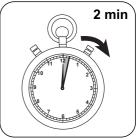
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Vario Cu 1 F10.


Miscelare il contenuto agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Rame.

Metodo chimico

Acido bicinconinico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-6.44214 • 10 ⁻²	-7.44232 • 10 ⁻²
b	3.7903 • 10+0	8.16011 • 10+0
С		
d		
е		
f		

Interferenze

Interferenze permanenti

Durezza, Al e Fe producono risultati più bassi.

Interferenze escludibili

- 1. Cianuro, CN: il cianuro impedisce lo sviluppo completo della colorazione. L'interferenza da parte del cianuro può essere eliminata nel modo seguente: addizionare 10 ml di campione con 0,2 ml di formaldeide e attendere un tempo di reazione di 4 minuti (il cianuro viene mascherato). Successivamente eseguire il test come descritto. Moltiplicare il risultato per 1,02 per considerare la diluizione del campione con formaldeide.
- Argento, Ag*: Un'eventuale torbidità preesistente che assume il colore nero può
 essere provocata dall'argento. Addizionare 75 ml di campione con 10 gocce di una
 soluzione satura di cloruro di potassio e successivamente filtrare con un filtro fine.
 Utilizzare 10 ml del campione filtrato per il test.

Validazione metodo

Limite di rilevabilità	0.05 mg/L
Limite di quantificazione	0.15 mg/L
Estremità campo di misura	5 mg/L
Sensibilità	3.77 mg/L / Abs
Intervallo di confidenza	0.064 mg/L
Deviazione standard della procedura	0.027 mg/L
Coefficiente di variazione della procedura	1.07 %

Riferimenti bibliografici

S. Nakano, Y. Zasshi, 82 486 - 491 (1962) [Chemical Abstracts, 58 3390e (1963)]

Derivato di

APHA Method 3500Cu

Cianuro 50 L

M156

0.005 - 0.2 mg/L CN⁻

Acido barbiturico-piridina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	585 nm	0.005 - 0.2 mg/L CN

Materiale

Materiale richiesto (in parte facoltativo):

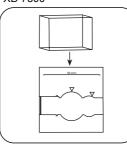
Reagenti	Unità di imbal- laggio	N. ordine
Test del reagente al cianuro 585 nm	1 pz.	2418875

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- · Galvanizzazione

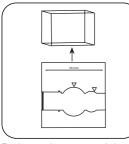
Note


- 1. Vengono rilevati soltanto il cianuro libero e i cianuri disgregabili tramite cloro.
- 2. Conservare i reagenti a una temperatura compresa tra +15 °C e +25 °C.

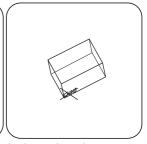

Esecuzione della rilevazione Cianuro con test con reagenti

Selezionare il metodo nel dispositivo.

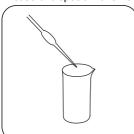
Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.

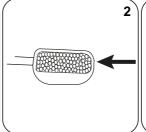
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

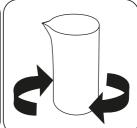
Prelevare la cuvetta dal vano di misurazione.



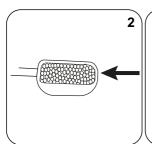
Svuotare la cuvetta.

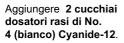


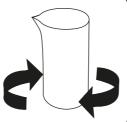
Asciugare bene la cuvetta.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Immettere 2 ml di campione e 8 ml di acqua dosatori rasi di No. demineralizzata nel recipiente del campione.

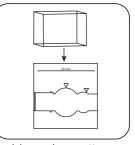



Aggiungere 2 cucchiai 4 (bianco) Cyanide-11.



Miscelare il contenuto capovolgendo.

Miscelare il contenuto capovolgendo.


Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 3 gocce di Cyanide-13.

Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: Attendere un **tempo di START**). Attendere un **tempo di reazione di 10 minuto/i** .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cianuro .

Metodo chimico

Acido barbiturico-piridina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 50 mm
a	-1.81456 • 10 ⁺⁰
b	1.76113 • 10+2
С	5.62322 • 10 ⁺⁰
d	
е	
f	

Interferenze

Interferenze escludibili

 Tiocianato, complessi di metalli pesanti, solfuro, coloranti o ammine aromatiche interferiscono con la rilevazione. In presenza di una sostanza interferente è necessario separare il cianuro tramite distillazione prima della rilevazione.

Derivato di

DIN 38405-D13

Cianuro L M157

0.01 - 0.5 mg/L CN

Acido barbiturico-piridina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	580 nm	0.01 - 0.5 mg/L CN
SpectroDirect, XD 7000, XD 7500	ø 24 mm	585 nm	0.01 - 0.5 mg/L CN ⁻

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test del reagente al cianuro 585 nm	1 pz.	2418875

Campo di applicazione

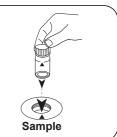
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- · Galvanizzazione

Note

- 1. Vengono rilevati soltanto il cianuro libero e i cianuri disgregabili tramite cloro.
- 2. Conservare i reagenti a una temperatura compresa tra +15 °C e +25 °C.

Esecuzione della rilevazione Cianuro con test con reagenti

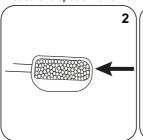
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Immettere 2 ml di campione e 8 ml di acqua demineralizzata nella cuvetta del campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

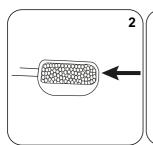


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

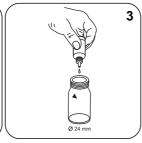
Aggiungere 2 cucchiai dosatori rasi di No. 4 (bianco) Cyanide-11.



Chiudere la/e cuvetta/e.

Miscelare il contenuto agitando.

Aggiungere 2 cucchiai dosatori rasi di No. 4 (bianco) Cyanide-12.


Chiudere la/e cuvetta/e.

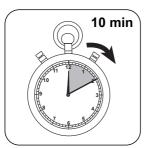
Miscelare il contenuto agitando.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 3 gocce di Cynide -13.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 10 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di cianuro .

Metodo chimico

Acido barbiturico-piridina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-6.23212 • 10 ⁻³	-6.23212 • 10 ⁻³
b	4.2154 • 10 ⁻¹	9.06311 • 10-1
С	6.94008 • 10 ⁻³	3.20805 • 10 ⁻²
d		
е		
f		

Interferenze

Interferenze escludibili

 Tiocianato, complessi di metalli pesanti, solfuro, coloranti o ammine aromatiche interferiscono con la rilevazione. In presenza di una sostanza interferente è necessario separare il cianuro tramite distillazione prima della rilevazione.

Derivato di

DIN 38405-D13

CYA T M160

10 - 160 mg/L CyA

CyA

Melammina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200,	ø 24 mm	530 nm	10 - 160 mg/L CyA
MD 600, MD 610, MD 640,			
MultiDirect, PM 600, PM 620,			
PM 630, SpectroDirect, XD			
7000. XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test CyA	Pastiglia / 100	511370BT
Test CyA	Pastiglia / 250	511371BT
Acqua demineralizzata	100 mL	461275
Acqua demineralizzata	250 mL	457022

Campo di applicazione

· Controllo acqua in vasca

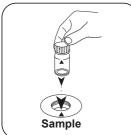
Note

1. L'acido cianurico provoca un intorbidimento distribuito molto finemente dall'aspetto lattiginoso. Singole particelle non sono imputabili alla presenza di acido cianurico.

Esecuzione della rilevazione Test acido cianurico con pastiglia

Selezionare il metodo nel dispositivo.

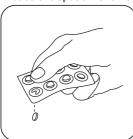
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 24 mm con 5 ml di acqua demineralizzata.

Immettere 5 ml di campione nella cuvetta.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

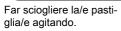


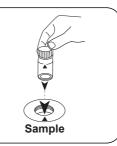
Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia CyA-Test.


Frantumare la/e pastiglia/e con una leggera rotazione.



Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di acido cianurico .

Test

Premere il tasto TEST (XD: START).

Metodo chimico

Melammina

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-9.51421 • 10 ⁻¹	-9.51421 • 10 ⁻¹
b	6.99203 • 10 ⁺¹	1.50329 • 10+2
С	6.14201 • 10 ⁺⁰	2.83914 • 10+1
d		
е		
f		

Interferenze

Interferenze permanenti

1. Le particelle non disciolte possono portare a risultati troppo elevati. Pertanto è importante sciogliere completamente le pastiglie.

 CyA HR T
 M161

 10 - 200 mg/L CyA
 CyAH

Melammina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Cuvetta	λ	Campo di misura
ø 24 mm	530 nm	10 - 200 mg/L CyA

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
CyA HR-Test-100	Pastiglia / 100	511430BT
CyA HR-Test-250	Pastiglia / 250	511431BT

Campo di applicazione

· Controllo acqua in vasca

Note

- 1. L'acido cianurico provoca un intorbidimento distribuito molto finemente dall'aspetto lattiginoso. Singole particelle non sono imputabili alla presenza di acido cianurico.
- Dopo aver aggiunto la compressa di test CyA-HR, si dissolve automaticamente entro due minuti.
- La cuvetta non deve essere spostata dopo l'aggiunta della pastiglia CyA-HR-Test.

Esecuzione della rilevazione Test acido cianurico con pastiglia

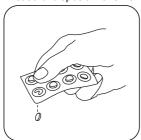
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

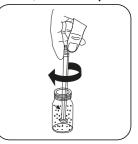
Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

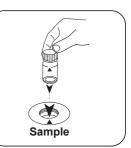
Prelevare la cuvetta dal vano di misurazione.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia CyA HR Test.

Attendere un tempo di reazione di 2 minuto/i.

Far sciogliere la/e pastiglia/e mescolando con una barretta di agitazione pulita.



Miscelare il contenuto capovolgendo (non agitare).

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD:

START).

Sul display compare il risultato in mg/l di acido cianurico .

Metodo chimico

Melammina

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-8.76932•10 ⁻²	-8.76932•10 ⁻²
b	2.30609•10+1	4.95809•10*1
С	3.4216•10+1	1.58163•10 ⁺²
d	-5.87057•10 ⁺¹	-5.83439•10 ⁺²
е	4.87923•10 ⁺¹	1.04257•10 ⁺³
f	6.46693•10+0	2.97092•10+2

Interferenze

Interferenze permanenti

1. Le particelle non disciolte possono portare a risultati troppo elevati.

Validazione metodo

Limite di rilevabilità	2.07 mg/L
Limite di quantificazione	6.2 mg/L
Estremità campo di misura	200 mg/L
Sensibilità	77.47 mg/L / Abs
Intervallo di confidenza	4.6 mg/L
Deviazione standard della procedura	4.78 mg/L
Coefficiente di variazione della procedura	4.55 %

DEHAT(L)

M165

0.02 - 0.5 mg/L DEHA

PPST

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	560 nm	0.02 - 0.5 mg/L DEHA
SpectroDirect, XD 7000, XD 7500	ø 24 mm	562 nm	0.02 - 0.5 mg/L DEHA

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Soluzione reagente DEHA	15 mL	461185
Soluzione reagente DEHA	100 mL	461181
DEHA	Pastiglia / 100	513220BT
DEHA	Pastiglia / 250	513221BT

Campo di applicazione

- · Acqua di caldaia
- · Acqua di raffreddamento

Preparazione

 Per evitare errori dovuti a depositi di ferro, prima dell'analisi sciacquare i dispositivi in vetro con una soluzione di acido cloridrico (al 20% circa) e successivamente con acqua demineralizzata.

Note

- 1. Poiché la reazione dipende dalla temperatura, questa deve misurare 20 °C ± 2 °C.
- Durante il tempo di sviluppo della colorazione posizionare la cuvetta con il campione nel vano di misura o al buio (se la soluzione reagente viene esposta ai raggi UV, ovvero alla luce solare, si ottengono valori di misura troppo elevati).

Esecuzione della rilevazione DEHA (N,N-dietilidrossilammina) con pastiglia e reagente liquido

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

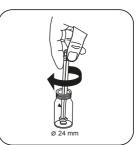
Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuyetta.

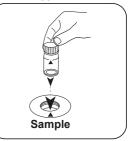
Aggiungere 6 gocce di DEHA Reagent Solution.

Chiudere la/e cuvetta/e.

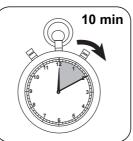


Miscelare il contenuto capovolgendo.

Aggiungere una pastiglia DEHA.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.



Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

START).

Premere il tasto TEST (XD: Attendere un tempo di reazione di 10 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato come DEHA.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	DEHA	1
μg/l	DEHA	1.000
mg/l	Hydrochinon	2.63
mg/l	MEKO	4.5
mg/l	Carbohydrazid	1.31
mg/l	ISA	3.9

Metodo chimico

PPST

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-2.04216 • 10 ⁺¹	-2.04216 • 10 ⁺¹
b	3.46512 • 10+2	7.45001 • 10 ⁺²
С	2.52971 • 10+1	1.16936 • 10 ⁺²
d		
е		
f		

Interferenze

Interferenze escludibili

- Il ferro(II) interferisce in qualunque quantità. Per rilevare la concentrazione di ferro(II) si ripete il test senza aggiunta di soluzione DEHA. Se la concentrazione è maggiore di 20 μg/L, il valore visualizzato viene sottratto dal risultato della rilevazione DEHA.
- 2. Le sostanze che riducono il ferro(III) provocano interferenze. Le sostanze che complessano fortemente il ferro(III) possono provocare interferenze.

Interferenze	da / [mg/L]
IIILETTETETIZE	ua / [ilig/L]
Zn	50
Na ₂ B ₄ O ₇	500
Со	0,025
Cu	8
CaCO ₃	1000
Lignosulfonate	0,05
Mn	0,8
Мо	80
Ni	0,8
PO ₄ 3-	10
R-PO(OH) ₂	10
SO ₄ ²⁻	1000

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwendt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

DEHA PP M167

0.02 - 0.5 mg/L DEHA DEHA

PPST

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	560 nm	0.02 - 0.5 mg/L DEHA
SpectroDirect, XD 7000, XD 7500	ø 24 mm	562 nm	0.02 - 0.5 mg/L DEHA

Materiale

Materiale richiesto (in parte facoltativo):

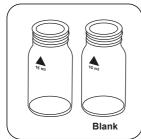
Reagenti	Unità di imbal- laggio	N. ordine
VARIO DEHA Reagent Set	1 pz.	536000

Campo di applicazione

- · Acqua di caldaia
- · Acqua di raffreddamento

Preparazione

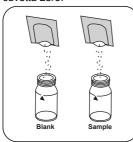
 Per evitare errori dovuti a depositi di ferro, prima dell'analisi sciacquare i dispositivi in vetro con una soluzione di acido cloridrico (al 20% circa) e successivamente con acqua demineralizzata.


Note

- 1. Poiché la reazione dipende dalla temperatura, questa deve misurare 20 °C ± 2 °C.
- Durante il tempo di sviluppo della colorazione posizionare la cuvetta con il campione nel vano di misura o al buio (se la soluzione reagente viene esposta ai raggi UV, ovvero alla luce solare, si ottengono valori di misura troppo elevati).

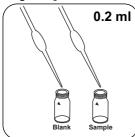
Esecuzione della rilevazione DEHA (N,N-dietilidrossilammina) con polvere in bustine Vario e reagente liquido

Selezionare il metodo nel dispositivo.


Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.

Immettere 10 ml di acqua demineralizzata nella cuvetta zero.

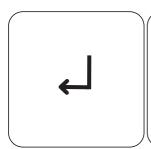
Immettere 10 ml di campione nella cuvetta del campione.


Immettere una bustina di polvere Vario OXYSCAV 1 Rgt in ogni cuvetta.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Immettere 0.2 ml di soluzione Vario DEHA 2 Rgt in ogni cuvetta.

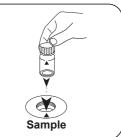


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Premere il tasto ENTER.

Attendere un tempo di reazione di 10 minuto/i.



Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto ZERO.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come DEHA.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione	
mg/l	DEHA	1	
μg/l	DEHA	1.000	
mg/l	Hydrochinon	2.63	
mg/l	MEKO	4.5	
mg/l	Carbohydrazid	1.31	
mg/l	ISA	3.9	

Metodo chimico

PPST

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm	
а	-5.56499 • 10⁺⁰	-5.56499 • 10 ⁺⁰	
b	3.87692 • 10+2	8.33539 • 10+2	
С			
d			
е			
f			

Interferenze

Interferenze escludibili

- 1. Interferenze:
 - Il ferro(II) interferisce in qualunque quantità. Per rilevare la concentrazione di ferro(II) si ripete il test senza aggiunta di soluzione DEHA. Se la concentrazione è maggiore di 20 μg/L, il valore visualizzato viene sottratto dal risultato della rilevazione DEHA.
- 2. Le sostanze che riducono il ferro(III) provocano interferenze. Le sostanze che complessano fortemente il ferro(III) possono provocare interferenze.

Interferenze	da / [mg/L]
Zn	50
Na ₂ B ₄ O ₇	500
Со	0,025
Cu	8
CaCO ₃	1000
Lignosulfonate	0,05
Mn	0,8
Мо	80
Ni	0,8
PO ₄ 3-	10
R-PO(OH) ₂	10
SO ₄ ²⁻	1000

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwendt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

Fluoruro L M170

0.05 - 2 mg/L F

F

SPADNS

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect, Spectro-	ø 24 mm	580 nm	0.05 - 2 mg/L F ⁻
Direct, XD 7000, XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Soluzione reagente SPADNS 250 ml	250 mL	467481
Soluzione reagente SPADNS 500 ml	500 mL	467482
Standard di calibrazione fluoruro	30 mL	205630

Campo di applicazione

- Trattamento acqua potabile
- Trattamento acqua non depurata

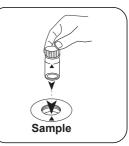
Preparazione

- Prima della misurazione deve essere effettuata una regolazione dell'utente (vedi manuale del fotometro).
- Per la regolazione dell'utente e la misurazione del campione si deve utilizzare lo stesso lotto di soluzione reagente SPADNS (vedere la descrizione del fotometro). La regolazione del dispositivo deve essere eseguita per ogni nuovo lotto di soluzione reagente SPADNS (cfr. Standard Methods 20th, 1991, APHA, AWWA, WEF 4500 F D., pagg. 4-82).
- Per la regolazione dell'utente e la misurazione la taratura a zero e il test si devono eseguire con la stessa cuvetta, in quanto ogni cuvette presenta piccole tolleranze rispetto alle altre.
- Le soluzioni di calibrazione e i campioni di acqua da misurare dovrebbero avere la stessa temperatura (± 1 °C).
- 5. Il risultato dell'analisi dipende essenzialmente dall'esatto volume del campione e del reagente. Dosare il volume di campione e di reagente esclusivamente con una pipetta tarata rispettivamente da 10 ml e 2 ml (classe A).
- 6. L'acqua di mare e i campioni di acqua di scarico devono essere distillati.
- 7. È opportuno utilizzare cuvette speciali (con capacità elevata).

Esecuzione della rilevazione Fluoruro con reagente liquido

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

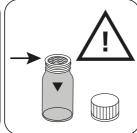

Osservare la nota!

Immettere nella cuvetta da 24 mm esattamente 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **ZERO**.

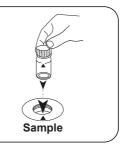


Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Immettere nella cuvetta da 24 mm **esattamente 2 ml** di .

Attenzione: la cuvetta è piena fino all'orlo!



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Sul display compare il risultato in mg/l di Fluoruro.

Test

Premere il tasto **TEST** (XD: **START**).

Metodo chimico

SPADNS

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	8.44253 • 10 ⁺⁰	8.44253 • 10+0
b	-1.41844 • 10 ⁺¹	-3.04965 • 10 ⁺¹
С	9.24803 • 10+0	4.2749 • 10 ⁺¹
d	-2.3046 • 10 ⁺⁰	-2.2904 • 10 ⁺¹
е		
f		

Interferenze

Interferenze permanenti

 L'accuratezza diminuisce al di sopra di 1,2 mg/L di fluoruro. Sebbene i risultati siano sufficientemente accurati per la maggior parte delle applicazioni, si può ottenere un'accuratezza maggiore diluendo il campione 1:1 prima dell'uso e moltiplicando il risultato per 2.

Interferenze	da / [mg/L]
Cl ₂	5

Riferimenti bibliografici

Standard Methods 20th, 1992, APHA, AWWA, WEF 4500 F D, pagg. 4-82

Secondo

US EPA 13A APHA Method 4500 F D

Formaldeide 10 M. L

M175

1.00 - 5.00 mg/L HCHO

H₂SO₄ / Chromotropic acid

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 10 mm	585 nm	1.00 - 5.00 mg/L HCHO

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test Formaldeide in cuvetta Spectroquant 1.14678.0001 (1)	25 pz.	420751

Campo di applicazione

· Trattamento acqua di scarico

Preparazione

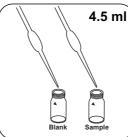
 Prima di eseguire il test, è necessario leggere le istruzioni originali e i consigli di sicurezza forniti con il kit per il test (le MSDS sono disponibili sulla homepage di www.merckmillipore.com).

Note

- 1. Questo metodo è adattato da MERCK.
- 2. Spectroquant® è un marchio commerciale registrato dell'azienda MERCK KGaA.
- Durante l'intera procedura devono essere adottate opportune precauzioni di sicurezza e una buona tecnica di laboratorio.
- I volumi di campioni e reagenti devono essere misurati con l'ausilio di un'idonea pipetta graduata da 3 ml (classe A).
- Poiché la reazione dipende dalla temperatura, la temperatura del campione deve attestarsi tra 20 °C e 25 °C.

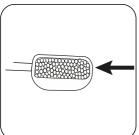
Modificando la lunghezza della cuvetta è possibile estendere il range di misura:

- Cuvetta da 10 mm: 0,1 mg/L 5 mg/L, risoluzione: 0,01
- Cuvetta da 20 mm: 0,05 mg/L 2,5 mg/L, risoluzione: 0,01
- Cuvetta da 50 mm: 0,02 mg/L 1,0 mg/L, risoluzione: 0,001



Esecuzione della rilevazione Formaldeide con test MERCK Spectroquant®, n. 1.14678.0001

Selezionare il metodo nel dispositivo.


Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.

Immettere **4.5 ml di soluzione HCHO-1** in ogni cuvetta.


Attenzione: il reagente contiene acido solforico concentrato!

Aggiungere un micro cucchiaio raso di HCHO-2 ciascuno.

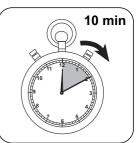
Chiudere la/e cuvetta/e.

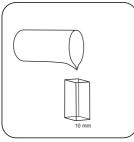
Far sciogliere il contenuto agitando.

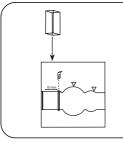
Immettere 3 ml di acqua demineralizzata nella cuvetta zero.

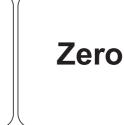
Immettere 3 ml di campione nella cuvetta del campione.

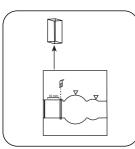
Chiudere la/e cuvetta/e.



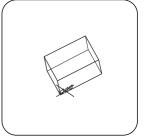

Miscelare il contenuto agitando.


Premere il tasto ENTER.

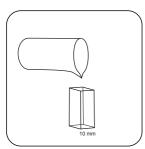

Attendere un tempo di reazione di 10 minuto/i.

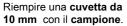

Riempire la cuvetta da 10 mm con il campione zero.

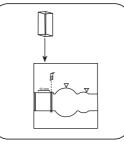
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.




Svuotare la cuvetta.



Asciugare bene la cuvetta.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Formaldeide.

Metodo chimico

H₂SO₄ / Chromotropic acid

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 10 mm
а	5.21412 • 10 ⁻²
b	3.77025 • 10+0
С	
d	
е	
f	

Interferenze

Interferenze	da / [mg/L]
Al	1000
Ca ²⁺	1000
Cd ²⁺	100
CN ⁻	100
CO ₃ ²⁻	100
Cr ³⁺	1000
Cr ₂ O ₇ ²⁻	1000
Cu ²⁺	100
F ⁻	100
Fe³+	10
Hg ²⁺	1000
Mg ²⁺	1000
Mn²+	1000
NH ₄ ⁺	1000
Ni ²⁺	100
NO ₂ -	1

Interferenze	da / [mg/L]
NO ₃ ·	10
Pb ²⁺	100
PO ₄ 3-	100
S ²⁻	10
SCN-	100
SiO ₄ 4-	100
SO ₃ ²⁻	100
Zn ²⁺	1000
EDTA	1000
H ₂ N-NH ₂	100
Tensioattivi	100
H ₂ O ₂	10
NaAc	0.05
NaCl	0.25
NaNO ₃	0.005
Na ₂ SO ₄	0.5

Riferimenti bibliografici

Georghiou P.E., Ho C.K., Can. J. Chem. 67, 871 (1989)

d)Spectroquant® è un marchio registrato della Ditta MERCK KGaA

Formaldeide 50 M. L.

M176

0.02 - 1.00 mg/L HCHO

H₂SO₄ / Chromotropic acid

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	585 nm	0.02 - 1.00 mg/L HCHO

Materiale

Materiale richiesto (in parte facoltativo):

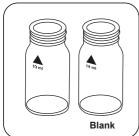
Reagenti	Unità di imbal- laggio	N. ordine
Test Formaldeide in cuvetta Spectroquant 1.14678.0001 ^{d)}	25 pz.	420751
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Cuvetta semi-micro, 50 mm con coperchio	1 pz.	71310045

Campo di applicazione

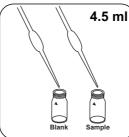
· Trattamento acqua di scarico

Preparazione

 Prima di eseguire il test, è necessario leggere le istruzioni originali e i consigli di sicurezza forniti con il kit per il test (le MSDS sono disponibili sulla homepage di www.merckmillipore.com).

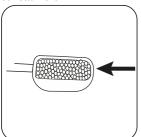

Note

- 1. Questo metodo è adattato da MERCK.
- 2. Spectroquant® è un marchio commerciale registrato dell'azienda MERCK KGaA.
- 3. Durante l'intera procedura devono essere adottate opportune precauzioni di sicurezza e una buona tecnica di laboratorio.
- 4. I volumi di campioni e reagenti devono essere misurati con l'ausilio di un'idonea pipetta graduata da 3 ml (classe A).
- 5. Poiché la reazione dipende dalla temperatura, la temperatura del campione deve attestarsi tra 20 °C e 25 °C.

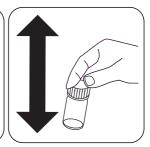


Esecuzione della rilevazione Formaldeide con test MERCK Spectroquant®, n. 1.14678.0001

Selezionare il metodo nel dispositivo.


Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.

Immettere **4.5 ml di soluzione HCHO-1** in ogni cuvetta.

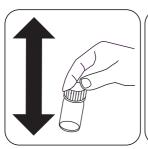

Attenzione: il reagente contiene acido solforico concentrato!

Aggiungere un micro cucchiaio raso di HCHO-2 ciascuno.

Chiudere la/e cuvetta/e.

Far sciogliere il contenuto agitando.

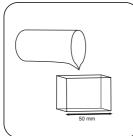
Immettere 3 ml di acqua demineralizzata nella cuvetta zero.



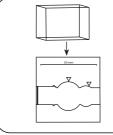
Immettere 3 ml di campione nella cuvetta del campione.

Chiudere la/e cuvetta/e.

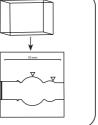
Miscelare il contenuto agitando.

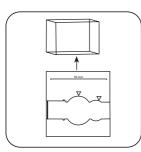


Premere il tasto ENTER.

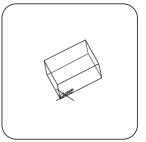


Attendere un tempo di reazione di 10 minuto/i .

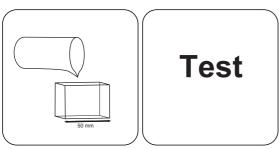

Zero


Riempire la cuvetta da 50 mm con il campione zero.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.



Svuotare la cuvetta.

Asciugare bene la cuvetta.

Riempire una cuvetta da 50 mm con il campione.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Formaldeide.

Metodo chimico

H₂SO₄ / Chromotropic acid

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 50 mm
a	-3.74124 • 10 ⁻³
b	7.09703 • 10-1
С	
d	
е	
f	

Interferenze

Interferenze	da / [mg/L]
Al	1000
Ca ²⁺	1000
Cd ²⁺	100
CN ⁻	100
CO ₃ ²⁻	100
Cr ³⁺	1000
Cr ₂ O ₇ ²⁻	1000
Cu ²⁺	100
F ⁻	100
Fe³+	10
Hg ²⁺	1000
Mg ²⁺	1000
Mn ²⁺	1000
NH ₄ ⁺	1000
Ni ²⁺	1000
NO ₂ -	1

Interferenze	da / [mg/L]
NO ₃ ·	10
Pb ²⁺	10
PO ₄ 3-	100
S ²⁻	10
SCN-	100
SiO ₄ ⁴⁻	100
SO ₃ ²⁻	100
Zn²+	1000
EDTA	1000
H ₂ N-NH ₂	100
Tensioattivi	100
H ₂ O ₂	10
NaAc	0.05
NaCl	0.25
NaNO ₃	0.005
Na ₂ SO ₄	0.5

Riferimenti bibliografici

Georghiou P.E., Ho C.K., Can. J. Chem. 67, 871 (1989)

d)Spectroquant® è un marchio registrato della Ditta MERCK KGaA

Formaldeide M. TT

M177

0.1 - 5 mg/L HCHO

H₂SO₄ / Chromotropic acid

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	575 nm	0.1 - 5 mg/L HCHO

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test Formaldeide in cuvetta Spectroquant	25 pz.	420752

Campo di applicazione

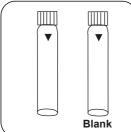
· Trattamento acqua di scarico

Preparazione

 Prima di eseguire il test, è necessario leggere le istruzioni originali e i consigli di sicurezza forniti con il kit per il test (le MSDS sono disponibili sulla homepage di www.merckmillipore.com).

Note

- 1. Questo metodo è adattato da MERCK.
- 2. Spectroquant[®] è un marchio commerciale registrato dell'azienda MERCK KGaA.
- Durante l'intera procedura devono essere adottate opportune precauzioni di sicurezza e una buona tecnica di laboratorio.
- 4. I volumi di campioni e reagenti devono essere misurati con l'ausilio di un'idonea pipetta graduata da 2 ml (classe A).
- Poiché la reazione dipende dalla temperatura, la temperatura del campione deve attestarsi tra 20 °C e 25 °C.
- I reagenti devono essere conservati in contenitori chiusi a una temperatura di +15 °C - +25 °C.

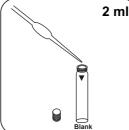


Esecuzione della rilevazione Formaldeide con test MERCK Spectroguant[®], n. 1.14500.0001

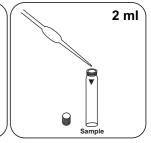
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Con i seguenti dispositivi, per questo metodo non è necessario eseguire una misurazione ZFRO:


Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Aggiungere un micro cucchiaio raso di HCHO-1K ciascuno.

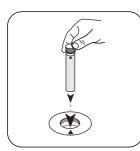

Chiudere la/e cuvetta/e.

Far sciogliere il contenuto agitando.

Immettere 2 ml di acqua demineralizzata nella cuvetta zero.

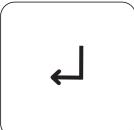
Immettere 2 ml di campione nella cuvetta del campione.

Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo con cautela. (ATTENZIONE: la cuvetta diventa molto calda!)

ATTENZIONE: la cuvetta diventa bollente! Non raffreddare con acqua!


Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

Premere il tasto ENTER.

Attendere un tempo di reazione di 5 minuto/i .

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Formaldeide.

Metodo chimico

H₂SO₄ / Chromotropic acid

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	-6.32712 • 10 ⁻²
b	3.24743 • 10+0
С	
d	
е	
f	

Interferenze

Riferimenti bibliografici

Kleinert, T. & Srepel, E. Mikrochim Acta (1948) 33: 328. doi:10.1007/BF01414370

^dSpectroquant[®] è un marchio registrato della Ditta MERCK KGaA

Durezza calcio T

M190

50 - 900 mg/L CaCO₃

Murexide

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, XD 7000, XD 7500	ø 24 mm	560 nm	50 - 900 mg/L CaCO ₃

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
CALCHECK	Pastiglia / 100	515650BT
CALCHECK	Pastiglia / 250	515651
CALCHECK	Pastiglia / 250	515651BT

Campo di applicazione

- · Acqua di raffreddamento
- · Acqua di caldaia
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

- Le acque fortemente alcaline o acide dovrebbero essere portate prima dell'analisi entro un range di pH compreso tra 4 e 10 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. È opportuno utilizzare cuvette speciali (con capacità elevata).

Note

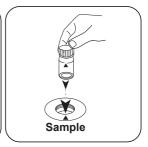
- Nel range di misura elevato la procedura presenta tolleranze maggiori che non nel range di misura basso. Per la diluizione del campione diluire sempre in modo tale che la misurazione avvenga nel terzo inferiore del range di misura.
- Il presente metodo è stato sviluppato sulla base di una procedura titrimetrica per la determinazione del calcio. A causa di condizioni collaterali indefinite, le divergenze rispetto al metodo standard possono essere maggiori.

Esecuzione della rilevazione Durezza calcio con pastiglia

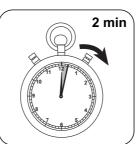
Selezionare il metodo nel dispositivo.

Riempire una cuvetta da 24 mm con 10 ml di acqua CALCHECK. demineralizzata.

Aggiungere una pastiglia


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.



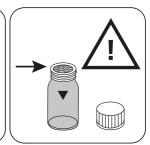
Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Valore bianco campione

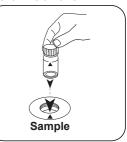
Premere il tasto ZERO. XD: Attendere un tempo di reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.



Prelevare la cuvetta dal vano di misurazione.

Immettere 2 ml di campione nella cuvetta.


Attenzione: la cuvetta è piena fino all'orlo!

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (5x).

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come Durezza calcio.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	CaCO ₃	1
	°dH	0.056
	°eH	0.07
	°fH	0.1
	°aH	1
mg/l	Са	0.40043

Metodo chimico

Murexide

Appendice

Interferenze

Interferenze permanenti

1. Argento, cadmio, cobalto, rame e mercurio interferiscono con la rilevazione.

Riferimenti bibliografici

Photometrische Analyse, Lange/Vjedelek, Verlag Chemie 1980

Durezza calcio 2T 20 - 500 mg/L CaCO₃

M191 CAH

Murexide

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200,	ø 24 mm	560 nm	20 - 500 mg/L CaCO ₃
MD 600, MD 610, MD 640,			
MultiDirect, PM 600, PM 620,			
PM 630, XD 7000, XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Set Calcio H No. 1/no. 2#	ciascuna 100	517761BT
Set Calcio H No. 1/no. 2#	ciascuna 250	517762BT

Campo di applicazione

- · Acqua di raffreddamento
- · Acqua di caldaia
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

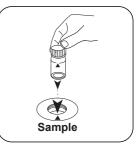
 Le acque fortemente alcaline o acide dovrebbero essere portate prima dell'analisi entro un range di pH compreso tra 4 e 10 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).

Note

- 1. Per ottimizzare i valori di misura è possibile determinare, in via opzionale, un valore cieco del metodo, specifico per lotto (vedere la descrizione del fotometro).
- Per l'accuratezza del risultato dell'analisi è fondamentale che il volume del campione misuri esattamente 10 ml.
- Il presente metodo è stato sviluppato sulla base di una procedura titrimetrica. A
 causa di condizioni collaterali indefinite, la divergenza rispetto al metodo standard
 può essere maggiore.
- 4. Nel range di misura elevato la procedura presenta tolleranze maggiori che non nel range di misura basso. Per la diluizione del campione diluire sempre in modo tale che la misurazione avvenga nel terzo inferiore del range di misura.

Esecuzione della rilevazione Durezza calcio 2 con pastiglia

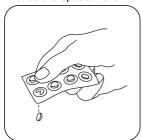
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

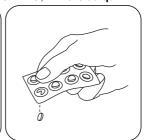
Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto **ZERO**.

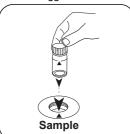
Prelevare la cuvetta dal vano di misurazione.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

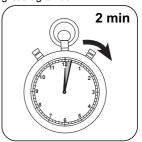
Aggiungere una pastiglia CALCIO H No.1.

Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia CALCIO H No.2.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato come Durezza calcio.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	CaCO ₃	1
	°dH	0.056
	°eH	0.07
	°fH	0.1
	°aH	1

Metodo chimico

Murexide

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	1.40008 • 10+4	1.40008 • 10+4
b	-6.16015 • 10 ⁺⁴	-1.32443 • 10 ⁺⁵
С	1.0917 • 10+5	5.04637 • 10+5
d	-9.63601 • 10 ⁺⁴	-9.57662 • 10 ⁺⁵
е	4.21873 • 10+4	9.01438 • 10+5
f	-7.31973 • 10 ⁺³	-3.3627 • 10 ⁺⁵

Interferenze

Interferenze permanenti

1. Argento, cadmio, cobalto, rame e mercurio interferiscono con la rilevazione.

Interferenze	da / [mg/L]
Mg ²⁺	200 (CaCO 3)
Fe	10
Zn ²⁺	5

Riferimenti bibliografici

Photometrische Analyse, Lange/Vjedelek, Verlag Chemie 1980

¹⁾ *Bacchetta compresa

Durezza totale T

M200

2 - 50 mg/L CaCO₃

tH1

Violetto di ftaleina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	560 nm	2 - 50 mg/L CaCO ₃
SpectroDirect, XD 7000, XD 7500	ø 24 mm	571 nm	2 - 50 mg/L CaCO ₃

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Hardcheck P	Pastiglia / 100	515660BT
Hardcheck P	Pastiglia / 250	515661BT

Campo di applicazione

- · Acqua di raffreddamento
- · Acqua di caldaia
- · Trattamento acqua di piscina
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

 Le acque fortemente alcaline o acide dovrebbero essere portate prima dell'analisi entro un range di pH compreso tra 4 e 10 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).

Esecuzione della rilevazione Durezza calcio totale con pastiglia

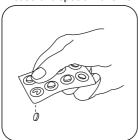
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

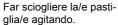


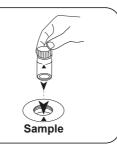
Premere il tasto ZERO.

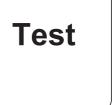
Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia HARDCHECK P.




Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato come Durezza totale.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	CaCO ₃	1
	°dH	0.056
	°eH	0.07
	°fH	0.1
	°aH	1
mg/l	Ca	0.40043

Metodo chimico

Violetto di ftaleina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

ø 24 mm	□ 10 mm
-4.33652 • 10 ⁺⁰	-4.54265 • 10 ⁺⁰
5.47914 • 10+1	1.18846 • 10 ⁺²
-8.96251 • 10 ⁺⁰	-4.18717 • 10 ⁺¹
	-4.33652 • 10 ⁺⁰ 5.47914 • 10 ⁺¹

Interferenze

Interferenze escludibili

- 1. L'interferenza da parte di zinco e magnesio viene eliminata con l'aggiunta di 8-idrossichinolina.
- 2. Nell'acqua e nel terreno lo stronzio e il bario non compaiono in concentrazioni tali da provocare interferenze.

Validazione metodo

Limite di rilevabilità	0.88 mg/L
Limite di quantificazione	2.64 mg/L
Estremità campo di misura	50 mg/L
Sensibilità	42.5 mg/L / Abs
Intervallo di confidenza	2.62 mg/L
Deviazione standard della procedura	1.08 mg/L
Coefficiente di variazione della procedura	4.17 %

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwendt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

Durezza totale HR T

M201

20 - 500 mg/L CaCO₃ ⁱ⁾

tH2

Violetto di ftaleina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	560 nm	20 - 500 mg/L CaCO ₃
SpectroDirect, XD 7000, XD 7500	ø 24 mm	571 nm	20 - 500 mg/L CaCO ₃

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Hardcheck P	Pastiglia / 100	515660BT
Hardcheck P	Pastiglia / 250	515661BT

Campo di applicazione

- · Acqua di raffreddamento
- · Acqua di caldaia
- · Trattamento acqua di piscina
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

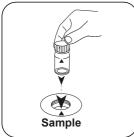
Preparazione

 Le acque fortemente alcaline o acide dovrebbero essere portate prima dell'analisi entro un range di pH compreso tra 4 e 10 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).

Esecuzione della rilevazione Durezza HR totale con pastiglia

Selezionare il metodo nel dispositivo.

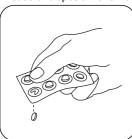
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 24 mm con **9 ml di acqua demineralizzata**.

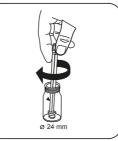
Immettere 1 ml di campione nella cuvetta.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.



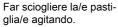
Premere il tasto **ZERO**.

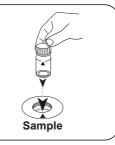


Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia HARDCHECK P.


Frantumare la/e pastiglia/e con una leggera rotazione.



Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato come Durezza totale.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	CaCO ₃	1
	°dH	0.056
	°eH	0.07
	°fH	0.1
	°aH	1
mg/l	Са	0.40043

Metodo chimico

Violetto di ftaleina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

ø 24 mm	□ 10 mm	
-3.06466 • 10 ⁺¹	-3.06466 • 10 ⁺¹	
5.0694 • 10 ⁺²	1.08992 • 10⁺³	
-6.33317 • 10 ⁺¹	-2.92751 • 10 ⁺²	
	-3.06466 • 10*1 5.0694 • 10*2	-3.06466 • 10 ⁺¹ -3.06466 • 10 ⁺¹ 5.0694 • 10 ⁺² 1.08992 • 10 ⁺³

Interferenze

Interferenze escludibili

- L'interferenza da parte di zinco e magnesio viene eliminata con l'aggiunta di 8-idrossichinolina.
- 2. Nell'acqua e nel terreno lo stronzio e il bario non compaiono in concentrazioni tali da provocare interferenze.

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwendt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

¹⁾ Elevato intervallo di misurazione grazie alla diluizione

Hazen 50 M203

10 - 500 mg/L Pt Metodo standard al platino-cobalto (APHA)

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	455 nm	10 - 500 mg/L Pt

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal-	N. ordine
	laggio	

Nessun reagente richiesto

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

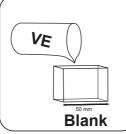
Preparazione

1. Prelievo del campione, conservazione e immagazzinamento: Versare il campione di acqua in recipienti in vetro o in plastica puliti e analizzarlo immediatamente dopo il prelievo laddove possibile. Qualora ciò non sia possibile, riempire il recipiente fino all'orlo con il campione di acqua e chiuderlo bene. Non agitare il campione ed evitare il contatto prolungato con l'aria. Il campione può essere conservato a 4 °C per 24 ore; prima di eseguire la misurazione il campione di acqua dovrà essere portato alla temperatura ambiente.

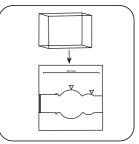
Note

- 1. Questa scala cromatica è stata originariamente sviluppata come scala visiva comparativa. Pertanto è necessario controllare se il limite massimo di estinzione del campione di acqua si trovi nel range che va da 420 nm a 470 nm, in quanto questo metodo è adatto soltanto a campioni di acqua con una colorazione da giallastra a giallo-marrone. Eventualmente la valutazione dovrà essere effettuata tramite osservazione visiva del campione di acqua.
- Il metodo è calibrato in base agli standard specificati in "Standard Methods for the Examination of Water and Wastewater" (vedere anche EN ISO 7887:1994). 1 unità cromatica Pt-Co

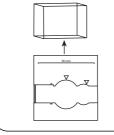

 1 mg/L di platino come ione cloroplatinato.
- 3. Il concetto di colore può essere espresso come colore "reale" e "apparente". Per colore apparente si intende il colore di una soluzione che non è provocato soltanto da sostanze disciolte nel campione ma anche da sostanze sospese. La guida descrive la determinazione del colore reale tramite filtrazione del campione di acqua. Per determinare il colore apparente si utilizza sia acqua demineralizzata non filtrata che un campione di acqua non filtrato.
- 4. Il limite di rilevabilità stimato per questo metodo è di 10 mg/L di Pt.


Esecuzione della rilevazione Colore, reale e apparente

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Filtrare circa 50 ml di campione con un filtro precedentemente risciacquato (diametro pori 0,45 µm).


Riempire una cuvetta da 50 mm con acqua demineralizzata.

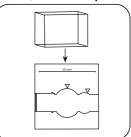
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.



Svuotare la cuvetta.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Sciacquare preventivamente la cuvetta con il campione di acqua.

Riempire la cuvetta da 50 mm con il campione preparato.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come Unità Pt-Co.

Metodo chimico

Metodo standard al platino-cobalto (APHA)

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 50 mm
а	-3.54386 • 10 ⁺⁰
b	7.57544 • 10+2
С	
d	
е	
f	

Secondo

DIN 7887-C1 (WL 430, 455 nm; norma: 410 nm)

Hazen 24 M204

10 - 500 mg/L Pt Metodo standard al platino-cobalto (APHA) **PtCo**

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	430 nm	10 - 500 mg/L Pt
XD 7000, XD 7500	ø 24 mm	455 nm	10 - 500 mg/L Pt

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal-	N. ordine
	laggio	


Nessun reagente richiesto

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

1. Prelievo del campione, conservazione e immagazzinamento: Versare il campione di acqua in recipienti in vetro o in plastica puliti e analizzarlo immediatamente dopo il prelievo laddove possibile. Qualora ciò non sia possibile, riempire il recipiente fino all'orlo con il campione di acqua e chiuderlo bene. Non agitare il campione ed evitare il contatto prolungato con l'aria. Il campione può essere conservato a 4 °C per 24 ore; prima di eseguire la misurazione il campione di acqua dovrà essere portato alla temperatura ambiente.

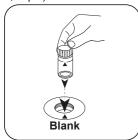
Note

- 1. Questa scala cromatica è stata originariamente sviluppata come scala visiva comparativa. Pertanto è necessario controllare se il limite massimo di estinzione del campione di acqua si trovi nel range che va da 420 nm a 470 nm, in quanto questo metodo è adatto soltanto a campioni di acqua con una colorazione da giallastra a giallo-marrone. Eventualmente la valutazione dovrà essere effettuata tramite osservazione visiva del campione di acqua.
- II metodo è calibrato in base agli standard specificati in "Standard Methods for the Examination of Water and Wastewater" (vedere anche EN ISO 7887:1994).
- 3. 1 unità cromatica Pt-Co ≜ 1 mg/L di platino come ione cloroplatinato.
- 4. Il concetto di colore può essere espresso come colore "reale" e "apparente". Per colore apparente si intende il colore di una soluzione che non è provocato soltanto da sostanze disciolte nel campione ma anche da sostanze sospese.
- La guida descrive la determinazione del colore reale tramite filtrazione del campione di acqua. Per determinare il colore apparente si utilizza sia acqua demineralizzata non filtrata che un campione di acqua non filtrato.
- 6. Il limite di rilevabilità stimato per questo metodo è di 15 mg/L di Pt.

Esecuzione della rilevazione Colore, reale e apparente

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Filtrare circa 50 ml di campione con un filtro precedentemente risciacquato (diametro pori 0,45 µm).

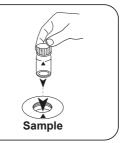
Immettere 10 ml di acqua demineralizzata nella cuvetta zero.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.


Svuotare la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Riempire una cuvetta da 24 mm con 10 ml del campione preparato.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Sul display compare il risultato come Unità Pt-Co.

Test

Premere il tasto **TEST** (XD: **START**).

Metodo chimico

Metodo standard al platino-cobalto (APHA)

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm	
а	-8.76424 • 10 ⁻²	6.76451 • 10⁺0	
b	1.71832 • 10+3	3.6463 • 10+3	
С			
d			
е			
f			

Validazione metodo

Limite di rilevabilità	10.26 mg/L
Limite di quantificazione	30.77 mg/L
Estremità campo di misura	500 mg/L
Sensibilità	1,719.12 mg/L / Abs
Intervallo di confidenza	10.25 mg/L
Deviazione standard della procedura	4.24 mg/L
Coefficiente di variazione della procedura	1.6 %

Secondo

DIN 7887-C1 (WL 430, 455 nm; norma: 410 nm)

Idrazina P M205

0.05 - 0.5 mg/L N₂H₄

Hydr

Dimetilamminobenzaldeide

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	430 nm	0.05 - 0.5 mg/L N ₂ H ₄
SpectroDirect, XD 7000, XD 7500	ø 24 mm	455 nm	0.05 - 0.5 mg/L N ₂ H ₄

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test idrazina in polvere	Polvere / 30 g	462910
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Cucchiaio dosatore, 1 g	1 pz.	384930

Campo di applicazione

- · Acqua di caldaia
- · Acqua di raffreddamento

Preparazione

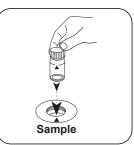
- Se il campione di acqua è torbido deve essere filtrato prima dell'esecuzione della taratura a zero.
- 2. La temperatura del campione non deve superare i 21 °C.

Note

- Se si utilizza il cucchiaio dosatore per l'idrazina, 1 g corrisponde a un cucchiaio dosatore raso.
- Per eliminare la torbidità provocata dai reagenti è risultato efficace l'uso di filtri a pieghe per precipitati medio-fini.
- 3. Per verificare che il reagente non sia deteriorato dopo un immagazzinamento prolungato, il test viene eseguito come descritto con acqua corrente. Se il risultato supera il valore del limite di rilevabilità di 0,05 mg/L, il reagente può ancora essere utilizzato soltanto in misura limitata (divergenze elevate dei valori di misura).

Esecuzione della rilevazione Idrazina con reagente in polvere

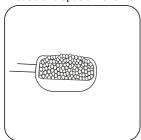
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

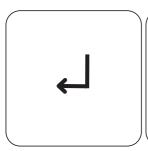
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

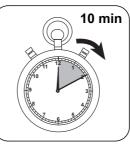


Premere il tasto ZERO.

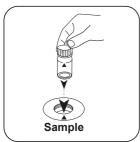
Prelevare la cuvetta dal vano di misurazione.

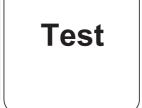
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Aggiungere 1 g di polvere Chiudere la/e cuvetta/e. **HYDRAZIN** Test.



Miscelare il contenuto capovolgendo.


Premere il tasto ENTER.


Attendere un tempo di reazione di 10 minuto/i .

Rimuovere la leggera torbidità risultante tramite filtra-

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato come Idrazina.

Premere il tasto TEST (XD: START).

Metodo chimico

Dimetilamminobenzaldeide

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-6.53427 • 10 ⁺⁰	-3.53427 • 10 ⁺⁰
b	3.34209 • 10+2	7.12489 • 10+2
С		
d		
е		_
f		

Interferenze

Interferenze escludibili

1. Eliminare le interferenze dovute a campioni fortemente colorati o torbidi: miscelare 1 parte di acqua demineralizzata e 1 parte di candeggiante ad uso domestico. Immettere 1 gocce di questa soluzione in 25 ml di campione e miscelare. Utilizzare 10 ml di questo campione invece dell'acqua demineralizzata per il campione zero. Attenzione: per la misurazione del campione di acqua utilizzare esclusivamente il campione non trattato.

Principio: l'idrazina viene ossidata dal candeggiante e l'interferenza cromatica viene annullata nella taratura a zero.

Interferenze	da / [mg/L]
NH ₄ ⁺	10
C₄H ₉ NO	10
VO ₄ 3-	1

Derivato di

DIN 38413-P1

Idrazina L M206

0.01 - 0.6 mg/L N₂H₄

Dimetilamminobenzaldeide

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	430 nm	0.01 - 0.6 mg/L N ₂ H ₄
SpectroDirect, XD 7000, XD 7500	ø 24 mm	455 nm	5 - 600 μg/L N ₂ H ₄

Materiale

Materiale richiesto (in parte facoltativo):

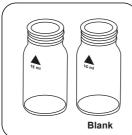
Reagenti	Unità di imbal- laggio	N. ordine
VARIO Reagente Hydra2	100 mL	531200

Campo di applicazione

- · Acqua di caldaia
- · Acqua di raffreddamento

Preparazione

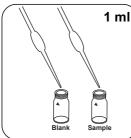
- I campioni non possono essere conservati e devono quindi essere analizzati immediatamente.
- 2. La temperatura del campione deve misurare 21 °C ± 4 °C.

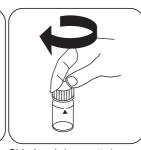

Note

- 1. Il reagente produce una lieve colorazione gialla nel campione zero.
- 2. Il dato L'unità in mg/L viene arrotondato. Campo di misura 0,01-0,6 mg/L.

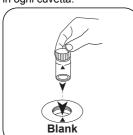
Esecuzione della rilevazione Idrazina con reagente liquido Vario

Selezionare il metodo nel dispositivo.

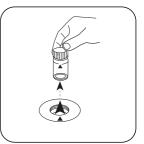

Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.


Immettere 10 ml di acqua demineralizzata nella cuvetta zero.

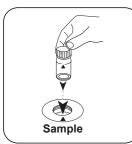
Immettere 10 ml di campione nella cuvetta del campione.


Immettere 1 ml di soluzione Vario Hydra 2 Rgt in ogni cuvetta.

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Sul display compare il risultato come Idrazina.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.

Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 12 minuto/i .

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N_2H_4	1
μg/l	N_2H_4	1000

Metodo chimico

Dimetilamminobenzaldeide

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-2.02787 • 10 ⁺¹	-2.02787 • 10 ⁺¹
b	3.38179 • 10+2	7.27086 • 10+2
С	-2.0392 • 10 ⁺¹	-9.42622 • 10 ⁺¹
d		
е		
f		

Interferenze

Interferenze escludibili

1. Eliminare le interferenze dovute a campioni fortemente colorati o torbidi: miscelare 1 parte di acqua demineralizzata e 1 parte di candeggiante ad uso domestico. Immettere 1 gocce di questa soluzione in 25 ml di campione e miscelare. Utilizzare 10 ml di questo campione invece dell'acqua demineralizzata per il campione zero. Attenzione: per la misurazione del campione di acqua utilizzare esclusivamente il campione non trattato.

Principio: l'idrazina viene ossidata dal candeggiante e l'interferenza cromatica viene annullata nella taratura a zero.

Interferenze	da / [mg/L]
NH ₄ ⁺	10
Morpholin	10
VO ₄ 3-	1

Derivato di

DIN 38413-P1

Idrazina C M207

0.01 - 0.7 mg/L N₂H₄ °)

PDMAB

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 13 mm	430 nm	0.01 - 0.7 mg/L N ₂ H ₄
XD 7000, XD 7500	ø 13 mm	455 nm	0.01 - 0.7 mg/L N ₂ H ₄

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Kit di analisi dell'idrazina Vacu-vial	1 set	380470

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Adattatore (13 mm) MultiDirect per Vacu-vial	1 pz.	192075
Adattatore per cuvette rotonde 13 mm	1 pz.	19802192

Campo di applicazione

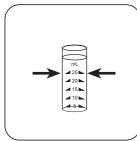
- · Acqua di caldaia
- · Acqua di raffreddamento

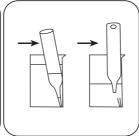
Note

- Questo metodo è un prodotto CHEMetrics. Il range di misura specificato in questo fotometro e la lunghezza d'onda utilizzata possono tuttavia differire dalle indicazioni di CHEMetrics.
- 2. Prima di eseguire il test leggere le istruzioni originali e la scheda tecnica di sicurezza accluse al kit di test (gli MSDS sono anche disponibili sul sito www.chemetrics.com).
- 3. Vacu-Vials® è un marchio protetto dell'azienda CHEMetrics, Inc / Calverton, U.S.A.

Esecuzione della rilevazione Idrazina con Vacu-vials[®] K-5003

Selezionare il metodo nel dispositivo.


Posizionare la fiala zero nel vano di misurazione.


Premere il tasto ZERO.

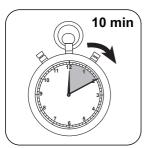
Prelevare la fiala zero dal vano di misurazione.

cuvetta fino a raggiungere la tacca dei 25 ml.

Immettere il campione nella Posizionare una fiala Vacuvial® nel recipiente per campioni. Rompere la punta della fiala premendo leggermente contro la parete del recipiente. Attendere il completo riempimento della fiala.

Capovolgere più volte la fiala

Asciugare esternamente la Posizionare la fiala nel fiala.



vano di misurazione.

Test

Premere il tasto TEST (XD: START).

Attendere un tempo di reazione di 10 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato come Idrazina.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N_2H_4	1
μg/l	N_2H_4	1000

Metodo chimico

PDMAB

Appendice

Interferenze

Interferenze escludibili

1. Eliminare le interferenze dovute a campioni fortemente colorati o torbidi: miscelare 1 parte di acqua demineralizzata e 1 parte di candeggiante ad uso domestico. Immettere 1 gocce di questa soluzione in 25 ml di campione e miscelare. Utilizzare 10 ml di questo campione invece dell'acqua demineralizzata per il campione zero. Attenzione: per la misurazione del campione di acqua utilizzare esclusivamente il campione non trattato.

Principio: l'idrazina viene ossidata dal candeggiante e l'interferenza cromatica viene annullata nella taratura a zero.

Interferenze	da / [mg/L]
NH ₄ ⁺	10
C ₄ H ₉ NO	10
VO ₄ 3-	1

Validazione metodo

Limite di rilevabilità	0.0087 mg/L
Limite di quantificazione	0.026 mg/L
Estremità campo di misura	0.7 mg/L
Sensibilità	0.67 mg/L / Abs
Intervallo di confidenza	0.003 mg/L
Deviazione standard della procedura	0.001 mg/L
Coefficiente di variazione della procedura	0.42 %

Derivato di

DIN 38413-P1

^{c)}MultiDirect: necessario adattatore per Vacu-vials®(numero d'ordine 19 20 75)

H₂O₂ 50 T

M209

0.01 - 0.5 mg/L H₂O₂

DPD/catalizzatore

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	510 nm	0.01 - 0.5 mg/L H ₂ O ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Perossido di idrogeno LR	Pastiglia / 100	512380BT
Perossido di idrogeno LR	Pastiglia / 250	512381BT

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Controllo disinfettante

Prelievo del campione

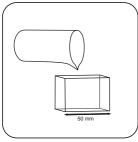
- 1. Nella preparazione del campione occorre evitare la degassificazione del perossido di idrogeno, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

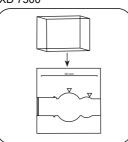
Preparazione

1. Pulizia delle cuvette:

Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.

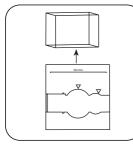
Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5.


I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).


Esecuzione della rilevazione Perossido di idrogeno con pastiglia

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.

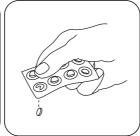
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

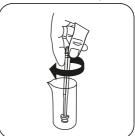
Prelevare la **cuvetta** dal vano di misurazione.



Svuotare la cuvetta.

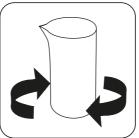


Asciugare bene la cuvetta.

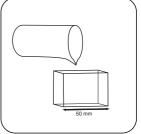

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

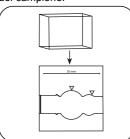
Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.

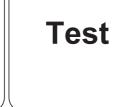
Aggiungere una pastiglia HYDROGENPEROXIDE LR.

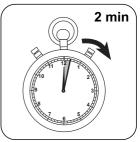


Frantumare la/e pastiglia/e con una leggera rotazione.




Immettere 10 ml di campione nella recipiente del campione.


Far sciogliere la/e pastiglia/e agitando.


Riempire una cuvetta da 50 mm con il campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

START).

Premere il tasto TEST (XD: Attendere un tempo di reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di H₂O₂.

Metodo chimico

DPD/catalizzatore

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 50 mm
a	-4.28181 • 10 ⁻³
b	3.62669 • 10 ⁻¹
С	-3.70491 • 10 ⁻²
d	
е	
f	

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nel campione reagiscono come il perossido di idrogeno dando risultati troppo elevati.

Interferenze escludibili

 Le concentrazioni di perossido di idrogeno maggiori di 5 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito con acqua priva di perossido di idrogeno. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Riferimenti bibliografici

Colorimetric Chemical Analytical Methods, 9th Edition, Lovibond

Derivato di

US EPA 330.5 APHA 4500 CI-G

 H_2O_2T M210

0.03 - 3 mg/L H₂O₂

DPD/catalizzatore

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	530 nm	0.03 - 3 mg/L H ₂ O ₂
XD 7000, XD 7500	ø 24 mm	510 nm	0.03 - 3 mg/L H ₂ O ₂
SpectroDirect	ø 24 mm	510 nm	0.03 - 1.5 mg/L H ₂ O ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Perossido di idrogeno LR	Pastiglia / 100	512380BT
Perossido di idrogeno LR	Pastiglia / 250	512381BT

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Controllo disinfettante

Prelievo del campione

- Nella preparazione del campione occorre evitare la degassificazione del perossido di idrogeno, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

Preparazione

1. Pulizia delle cuvette:

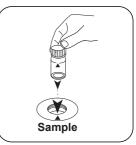
Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella rilevazione del cloro si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.

Lo sviluppo della colorazione del DPD avviene con un valore di pH compreso tra 6,2 e 6,5.

I reagenti contengono pertanto un tampone per la regolazione del valore di pH. Le acque fortemente alcaline o acide tuttavia devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione Perossido di idrogeno con pastiglia

Selezionare il metodo nel dispositivo.

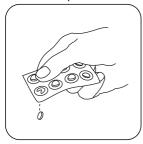

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.



Prelevare la cuvetta dal vano di misurazione.

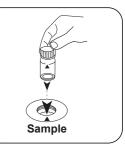
Svuotare la cuvetta finché non rimangono alcune gocce.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

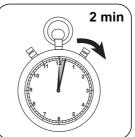
Aggiungere una pastiglia HYDROGENPEROXIDE LR.

Frantumare la/e pastiglia/e con una leggera rotazione.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .



Chiudere la/e cuvetta/e.



Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di $\rm H_2O_2$.

Metodo chimico

DPD/catalizzatore

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.45214 • 10 ⁻²	-2.45214 • 10 ⁻²
b	8.8458 • 10 ⁻¹	1.90185 • 10+0
С	-3.75083 • 10 ⁻²	-1.73382 • 10 ⁻¹
d	5.27986 • 10 ⁻²	5.24732 • 10 ⁻¹
е		
f		

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nel campione reagiscono come il perossido di idrogeno dando risultati troppo elevati.

Interferenze escludibili

 Le concentrazioni di perossido di idrogeno maggiori di 5 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito con acqua priva di perossido di idrogeno. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Riferimenti bibliografici

Colorimetric Chemical Analytical Methods, 9th Edition, Lovibond

Derivato di

US EPA 330.5 APHA 4500 CI-G

M212

Ipoclorito di sodio T

0.2 - 16 % NaOCI

loduro di potassio

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	530 nm	0.2 - 16 % NaOCI
XD 7000, XD 7500	ø 24 mm	470 nm	0.2 - 17 % NaOCI

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Acidificante GP	Pastiglia / 100	515480BT
Acidificante GP	Pastiglia / 250	515481BT
Cloro HR (KI)	Pastiglia / 100	513000BT
Cloro HR (KI)	Pastiglia / 250	513001BT
Cloro HR (KI)	Pastiglia / 100	501210
Cloro HR (KI)	Pastiglia / 250	501211
Set Cloro HR (KI)/Acidificante GP#	ciascuna 100	517721BT
Set Cloro HR (KI)/Acidificante GP#	ciascuna 250	517722BT
Set di diluizione Ipoclorito di sodio	1 pz.	414470

Campo di applicazione

· Controllo disinfettante

Note

- 1. Questo metodo consente di eseguire un test rapido e semplice sul posto, che non sarà accurato come un metodo di laboratorio comparabile.
- Attenendosi scrupolosamente alla procedura descritta è possibile ottenere un'accuratezza di ± 1% in peso.

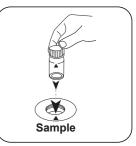
Esecuzione della rilevazione Ipoclorito di sodio con pastiglia

Selezionare il metodo nel dispositivo.

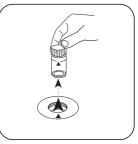
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Il campione viene diluito per 2000 volte:

- Sciacquare innanzitutto una siringa da 5 ml internamente con la soluzione da esaminare e quindi riempirla fino alla tacca dei 5 ml.
- 2. Iniettare l'intero contenuto della siringa in un misurino da 100 ml.
- 3. Riempire il misurino con acqua priva di cloro fino alla tacca dei 100 ml.
- 4. Miscelare il contenuto agitando.
- 5. Riempire una siringa pulita da 5 ml fino alla tacca di 1 ml con la soluzione diluita.
- 6. Iniettare l'intero contenuto della siringa in un misurino pulito da 100 ml.
- 7. Riempire il misurino con acqua priva di cloro fino alla tacca dei 100 ml.
- 8. Miscelare il contenuto agitando.

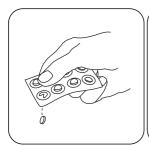

Il test viene eseguito con questa soluzione.

Riempire una cuvetta da 24 mm con 10 ml del campione preparato.



Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

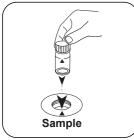
Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia CHLORINE HR (KI).

Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia ACIDIFYING GP.



Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il tenore di cloro attivo in percentuale di peso (w/w %) riferita alla soluzione di ipoclorito di sodio **non diluita**.

Metodo chimico

loduro di potassio

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	2.01562 • 10-1	2.01562 • 10 ⁻¹
b	9.7265 • 10+0	2.0912 • 10+1
С	-7.90521 • 10 ⁻¹	-3.65418 • 10 ⁺⁰
d		
е		
f		

Validazione metodo

Limite di rilevabilità	0.03 %
Limite di quantificazione	0.1 %
Estremità campo di misura	16.8 %
Sensibilità	9.21 % / Abs
Intervallo di confidenza	0.12 %
Deviazione standard della procedura	0.05 %
Coefficiente di variazione della procedura	0.55 %

Derivato di

EN ISO 7393-3

^{j)}*Bacchetta compresa

H₂O₂ LR L

M213

1 - 50 mg/L H₂O₂

HP1

Tetracloruro di titanio / acido

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 200, MD 600, MD 610, MD 640, MultiDirect, XD 7000,	ø 16 mm	430 nm	1 - 50 mg/L H ₂ O ₂
XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Reagente per perossido di idrogeno	15 mL	424991
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Cuvetta rotonda con coperchio Ø 16 mm, altezza 90 mm, 10 ml, set da 10	1 set	197665

Indicazioni di pericolo

1. Il reagente di colorazione contiene acido solforico al 25%. Si consiglia di indossare indumenti protettivi adeguati (occhiali protettivi/guanti).

Campo di applicazione

- Trattamento acqua di scarico
- · Trattamento acqua potabile
- Trattamento acqua non depurata
- · Controllo disinfettante

Preparazione

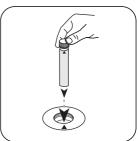
 La determinazione avviene in un mezzo fortemente acido. In caso di campioni fortemente alcalini (pH > 10), è necessario acidificarli prima della rilevazione (con acido solforico al 5% in rapporto 1:1).

Note

1. Il campione può essere misurato anche 24 ore dopo la reazione cromatica.


Esecuzione della rilevazione Perossido di idrogeno LR con reagente liquido

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

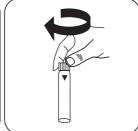
Riempire una cuvetta da 16 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 6 gocce di H₂O₂-Reagent Solution.



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di H₂O₂.

Test

Premere il tasto TEST (XD: START).

Metodo chimico

Tetracloruro di titanio / acido

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	-3.16583 • 10 ⁻¹
b	3.74037 • 10+1
С	
d	
е	
f	

Interferenze

Interferenze escludibili

- 1. L'interferenza dovuta alla colorazione può essere eliminata nel modo seguente.
 - a) Una cuvetta pulita viene riempita con 10 ml del campione di acqua. Con questa viene eseguita soltanto una misurazione zero.
 - b) Il campione viene misurato senza l'aggiunta di reagenti (risultato B).
 - b) Lo stesso campione viene misurato con l'aggiunta di reagenti (risultato A). Calcolo della concentrazione di H_2O_2 = risultato A risultato B.
- Le particelle o le torbidità presenti nel campione falsificano l'analisi e devono essere preventivamente eliminate. Per farlo si può ricorrere alla centrifugazione o più semplicemente alla filtrazione della soluzione campione. Anche con le soluzioni colorate è possibile che il risultato della misurazione sia falsificato.

H,O, HR L

40 - 500 mg/L H₂O₂

HP2

M214

Tetracloruro di titanio / acido

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630, XD 7000, XD 7500	ø 16 mm	530 nm	40 - 500 mg/L H ₂ O ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Reagente per perossido di idrogeno	15 mL	424991

Indicazioni di pericolo

1. Il reagente di colorazione contiene acido solforico al 25%. Si consiglia di indossare indumenti protettivi adeguati (occhiali protettivi/guanti).

Campo di applicazione

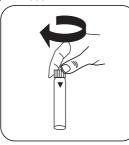
- Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Controllo disinfettante

Preparazione

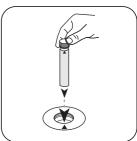
 La determinazione avviene in un mezzo fortemente acido. In caso di campioni fortemente alcalini (pH > 10), è necessario acidificarli prima della rilevazione (con acido solforico al 5% in rapporto 1:1).

Note

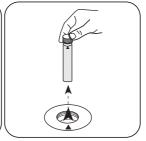
1. Il campione può essere misurato anche 24 ore dopo la reazione cromatica.


Esecuzione della rilevazione Perossido di idrogeno HR con reagente liquido

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 16 mm con **10 ml di** campione.

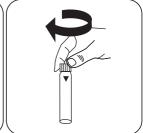


Chiudere la/e cuvetta/e.

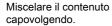
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

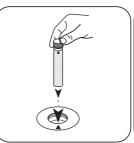
Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuyetta.


Aggiungere 6 gocce di H₂O₂-Reagent Solution.



Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di H₂O₂.

Test

Premere il tasto TEST (XD: START).

Metodo chimico

Tetracloruro di titanio / acido

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	7.35421 • 10+0
b	3.21189 • 10+2
С	3.50603 • 10+1
d	
е	
f	

Interferenze

Interferenze escludibili

- 1. L'interferenza dovuta alla colorazione può essere eliminata nel modo seguente.
 - a) Una cuvetta pulita viene riempita con 10 ml del campione di acqua. Con questa viene eseguita soltanto una misurazione zero.
 - b) Il campione viene misurato senza l'aggiunta di reagenti (risultato B).
 - b) Lo stesso campione viene misurato con l'aggiunta di reagenti (risultato A). Calcolo della concentrazione di H_2O_2 = risultato A risultato B.
- 2. Le particelle o le torbidità presenti nel campione falsificano l'analisi e devono essere preventivamente eliminate. Per farlo si può ricorrere alla centrifugazione o più semplicemente alla filtrazione della soluzione campione. Anche con le soluzioni colorate è possibile che il risultato della misurazione sia falsificato.

lodio T M215

0.05 - 3.6 mg/L I

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	530 nm	0.05 - 3.6 mg/L I
SpectroDirect, XD 7000, XD 7500	ø 24 mm	510 nm	0.05 - 3.6 mg/L I

Materiale

Materiale richiesto (in parte facoltativo):

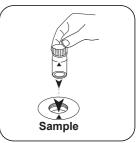
Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT

Campo di applicazione

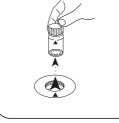
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Controllo disinfettante

Esecuzione della rilevazione lodio con pastiglia

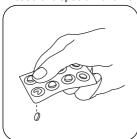
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di campione**.


Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta finché non rimangono alcune gocce.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia DPD No. 1.

Frantumare la/e pastiglia/e con una leggera rotazione.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di lodio.

Metodo chimico

DPD

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-5.02604 • 10 ⁻²	-5.02604 • 10 ⁻²
b	5.98475 • 10+0	1.28672 • 10+1
С	1.56046 • 10 ⁻¹	7.21323 • 10 ⁻¹
d		
е		
f		

Interferenze

Interferenze permanenti

 Tutti gli ossidanti presenti nel campione reagiscono come lo iodio dando risultati troppo elevati.

Derivato di

EN ISO 7393-2

[®]Reagente ausiliario, in alternativa a DPD n. 1 / no 3 in caso di torbidità del campione a causa di alto contenuto di ioni di calcio e / o alta conduttività

Ferro 10 T M218

0.05 - 1 mg/L Fe

Ferrozine / acido tioglicolico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 10 mm	562 nm	0.05 - 1 mg/L Fe

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Ferro II LR (Fe ²⁺)	Pastiglia / 100	515420BT
Ferro II LR (Fe ²⁺)	Pastiglia / 250	515421BT
Ferro LR (Fe ²⁺ und Fe ³⁺)	Pastiglia / 100	515370BT
Ferro LR (Fe ²⁺ und Fe ³⁺)	Pastiglia / 250	515371BT

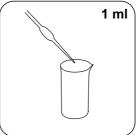
Campo di applicazione

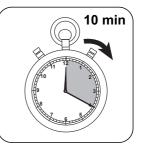
- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Acqua di caldaia
- Galvanizzazione
- Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Trattamento acqua di piscina

Preparazione

1. Le acque che sono state trattate con composti organici che proteggono dalla corrosione devono essere eventualmente ossidate per disgregare i complessi di ferro. A tale scopo si addiziona un campione da 100 ml con 1 ml di acido solforico concentrato e 1 ml di acido nitrico concentrato e lo si fa evaporare fino alla metà. Dopo il raffreddamento viene eseguita la digestione.

Note


- 1. Con questo metodo viene rilevato il totale del Fe²⁺ e del Fe³⁺ disciolti.
- Per rilevare il Fe²⁺si utilizza, invece della pastiglia IRON LR, la pastiglia IRON (II) LR. Modificando la lunghezza della cuvetta è possibile estendere il range di misura:
- Cuvetta da 10 mm: 0,05 mg/L 1 mg/L, risoluzione: 0,01
- Cuvetta da 20 mm: 0,025 mg/L 0,5 mg/L, risoluzione: 0,01
- Cuvetta da 50 mm: 0,01 mg/L 0,2 mg/L, risoluzione: 0,001


Digestione

Riempire un recipiente per campioni adequato con 100 ml di campione.

Aggiungere 1 ml di acido solforico concentrato.

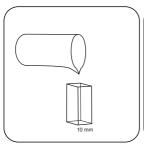
Riscaldare il campione per 10 minuti o finché non si sarà sciolto completamente.

Lasciar raffreddare il campione a temperatura ambiente.

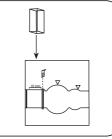
campione con soluzione di acqua demineralizzata ammoniaca su 3-5.

Regolare il valore di pH del Aggiungere al campione fino a raggiungere i 100 ml.

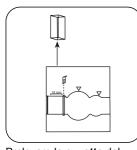
Utilizzare questo campione per l'analisi di Ferro soluto e disciolto totale.


Esecuzione della rilevazione Ferro(II,III), disciolto con pastiglia

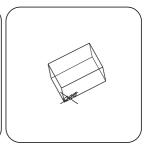
Selezionare il metodo nel dispositivo.


Per la determinazione di Ferro soluto e disciolto totale eseguire la digestione descritta.

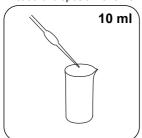
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 10 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

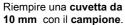


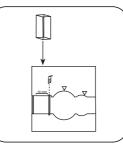
Svuotare la cuvetta.

Asciugare bene la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Riempire un recipiente per campioni adeguato con **10 ml di campione**.


Aggiungere una pastiglia IRON LR.



Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ferro.

Metodo chimico

Ferrozine / acido tioglicolico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 10 mm
а	-3.64722 • 10 ⁻²
b	1.98546 • 10+0
С	
d	
е	
f	

Interferenze

Interferenze escludibili

 La presenza di rame aumenta il risultato della misurazione del 10%. Con una concentrazione di 10 mg/L di rame nel campione il risultato della misurazione viene aumentato di 1 mg/L di ferro.

L'interferenza può essere eliminata con l'aggiunta di tiourea.

Riferimenti bibliografici

Photometrische Analyse, Lange/Vjedelek, Verlag Chemie 1980, pag. 102

Ferro 50 T M219

0.01 - 0.5 mg/L Fe

Ferrozine / acido tioglicolico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	562 nm	0.01 - 0.5 mg/L Fe

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Ferro II LR (Fe ²⁺)	Pastiglia / 100	515420BT
Ferro II LR (Fe ²⁺)	Pastiglia / 250	515421BT
Ferro LR (Fe ²⁺ und Fe ³⁺)	Pastiglia / 100	515370BT
Ferro LR (Fe ²⁺ und Fe ³⁺)	Pastiglia / 250	515371BT

Campo di applicazione

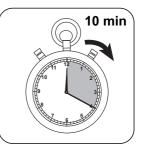
- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Acqua di caldaia
- Galvanizzazione
- Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Trattamento acqua di piscina

Preparazione

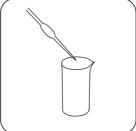
1. Le acque che sono state trattate con composti organici che proteggono dalla corrosione devono essere eventualmente ossidate per disgregare i complessi di ferro. A tale scopo si addiziona un campione da 100 ml con 1 ml di acido solforico concentrato e 1 ml di acido nitrico concentrato e lo si fa evaporare fino alla metà. Dopo il raffreddamento viene eseguita la digestione.

Note


1. Per rilevare il Fe²+si utilizza come descritto, invece della pastiglia IRON LR, la pastiglia IRON (II) LR.


Digestione

Riempire un recipiente per campioni adequato con 100 ml di campione.


Aggiungere 1 ml di acido solforico concentrato.

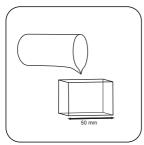
Riscaldare il campione per 10 minuti o finché non si sarà sciolto completamente.

Lasciar raffreddare il campione a temperatura ambiente.

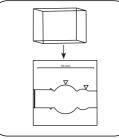
campione con soluzione di acqua demineralizzata ammoniaca su 3-5.

Regolare il valore di pH del Aggiungere al campione fino a raggiungere i 100 ml.

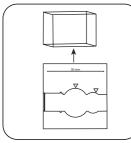
Utilizzare questo campione per l'analisi di Ferro soluto e disciolto totale.


Esecuzione della rilevazione Ferro(II,III), disciolto con pastiglia

Selezionare il metodo nel dispositivo.


Per la determinazione di Ferro disciolto e non disciolto eseguire la digestione descritta.

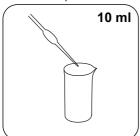
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

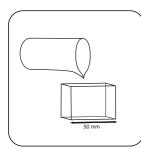


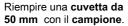
Svuotare la cuvetta.

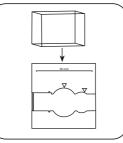
Asciugare bene la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

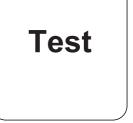
Riempire un recipiente per campioni adeguato con **10 ml di campione**.




Aggiungere una pastiglia IRON LR.



Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ferro.

Metodo chimico

Ferrozine / acido tioglicolico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 50 mm
а	-6.71105 • 10 ⁻³
b	4.0101 • 10-1
С	
d	
е	
f	

Interferenze

Interferenze escludibili

 La presenza di rame aumenta il risultato della misurazione del 10%. Con una concentrazione di 10 mg/L di rame nel campione il risultato della misurazione viene aumentato di 1 mg/L di ferro.

L'interferenza può essere eliminata con l'aggiunta di tiourea.

Riferimenti bibliografici

Photometrische Analyse, Lange/Vjedelek, Verlag Chemie 1980, pag. 102

Ferro T M220

0.02 - 1 mg/L Fe

FE

Ferrozine / acido tioglicolico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	560 nm	0.02 - 1 mg/L Fe
XD 7000, XD 7500	ø 24 mm	562 nm	0.02 - 1 mg/L Fe
SpectroDirect	ø 24 mm	562 nm	0.1 - 1 mg/L Fe

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Ferro II LR (Fe ²⁺)	Pastiglia / 100	515420BT
Ferro II LR (Fe ²⁺)	Pastiglia / 250	515421BT
Ferro LR (Fe ²⁺ und Fe ³⁺)	Pastiglia / 100	515370BT
Ferro LR (Fe ²⁺ und Fe ³⁺)	Pastiglia / 250	515371BT

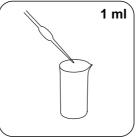
Campo di applicazione

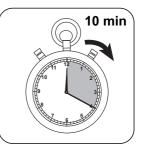
- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Acqua di caldaia
- Galvanizzazione
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Trattamento acqua di piscina

Preparazione

1. Le acque che sono state trattate con composti organici che proteggono dalla corrosione devono essere eventualmente ossidate per disgregare i complessi di ferro. A tale scopo si addiziona un campione da 100 ml con 1 ml di acido solforico concentrato e 1 ml di acido nitrico concentrato e lo si fa evaporare fino alla metà. Dopo il raffreddamento viene eseguita la digestione.

Note


- 1. Con questo metodo viene rilevato il totale del Fe²⁺ e del Fe³⁺ disciolti.
- Per rilevare il Fe²⁺ si utilizza, invece della pastiglia IRON LR, la pastiglia IRON (II) LR.


Digestione

Riempire un recipiente per campioni adequato con 100 ml di campione.

Aggiungere 1 ml di acido solforico concentrato.

Riscaldare il campione per 10 minuti o finché non si sarà sciolto completamente.

Lasciar raffreddare il campione a temperatura ambiente.

Regolare il valore di pH del Aggiungere al campione campione con soluzione di acqua demineralizzata ammoniaca su 3-5.

fino a raggiungere i 100 ml.

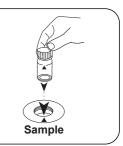
Utilizzare questo campione per l'analisi di Ferro soluto e disciolto totale.

Esecuzione della rilevazione Ferro(II,III), disciolto con pastiglia

Selezionare il metodo nel dispositivo.

Per la determinazione di Ferro disciolto e non disciolto eseguire la digestione descritta.

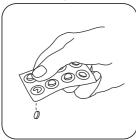
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500



Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Zero

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia IRON LR.

Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un **tempo di** reazione di 5 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ferro.

Metodo chimico

Ferrozine / acido tioglicolico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-8.94304 • 10 ⁻³	-8.94304 • 10 ⁻³
b	9.35824 • 10-1	2.01202 • 10+0
С		
d		
е		
f		

Interferenze

Interferenze escludibili

 La presenza di rame aumenta il risultato della misurazione del 10 %. Con una concentrazione di 10 mg/L di rame nel campione il risultato della misurazione viene aumentato di 1 mg/L di ferro.

L'interferenza può essere eliminata con l'aggiunta di tiourea.

Validazione metodo

Limite di rilevabilità	0.01 mg/L
Limite di quantificazione	0.016 mg/L
Estremità campo di misura	1 mg/L
Sensibilità	0.92 mg/L / Abs
Intervallo di confidenza	0.013 mg/L
Deviazione standard della procedura	0.005 mg/L
Coefficiente di variazione della procedura	1.23 %
<u> </u>	

Riferimenti bibliografici

Photometrische Analyse, Lange/Vjedelek, Verlag Chemie 1980, pag. 102

Ferro PP M221

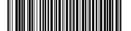
0.01 - 1.5 mg/L Fe⁹⁾

1,10-fenantrolina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	510 nm	0.01 - 1.5 mg/L Fe ⁹⁾


Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Ferro F10	Polvere / 100 pz.	530560
VARIO Ferro F10	Polvere / 1000 pz.	530563

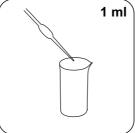
Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Acqua di caldaia
- Galvanizzazione
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Trattamento acqua di piscina

Preparazione

- Prima dell'analisi, l'ossido di ferro richiede una digestione delicata, vigorosa o Digesdahl (processo di digestione acida).
- 2. Le acque fortemente alcaline o acide dovrebbero essere regolate prima dell'analisi su un valore di pH compreso tra 3 e 5.
- Per i campioni con ruggine visibile è necessario osservare un tempo di reazione minimo di 5 minuti.
- 4. Le acque che sono state trattate con composti organici che proteggono dalla corrosione devono essere eventualmente ossidate per disgregare i complessi di ferro. A tale scopo si addiziona un campione da 100 ml con 1 ml di acido solforico concentrato e 1 ml di acido nitrico concentrato e lo si fa evaporare fino alla metà. Dopo il raffreddamento viene eseguita la digestione.

Note


- Con questo metodo vengono misurate tutte le forme di ferro disciolto e la maggior parte delle forme di ferro non disciolto.
- 2. L'accuratezza non viene ridotta da eventuale polvere non disciolta.


Digestione

Riempire un recipiente per campioni adequato con 100 ml di campione.

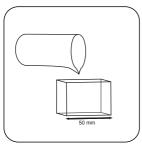
Aggiungere 1 ml di acido solforico concentrato.

Riscaldare il campione per 10 minuti o finché non si sarà sciolto completamente.

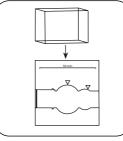
Lasciar raffreddare il campione a temperatura ambiente.

campione con soluzione di acqua demineralizzata ammoniaca su 3-5.

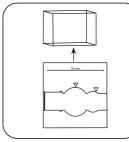
Regolare il valore di pH del Aggiungere al campione fino a raggiungere i 100 ml.


Utilizzare questo campione per l'analisi di Ferro soluto e disciolto totale.

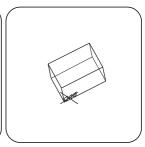
Esecuzione della rilevazione Ferro(II,III), disciolto con polvere in **bustine Vario**


Selezionare il metodo nel dispositivo.

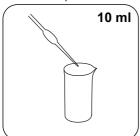
Per la determinazione di Ferro con pastiglia eseguire la digestione descritta. Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

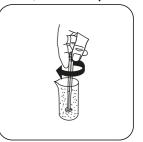

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

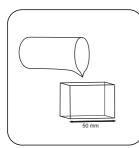


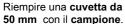
Svuotare la cuvetta.

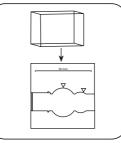
Asciugare bene la cuvetta.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Riempire un recipiente per campioni adeguato con 10 ml di campione.



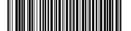

polvere Vario FERRO F10. agitando.



Aggiungere una bustina di Far sciogliere la polvere



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 3 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ferro.

Metodo chimico

1,10-fenantrolina

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 50 mm
a	0.00000 • 10+0
b	9.85512 • 10 ⁻¹
С	
d	
е	
f	

Interferenze


Interferenze permanenti

1. L'iridio interferisce con la rilevazione.

Validazione metodo

Limite di rilevabilità	0.01 mg/L
Limite di quantificazione	0.03 mg/L
Estremità campo di misura	1.5 mg/L
Sensibilità	0.96 mg/L / Abs
Intervallo di confidenza	0.13 mg/L
Deviazione standard della procedura	0.05 mg/L
Coefficiente di variazione della procedura	7.05 %

⁹⁾ Il reagente cattura la maggior parte degli ossidi di ferro

 Ferro PP
 M222

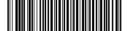
 0.02 - 3 mg/L Fe^{g)}
 FE1

Informazioni specifiche dello strumento

1,10-fenantrolina

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	530 nm	0.02 - 3 mg/L Fe ^{g)}
XD 7000, XD 7500	ø 24 mm	510 nm	0.02 - 3 mg/L Fe ^{g)}
SpectroDirect	□ 50 mm	510 nm	0.01 - 1.5 mg/L Fe ^{g)}


Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Ferro F10	Polvere / 100 pz.	530560
VARIO Ferro F10	Polvere / 1000 pz.	530563

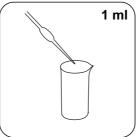
Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Acqua di caldaia
- Galvanizzazione
- · Trattamento acqua potabile
- Trattamento acqua non depurata
- Trattamento acqua di piscina

Preparazione

- Prima dell'analisi, l'ossido di ferro richiede una digestione delicata, vigorosa o Digesdahl (processo di digestione acida).
- 2. Le acque fortemente alcaline o acide dovrebbero essere regolate prima dell'analisi su un valore di pH compreso tra 3 e 5.
- Per i campioni con ruggine visibile è necessario osservare un tempo di reazione minimo di 5 minuti.
- 4. Le acque che sono state trattate con composti organici che proteggono dalla corrosione devono essere eventualmente ossidate per disgregare i complessi di ferro. A tale scopo si addiziona un campione da 100 ml con 1 ml di acido solforico concentrato e 1 ml di acido nitrico concentrato e lo si fa evaporare fino alla metà. Dopo il raffreddamento viene eseguita la digestione.

Note


- Con questo metodo vengono misurate tutte le forme di ferro disciolto e la maggior parte delle forme di ferro non disciolto.
- 2. L'accuratezza non viene ridotta da eventuale polvere non disciolta.


Digestione

Riempire un recipiente per campioni adequato con 100 ml di campione.

Aggiungere 1 ml di acido solforico concentrato.

Riscaldare il campione per 10 minuti o finché non si sarà sciolto completamente.

Lasciar raffreddare il campione a temperatura ambiente.

campione con soluzione di acqua demineralizzata ammoniaca su 3-5.

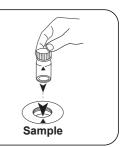
Regolare il valore di pH del Aggiungere al campione fino a raggiungere i 100 ml.

Utilizzare questo campione per l'analisi di Ferro soluto e disciolto totale.

Esecuzione della rilevazione Ferro(II,III), disciolto con polvere in **bustine Vario**

Selezionare il metodo nel dispositivo.

Per la determinazione di Ferro con pastiglia eseguire la digestione descritta. Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500



Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

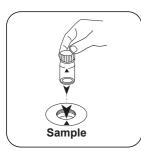
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Zero

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Vario FERRO F10.

Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 3 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ferro.

Metodo chimico

1,10-fenantrolina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-6.44557 • 10 ⁻²	-6.44557 • 10 ⁻²
b	2.39506 • 10+0	5.14938 • 10⁺⁰
С		
d		
е		
f		

Interferenze

Interferenze permanenti

1. L'iridio interferisce con la rilevazione.

Secondo

DIN 38406-E1 Standard Method 3500-Fe-1997 US EPA 40 CFR 136

g) Il reagente cattura la maggior parte degli ossidi di ferro

 Ferro (TPTZ) PP
 M223

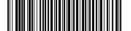
 0.02 - 1.8 mg/L Fe
 FE2

 TPTZ

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	580 nm	0.02 - 1.8 mg/L Fe
XD 7000, XD 7500	ø 24 mm	590 nm	0.02 - 1.8 mg/L Fe
SpectroDirect	ø 24 mm	590 nm	0.1 - 1.8 mg/L Fe


Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Ferro TPTZ F10	Polvere / 100 pz.	530550

Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Acqua di caldaia
- Galvanizzazione
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Trattamento acqua di piscina

Preparazione

- Per la rilevazione del ferro totale è necessaria una digestione. Il reagente TPTZ rileva la maggior parte degli ossidi di ferro senza digestione.
- Prima dell'analisi sciacquare tutti i vetri di laboratorio con una soluzione di acido cloridrico diluita (1:1) e successivamente con acqua demineralizzata per eliminare i depositi di ferro, che potrebbero portare a risultati leggermente maggiorati.
- 3. Le acque fortemente alcaline o acide dovrebbero essere portate prima dell'analisi entro un range di pH compreso tra 3 e 8 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).
- 4. Le acque che sono state trattate con composti organici che proteggono dalla corrosione devono essere eventualmente ossidate per disgregare i complessi di ferro. A tale scopo si addiziona un campione da 100 ml con 1 ml di acido solforico concentrato e 1 ml di acido nitrico concentrato e lo si fa evaporare fino alla metà. Dopo il raffreddamento viene eseguita la digestione.


Digestione

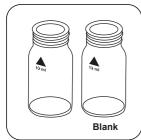
Riempire un recipiente per campioni adequato con 100 ml di campione.

Aggiungere 1 ml di acido solforico concentrato.

Riscaldare il campione per 10 minuti o finché non si sarà sciolto completamente.

Lasciar raffreddare il campione a temperatura ambiente.

Regolare il valore di pH del Aggiungere al campione campione con soluzione di acqua demineralizzata ammoniaca su 3-5.


fino a raggiungere i 100 ml.

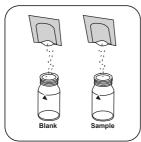
Utilizzare questo campione per l'analisi di Ferro soluto e disciolto totale.

Esecuzione della rilevazione Ferro totale con polvere in bustine Vario

Selezionare il metodo nel dispositivo.

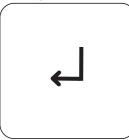
Per la determinazione di Ferro totale eseguire la digestione descritta.

Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.



Immettere 10 ml di acqua demineralizzata nella cuvetta zero.

Immettere 10 ml di campione nella cuvetta del campione.


Immettere una bustina di polvere Vario IRON TPTZ F10 in ogni cuvetta.

Chiudere la/e cuvetta/e.

Miscelare il contenuto agitando (30 sec.).

Premere il tasto ENTER.

Attendere un **tempo di** reazione di 3 minuto/i .

Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.

Zero

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Ferro.

Metodo chimico

TPTZ

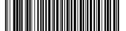
Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.07334 • 10 ⁻²	-2.07334 • 10 ⁻²
b	1.26944 • 10+0	2.7293 • 10+0
С		
d		
е		
f		

Interferenze


Interferenze permanenti

In caso di interferenze la formazione del colore viene ostacolata oppure si forma un precipitato. Le indicazioni si riferiscono a una soluzione standard con una concentrazione di ferro di 0,5 mg/L.

Interferenze	da / [mg/L]
Ca	4
Cr ³⁺	0,25
Cr ⁴⁺	1,2
Со	0,05
Cu	0,6
CN ⁻	2,8
Mn	50
Hg	0.4
Мо	4
Ni	1
NO ₂ -	0,8

Riferimenti bibliografici

G. Frederic Smith Chemical Co., The Iron Reagents, 3rd ed. (1980)

Ferro in Mo PP	M224
0.01 - 1.8 mg/L Fe	FEM
TPTZ	

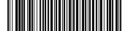
Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect.	ø 24 mm	580 nm	0.01 - 1.8 mg/L Fe
XD 7000. XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):


Reagenti	Unità di imbal- laggio	N. ordine
Set di reagenti VARIO Fe in MO	1 set	536010

Campo di applicazione

- · Acqua di raffreddamento
- · Acqua di caldaia

Prelievo del campione

- Eseguire il prelievo del campione utilizzando flaconi di vetro o di plastica puliti. Questi devono essere stati puliti con 6 N (1:1) di acido cloridrico e successivamente con acqua demineralizzata.
- 2. Per far sì che sia possibile conservare il campione per analizzarlo in un secondo momento, il valore di pH deve essere abbassato fino a un valore inferiore a 2. A tale scopo aggiungere circa 2 ml di acido cloridrico concentrato per litro di campione. Se il campione viene analizzato immediatamente, questa aggiunta non è necessaria.
- Per rilevare il ferro disciolto è necessario filtrare il campione con un filtro da 0,45 μm o equivalente subito dopo il prelievo e prima dell'acidificazione.
- I campioni conservati devono essere immagazzinati a temperatura ambiente per non più di 6 mesi.
- Prima dell'analisi è necessario regolare il valore di pH su un valore compreso tra 3 e 5 tramite l'aggiunta di 6 N di liscivia. Non superare il valore di pH 5 per evitare precipitazioni di ferro.
- 6. Il risultato deve essere corretto tenendo in considerazione le aggiunte volumetriche.

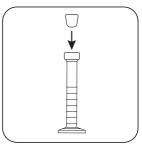
Preparazione

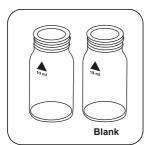
- Pulire tutti i dispositivi in vetro con un detergente, quindi risciacquarli con acqua corrente. Successivamente pulirli nuovamente con acido cloridrico (1:1) e acqua demineralizzata. Queste operazioni consentono di eliminare eventuali depositi, che possono provocare risultati leggermente maggiorati.
- Se il campione contiene 100 mg/L di molibdato (MoO₄ ²) o più, la misurazione del campione deve essere eseguita /subito dopo la misurazione dello zero.
- 3. Per ottenere risultati più accurati è possibile determinare un valore cieco per il reagente per ogni nuovo lotto di reagenti. A tale scopo procedere come descritto, ma utilizzare acqua demineralizzata invece del campione. Il valore di misura ottenuto viene sottratto dai valori di misura rilevati con questo lotto.

Note

 In presenza di ferro si sviluppa una colorazione blu. Una piccola quantità di polvere non disciolta non ha alcun effetto sul risultato.

Esecuzione della rilevazione Ferro totale (Fe in Mo) in presenza di molibdato con polvere in bustine Vario


Selezionare il metodo nel dispositivo.


Immettere **50 ml di campione** in un cilindro di miscelazione da 50 ml.

Aggiungere una bustina di polvere Vario (Fe in Mo) Rgt 1.

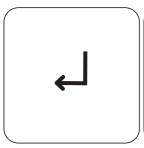
Chiudere il cilindro di miscelazione con un tappo. Far sciogliere la polvere capovolgendo.

Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.

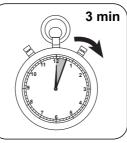
Immettere 10 ml del campione preparato nella cuvetta zero.

Chiudere la/e cuvetta/e.

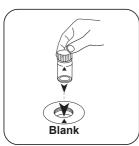
Immettere 25 ml del campione preparato in un cilindro di miscelazione da 25 ml.



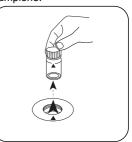
Aggiungere una bustina di polvere Vario (Fe in Mo) Rgt 2.

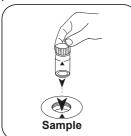


Chiudere il cilindro di miscelazione con un tappo. Far sciogliere la polvere capovolgendo.


Premere il tasto ENTER.

Attendere un tempo di reazione di 3 minuto/i.


Immettere 10 ml di campione nella cuvetta del campione.


Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la cuvetta
del campione nel vano di
misurazione. Fare attenzione al posizionamento.
Sul display compare il risul

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Fe.

Metodo chimico

TPTZ

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm	
а	-3.53705 • 10 ⁻²	-3.53705 • 10 ⁻²	
b	1.45425 • 10⁺⁰	3.12664 • 10+0	
С			
d			
е			
f			

Interferenze

Interferenze escludibili

1. Interferenza dovuta al valore del pH: se il pH del campione dopo l'aggiunta del reagente è minore di 3 o maggiore di 4, lo sviluppo della colorazione potrebbe essere ostacolato in quanto il colore ottenuto sbiadisce troppo rapidamente o si verifica un intorbidimento. Per questo motivo prima di aggiungere il reagente è necessario regolare il valore di pH nel cilindro di misurazione su un valore compreso tra 3 e 5: Immettere in gocce una quantità adatta di un acido o di una base privi di ferro, ad esempio 1 N di acido solforico o 1 N di liscivia.

Se è stata aggiunta una quantità significativa di acido o base è necessario eseguire una correzione del volume.

Riferimenti bibliografici

G. Frederic Smith Chemical Co., The Iron Reagents, 3rd ed. (1980)

Ferro LR L (A)

M225

0.03 - 2 mg/L Fe

FE

Ferrozine / acido tioglicolico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, XD 7000,	ø 24 mm	560 nm	0.03 - 2 mg/L Fe
XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Set di reagenti ferro LR	1 set	56R018990
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P	65 mL	56L013565
KS144-CH2-FC4-Tampone durezza calcica	65 mL	56L014465
KP962-Persolfato di ammonio in polvere	Polvere / 40 g	56P096240
KS63-FE6-Tioglicolato/molibdato HR RGT	30 mL	56L006330
KS63-FE6-Tioglicolato/molibdato HR RGT	65 mL	56L006365
KS61-FE5-Ferrozine/Tioglicolato	65 mL	56L006165

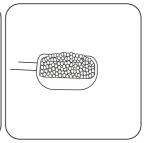
Campo di applicazione

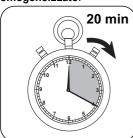
- · Acqua di raffreddamento
- · Acqua di caldaia
- · Galvanizzazione
- · Trattamento acqua non depurata

Preparazione

- 1. Se nel campione sono presenti forti complessanti, il tempo di reazione deve essere prolungato finché non sarà più visibile alcuno sviluppo di colore. I complessi di ferro molto forti tuttavia non vengono rilevati nella misurazione. In questo caso i complessanti devono essere disgregati tramite ossidazione con acido/persolfato e successivamente il campione deve essere portato a pH 6-9 tramite neutralizzazione.
- Per la rilevazione del ferro totale disciolto e sospeso è necessario cuocere il campione con acido/persolfato. Neutralizzare quindi a pH 6-9 e riempire nuovamente con acqua demineralizzata fino al volume originario.

Digestione


Il ferro totale è costituito da ferro solubile, complessato e sospeso. Prima della misurazione il campione non deve essere filtrato. Per garantire l'omogeneizzazione del campione è necessario distribuire uniforme le particelle sedimentate appena prima del prelievo del campione agitando energicamente. Per la determinazione del ferro solubile totale (compresi i composti di ferro complessi) è necessaria una filtrazione del campione. I dispositivi e i reagenti necessari per la determinazione del ferro totale non sono compresi nella fornitura standard.


Riempire un recipiente di digestione adeguato con 50 ml di campione omogeneizzato.

Aggiungere 5 ml di 1:1 acido cloridrico.

Aggiungere un cucchiaio dosatore di KP 962 (Ammonium Persulfat Powder).

Cuocere il campione per 20 minuti . Il volume del campione dovrebbe restare al di sopra dei 25 ml; se necessario, rabboccare con acqua demineralizzata.



Lasciar raffreddare il campione a temperatura ambiente.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

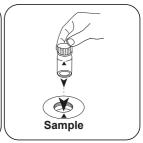
Aggiungere 1 gocce di KS135 (Phenolphthalein Substitute Indikator).

Aggiungere allo stesso campione KS 144 (Calcium Hardness Puffer) in gocce finché non si presenta una colorazione da rosa chiaro a rosso. (Attenzione: dopo l'aggiunta di ogni goccia far oscillare il campione!)

Aggiungere al campione acqua demineralizzata fino a raggiungere i 50 ml

Esecuzione della rilevazione Ferro, LR totale (A) con reagente liquido

Selezionare il metodo nel dispositivo.


Per la determinazione di **Ferro, LR totale** eseguire la **digestione** descritta. Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di acqua demineralizzata.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

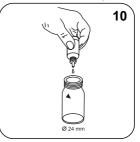
Zero

Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

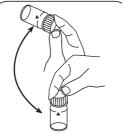
Svuotare la cuvetta.

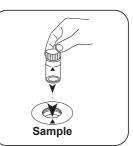
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.



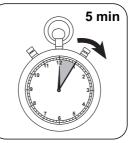
Riempire una cuvetta da 24 mm con 10 ml del campione preparato.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.


Aggiun KS61 (colat).


Aggiungere 10 gocce di KS61 (Ferrozine/ Thioglycolat).

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: Attendere un **tempo di START**). reazione di 5 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di ferro totale o quando si utilizza un campione filtrato, ferro solubile totale in mg/l.

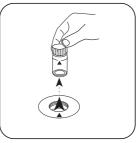
Esecuzione della rilevazione Ferro, LR (A) con reagente liquido

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Per la determinazione del ferro disciolto totale è necessario filtrare il campione prima della rilevazione (diametro pori 0,45 µm). In caso contrario verranno rilevate anche particelle di ferro e ferro sospeso.

Riempire una cuvetta da 24 mm con 10 ml del campione preparato.



Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

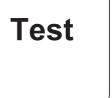
Prelevare la cuvetta dal vano di misurazione.

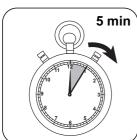
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Tenere le boccette contagonce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiun KS61 (colat).

Aggiungere 10 gocce di KS61 (Ferrozine/ Thioglycolat).


Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ferro.

Metodo chimico

Ferrozine / acido tioglicolico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.05635 • 10 ⁻²	-2.05635 • 10 ⁻²
b	9.74475 • 10 ⁻¹	2.09512 • 10+0
С		
d		
е		
f		

Interferenze

Interferenze escludibili

- Se si utilizza il KS61 (Ferrozine/tioglicolato), una concentrazione elevata di molibdato provoca un'intensa colorazione gialla. In questo caso è necessario un valore cieco della sostanza chimica:
 - · Preparare due cuvette da 24 mm pulite.
 - · Contrassegnare una cuvetta come cuvetta zero.
 - Immettere in una cuvetta da 24 mm pulita 10 ml di campione (cuvetta zero).
 - Immettere nella cuvetta 10 gocce di KS63 (tioglicolato).
 - · Chiudere la cuvetta con il coperchio e miscelarne il contenuto capovolgendola.
 - Inserire la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.
 - Premere il tasto ZERO.
 - · Prelevare la cuvetta dal vano di misurazione.
 - Immettere in una seconda cuvetta da 24 mm pulita 10 ml di campione (cuvetta campione).
 - Aggiungere 10 gocce di KS61 (Ferrozine/tioglicolato) e procedere come descritto per l'esecuzione del test.

Interferenze	da / [mg/L]
Со	8
Cu	2
Oxalat	500
CN ⁻	10
NO ₂ -	

Riferimenti bibliografici

D. F. Boltz and J. A. Howell, eds., Colorimetric Determination of Nonmetals, 2nd ed., Vol. 8, pag. 304 (1978). Carpenter, J.F. "A New Field Method for Determining the Levels of Iron Contamination in Oilfield Completion Brine", SPE International Symposium (2004)

Ferro LR L (B)

M226

0.03 - 2 mg/L Fe

Ferrozine / acido tioglicolico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640,	ø 24 mm	560 nm	0.03 - 2 mg/L Fe
XD 7000. XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Set di reagenti per ferro LR 2	1 pz.	56R023490
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P	30 mL	56L013530
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P	65 mL	56L013565
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P	500 mL	56L013597
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P - Confezione da 5	1 pz.	56L013572
KS144-CH2-FC4-Tampone durezza calcica	65 mL	56L014465
KS144-Tampone durezza calcica	65 mL	56L014472
KS144-Tampone durezza calcica	125 mL	56L014491
KP962-Persolfato di ammonio in polvere	Polvere / 40 g	56P096240

Campo di applicazione

- · Acqua di raffreddamento
- · Acqua di caldaia
- Galvanizzazione
- · Trattamento acqua non depurata

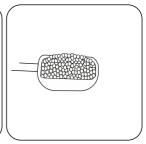
Preparazione

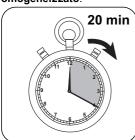
- 1. Se nel campione sono presenti forti complessanti, il tempo di reazione deve essere prolungato finché non sarà più visibile alcuno sviluppo di colore. I complessi di ferro molto forti tuttavia non vengono rilevati nella misurazione. In questo caso i complessanti devono essere disgregati tramite ossidazione con acido/persolfato e successivamente il campione deve essere portato a pH 6-9 tramite neutralizzazione.
- Per la rilevazione del ferro totale disciolto e sospeso è necessario cuocere il campione con acido/persolfato. Neutralizzare quindi a pH 6-9 e riempire nuovamente con acqua demineralizzata fino al volume originario.


Note

1. Per la misurazione del Fe²⁺ non aggiungere il reagente KS63 (tioglicolato).

Digestione

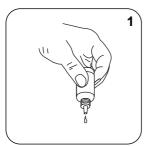

Il ferro totale è costituito da ferro solubile, complessato e sospeso. Prima della misurazione il campione non deve essere filtrato. Per garantire l'omogeneizzazione del campione è necessario distribuire uniforme le particelle sedimentate appena prima del prelievo del campione agitando energicamente. Per la determinazione del ferro solubile totale (compresi i composti di ferro complessi) è necessaria una filtrazione del campione. I dispositivi e i reagenti necessari per la determinazione del ferro totale non sono compresi nella fornitura standard.


Riempire un recipiente di digestione adeguato con 50 ml di campione omogeneizzato.

Aggiungere 5 ml di 1:1 acido cloridrico.

Aggiungere un cucchiaio dosatore di KP 962 (Ammonium Persulfat Powder).

Cuocere il campione per 20 minuti . Il volume del campione dovrebbe restare al di sopra dei 25 ml; se necessario, rabboccare con acqua demineralizzata.



Lasciar raffreddare il campione a temperatura ambiente.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 1 gocce di KS135 (Phenolphthalein Substitute Indikator).

Aggiungere allo stesso campione KS 144 (Calcium Hardness Puffer) in gocce finché non si presenta una colorazione da rosa chiaro a rosso. (Attenzione: dopo l'aggiunta di ogni goccia far oscillare il campione!)

Aggiungere al campione acqua demineralizzata fino a raggiungere i 50 ml

Esecuzione della rilevazione Ferro LR (B) con reagente liquido

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Per la determinazione del ferro disciolto totale con distinzione tra Fe^{2*} e Fe^{3*} è necessario filtrare il campione prima della rilevazione (diametro pori 0,45 µm). In caso contrario verranno rilevate anche particelle di ferro e ferro sospeso.

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Zero

Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 10 gocce di KS60 (Acetate Buffer).

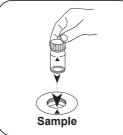
Chiudere la/e cuvetta/e.

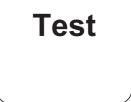
Miscelare il contenuto capovolgendo.

Aggiungere 10 gocce di KS63 (Thioglycolate) .

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere 10 gocce di KS65 (Ferrozine) .


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di $Fe^{2^{+}}/Fe^{3^{+}}$. $Fe^{3^{+}} = Fe_{2^{+}/3^{+}} - Fe^{2^{+}}$.

Esecuzione della rilevazione Ferro, LR 2 totale con reagente liquido

Selezionare il metodo nel dispositivo.

Per la determinazione di Ferro,LR totale con reagente liquido eseguire la digestione descritta.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Il ferro totale è costituito da ferro solubile, complessato e sospeso. Prima della misurazione il campione non deve essere filtrato. Per garantire l'omogeneizzazione del campione è necessario distribuire uniforme le particelle sedimentate appena prima del prelievo del campione agitando energicamente. Per la determinazione del ferro solubile totale (compresi i composti di ferro complessi) è necessaria una filtrazione del campione. I dispositivi e i reagenti necessari per la determinazione del ferro totale non sono compresi nella fornitura standard.

Riempire una cuvetta da 24 mm con 10 ml di acqua demineralizzata.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Riempire una cuvetta da 24 mm con 10 ml del campione preparato.

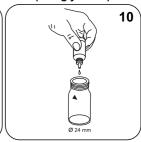
Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 10 gocce di KS60 (Acetate Buffer).



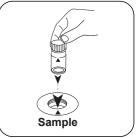
Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere 10 gocce di KS63 (Thioglycolate) .

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere 10 gocce di KS65 (Ferrozine) .

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: Attendere un **tempo di START**). reazione di 5 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di ferro totale o quando si utilizza un campione filtrato, ferro solubile totale in mg/l.

Metodo chimico

Ferrozine / acido tioglicolico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.46542 • 10 ⁻²	-2.46542 • 10 ⁻²
b	1.04803 • 10+0	2.25326 • 10+0
С		
d		
е		
f		

Interferenze

Interferenze escludibili

- Se si utilizza il KS63 (Ferrozine/tioglicolato), una concentrazione elevata di molibdato provoca un'intensa colorazione gialla. In questo caso è necessario un valore cieco della sostanza chimica:
 - · Preparare due cuvette da 24 mm pulite.
 - · Contrassegnare una cuvetta come cuvetta zero.
 - Immettere in una cuvetta da 24 mm pulita 10 ml di campione (cuvetta zero).
 - Immettere nella cuvetta 10 gocce di KS63 (tioglicolato).
 - · Chiudere la cuvetta con il coperchio e miscelarne il contenuto capovolgendola.
 - Inserire la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.
 - Premere il tasto ZERO.
 - · Prelevare la cuvetta dal vano di misurazione.
 - Immettere in una seconda cuvetta da 24 mm pulita 10 ml di campione (cuvetta campione).
 - Aggiungere 10 gocce di KS60 (Acetate Buffer) e procedere come descritto per l'esecuzione del test.

Interferenze	da / [mg/L]
Со	8
Cu	2
Oxalat	500
CN ⁻	10
NO ₂ ·	

Riferimenti bibliografici

D. F. Boltz and J. A. Howell, eds., Colorimetric Determination of Nonmetals, 2nd ed., Vol. 8, pag. 304 (1978). Carpenter, J.F. "A New Field Method for Determining the Levels of Iron Contamination in Oilfield Completion Brine", SPE International Symposium (2004)

Ferro HR L M227

0.1 - 10 mg/L Fe

Tioglicolato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640,	ø 24 mm	530 nm	0.1 - 10 mg/L Fe
XD 7000. XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

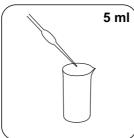
Reagenti	Unità di imbal- laggio	N. ordine
Set di reagenti per ferro HR	1 pz.	56R023590
KP962-Persolfato di ammonio in polvere	Polvere / 40 g	56P096240
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P	30 mL	56L013530
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P	65 mL	56L013565
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P	500 mL	56L013597
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P - Confezione da 5	1 pz.	56L013572
KS144-CH2-FC4-Tampone durezza calcica	65 mL	56L014465
KS144-Tampone durezza calcica	125 mL	56L014491
KS144-Tampone durezza calcica	65 mL	56L014472

Campo di applicazione

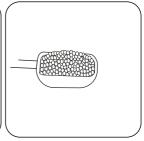
- · Acqua di raffreddamento
- · Acqua di caldaia
- · Galvanizzazione
- · Trattamento acqua non depurata

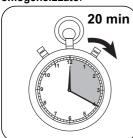
Preparazione

- 1. Se nel campione sono presenti forti complessanti, il tempo di reazione deve essere prolungato finché non sarà più visibile alcuno sviluppo di colore. I complessi di ferro molto forti tuttavia non vengono rilevati nella misurazione. In questo caso i complessanti devono essere disgregati tramite ossidazione con acido/persolfato e successivamente il campione deve essere portato a pH 6-9 tramite neutralizzazione.
- Per la rilevazione del ferro totale disciolto e sospeso è necessario cuocere il campione con acido/persolfato. Neutralizzare quindi a pH 6-9 e riempire nuovamente con acqua demineralizzata fino al volume originario.



Digestione

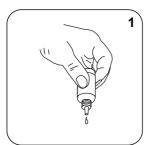

Il ferro totale è costituito da ferro solubile, complessato e sospeso. Prima della misurazione il campione non deve essere filtrato. Per garantire l'omogeneizzazione del campione è necessario distribuire uniforme le particelle sedimentate appena prima del prelievo del campione agitando energicamente. Per la determinazione del ferro solubile totale (compresi i composti di ferro complessi) è necessaria una filtrazione del campione. I dispositivi e i reagenti necessari per la determinazione del ferro totale non sono compresi nella fornitura standard.


Riempire un recipiente di digestione adeguato con 50 ml di campione omogeneizzato.

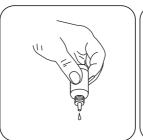
Aggiungere 5 ml di 1:1 acido cloridrico.

Aggiungere un cucchiaio dosatore di KP 962 (Ammonium Persulfat Powder).

Cuocere il campione per 20 minuti . Il volume del campione dovrebbe restare al di sopra dei 25 ml; se necessario, rabboccare con acqua demineralizzata.



Lasciar raffreddare il campione a temperatura ambiente.



Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 1 gocce di KS135 (Phenolphthalein Substitute Indikator).

Aggiungere allo stesso campione KS 144 (Calcium Hardness Puffer) in gocce finché non si presenta una colorazione da rosa chiaro a rosso. (Attenzione: dopo l'aggiunta di ogni goccia far oscillare il campione!)

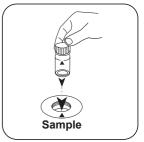
Aggiungere al campione acqua demineralizzata fino a raggiungere i 50 ml

Esecuzione della rilevazione Ferro, HR totale con reagente liquido

Selezionare il metodo nel dispositivo.

Per la determinazione di Ferro, HR totale con reagente liquido eseguire la digestione descritta.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Il ferro totale è costituito da ferro solubile, complessato e sospeso. Prima della misurazione il campione non deve essere filtrato. Per garantire l'omogeneizzazione del campione è necessario distribuire uniforme le particelle sedimentate appena prima del prelievo del campione agitando energicamente. Per la determinazione del ferro solubile totale (compresi i composti di ferro complessi) è necessaria una filtrazione del campione. I dispositivi e i reagenti necessari per la determinazione del ferro totale non sono compresi nella fornitura standard.

Riempire una cuvetta da 24 mm con 10 ml di acqua demineralizzata.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di
misurazione. Fare attenzione al posizionamento.

Zero

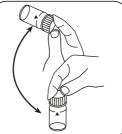
Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Riempire una cuvetta da 24 mm con 10 ml del campione preparato.

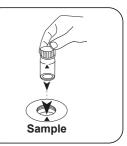

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 10 gocce di KS63 (Thioglycolate) .

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Aggiungere 10 gocce di KS160 (Total Hardness Buffer).



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

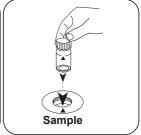
Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 15 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di ferro totale o quando si utilizza un campione filtrato, ferro solubile totale in mg/l.

Esecuzione della rilevazione Ferro HR con reagente liquido

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Per la determinazione del ferro disciolto totale con distinzione tra Fe²+ e Fe³+ è necessario filtrare il campione prima della rilevazione (diametro pori 0,45 μm). In caso contrario verranno rilevate anche particelle di ferro e ferro sospeso.

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

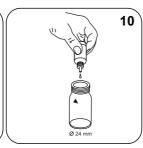
Zero

Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

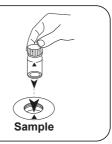
Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.


Aggiungere 10 gocce di KS63 (Thioglycolate) .

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Aggiungere 10 gocce di KS160 (Total Hardness Buffer).



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 15 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ferro.

Metodo chimico

Tioglicolato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-1.53212 • 10 ⁻¹	-1.53212 • 10 ⁻¹
b	7.33471 • 10 ⁺⁰	1.57696 • 10+1
С		
d		
е		
f		

Riferimenti bibliografici

E. Lyons (1927), Thioglycolic Acid As A Colour Test For Iron, J. Am. Chem. Soc., 49 (8), pagg. 1916-1920

M232

Piombo 10

0.1 - 5 mg/L Pb

4-(2-piridilazo-)-resorcinolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 10 mm	520 nm	0.1 - 5 mg/L Pb

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test a reagenti Piombo Spectroquant	25 pz.	420753

Campo di applicazione

- · Trattamento acqua di scarico
- Galvanizzazione

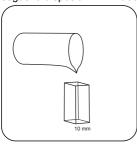
Preparazione

- 1. Prima di eseguire il test leggere le istruzioni originali e le avvertenze di sicurezza accluse al kit di test (gli MSDS sono disponibili sul sito www.merckmillipore.com).
- Con la procedura descritta vengono rilevati soltanto ioni Pb²⁺. Per rilevare piombo colloidale, non disciolto e in legami complessi è necessaria una digestione.

Note

- 1. Questo metodo è un metodo MERCK.
- 2. Spectroquant® è un marchio protetto dell'azienda MERCK KGaA.
- Durante l'intera procedura si dovrebbero adottare misure di sicurezza adeguate e una buona tecnica di laboratorio.
- 4. Dosare il reagente e il campione con una pipetta tarata adeguata (classe A).

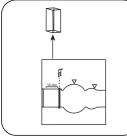
Modificando la lunghezza della cuvetta è possibile estendere il range di misura:


- Cuvetta da 10 mm: 0,1 mg/L 5 mg/L, risoluzione: 0,01
- Cuvetta da 20 mm: 0,05 mg/L 2,5 mg/L, risoluzione: 0,001
- Cuvetta da 50 mm: 0,02 mg/L 1 mg/L, risoluzione: 0,001

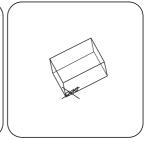
Esecuzione della rilevazione Piombo

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

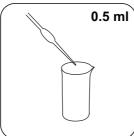

Riempire una cuvetta da 10 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

Svuotare la cuvetta.



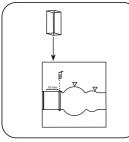
Asciugare bene la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Attenzione! Il reagente Pb-1 contiene cianuro di potassio! Attenersi scrupolosamente alla sequenza di dosaggio!

Immettere 0.5 ml di Reagenz Pb-1 in un recipiente per campioni adeguato.

Aggiungere 0.5 ml di Reagenz Pb-2.



Aggiungere 8 ml di campione.

Miscelare il contenuto capovolgendo.

Riempire una cuvetta da 10 mm con il campione.

Test

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: START).

Sul display compare il risultato in mg/l di Piombo.

Metodo chimico

4-(2-piridilazo-)-resorcinolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 10 mm
а	6.12438 • 10 ⁻²
b	6.16893 • 10 ⁺⁰
С	
d	
е	
f	

Interferenze

Interferenze	da / [mg/L]
Ag	50
Al	500
Ca	250
Cd ²⁺	25
Cr ³⁺	25
Cr ₂ O ₇ ²⁻	10
Cu ²⁺	100
Fe³+	2
Hg²+	50
Mg	250
Mn ²⁺	0,1
NH ₄ ⁺	1000
Ni ²⁺	100
NO ₂ ·	1000
PO ₄ 3-	50
Zn	25

Interferenze	da / [mg/L]
EDTA	0,25
Tensioattivi	500
Na-Ac	0,5
NaCl	0,5
NaNO ₃	0.125
Na ₂ SO ₄	0.375
Durezza totale	30° dH

Riferimenti bibliografici

Shvoeva, O.P., Dedkova, V.P. & Savvin, S.B. Journal of Analytical Chemistry (2001) 56: 1080

^dSpectroquant[®] è un marchio registrato della Ditta MERCK KGaA

Piombo (A) TT

M234

0.1 - 5 mg/L Pb

4-(2-piridilazo-)-resorcinolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	515 nm	0.1 - 5 mg/L Pb

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test Piombo in cuvetta Spectroquant	25 pz.	420754

Campo di applicazione

- · Trattamento acqua di scarico
- Galvanizzazione

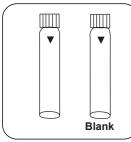
Preparazione

- 1. Prima di eseguire il test leggere le istruzioni originali e le avvertenze di sicurezza accluse al kit di test (gli MSDS sono disponibili sul sito www.merckmillipore.com).
- Con la procedura descritta vengono rilevati soltanto ioni Pb²⁺. Per rilevare piombo colloidale, non disciolto e in legami complessi è necessaria una digestione.
- 3. Il valore di pH del campione deve essere compreso tra 3 e 6.

Note

- 1. Questo metodo è un metodo MERCK.
- 2. Spectroquant® è un marchio protetto dell'azienda MERCK KGaA.
- 3. Durante l'intera procedura si dovrebbero adottare misure di sicurezza adeguate e una buona tecnica di laboratorio.
- 4. Dosare il volume di campione con una pipetta tarata da 5 ml (classe A).
- Poiché la reazione dipende dalla temperatura, la temperatura del campione deve essere compresa tra 10 °C e 40 °C.
- 6. I reagenti devono essere conservati a una temperatura compresa tra +15 °C e +25 °C.

Esecuzione della rilevazione Piombo (Pb2+) in acqua da dolce a medio-dura

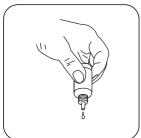

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Con i seguenti dispositivi, per questo metodo non è necessario eseguire una misurazione ZFRO:

Procedura A

Utilizzare la procedura A per la determinazione del piombo in acque da dolci a mediodure con tenore di Ca2+ inferiore a 70 mg/l (circa 10°dH).

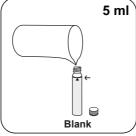

Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Attenzione! Le cuvette di reazione contengono cianuro di potassio! Attenersi scrupolosamente alla seguenza di dosaggio!

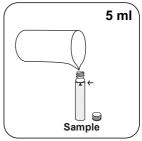
Aprire due cuvette per reagenti.

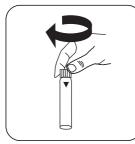
Tenere le boccette contagocce in posizione verticale e introdurre, premendo in ogni cuvetta. lentamente, gocce della stessa dimensione nella cuvetta.

Immettere 5 qocce di soluzione Reagenz Pb-1K

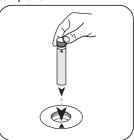


Chiudere la/e cuvetta/e.



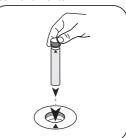

Miscelare il contenuto capovolgendo.

Immettere 5 ml di acqua demineralizzata nella cuvetta zero.


Immettere 5 ml di campione nella cuvetta del campione.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Piombo, in acque di durezza da morbida a media (procedura A).

Metodo chimico

4-(2-piridilazo-)-resorcinolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm
а	-3.23149 • 10 ⁻²
b	4.63126 • 10+0
С	
d	
е	
f	

Interferenze

Interferenze	da / [mg/L]
Ag	100
Al	1000
Ca	70
Cd ²⁺	100
Cr ³⁺	10
Cr ₂ O ₇ 2-	50
Cu ²⁺	100
F ⁻	1000
Fe ³⁺	2
Hg ²⁺	50
Mg	100
Mn ²⁺	0,1
NH ₄ ⁺	1000
Ni ²⁺	100
NO ₂ ·	100
PO ₄ 3-	1000

Interferenze	da / [mg/L]
Zn	100
EDTA	0,1
Tensioattivi	1000
Na-Ac	0,2
NaNO ₃	0.4
Na ₂ SO ₄	0.02

Riferimenti bibliografici

Shvoeva, O.P., Dedkova, V.P. & Savvin, S.B. Journal of Analytical Chemistry (2001) 56: 1080

d'Spectroquant®è un marchio registrato della Ditta MERCK KGaA

Piombo (B) TT

M235

0.1 - 5 mg/L Pb

4-(2-piridilazo-)-resorcinolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	515 nm	0.1 - 5 mg/L Pb

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test Piombo in cuvetta Spectroquant	25 pz.	420754

Campo di applicazione

- · Trattamento acqua di scarico
- Galvanizzazione

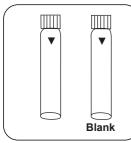
Preparazione

- 1. Prima di eseguire il test leggere le istruzioni originali e le avvertenze di sicurezza accluse al kit di test (gli MSDS sono disponibili sul sito www.merckmillipore.com).
- Con la procedura descritta vengono rilevati soltanto ioni Pb²⁺. Per rilevare piombo colloidale, non disciolto e in legami complessi è necessaria una digestione.
- 3. Il valore di pH del campione deve essere compreso tra 3 e 6.

Note

- 1. Questo metodo è un metodo MERCK.
- 2. Spectroquant® è un marchio protetto dell'azienda MERCK KGaA.
- 3. Durante l'intera procedura si dovrebbero adottare misure di sicurezza adeguate e una buona tecnica di laboratorio.
- 4. Dosare il volume di campione con una pipetta tarata da 5 ml (classe A).
- Poiché la reazione dipende dalla temperatura, la temperatura del campione deve essere compresa tra 10 °C e 40 °C.
- 6. I reagenti devono essere conservati a una temperatura compresa tra +15 °C e +25 °C.

Esecuzione della rilevazione Piombo (Pb2+) in acqua da dura a molto dura


Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Con i seguenti dispositivi, per questo metodo non è necessario eseguire una misurazione ZFRO:

Procedura B

Utilizzare la procedura B per la determinazione del piombo in acque da dure a molto dure con tenore di Ca2+ da 70 mg/l a 500 mg/l (da 10°dH a 70°dH circa).

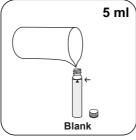
Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Attenzione! Le cuvette di reazione contengono cianuro di potassio! Attenersi scrupolosamente alla seguenza di dosaggio!

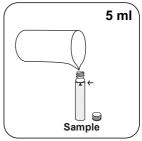

Aprire due cuvette per reagenti.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo in ogni cuvetta. lentamente, gocce della stessa dimensione nella cuvetta.

Immettere 5 qocce di soluzione Reagenz Pb-1K

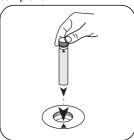


Chiudere la/e cuvetta/e.



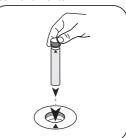
Miscelare il contenuto capovolgendo.

Immettere 5 ml di acqua demineralizzata nella cuvetta zero.


Immettere 5 ml di campione nella cuvetta del campione.

Chiudere la/e cuvetta/e.

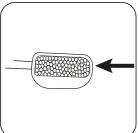
Miscelare il contenuto capovolgendo.


Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.


Prelevare la **cuvetta** dal vano di misurazione.

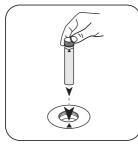
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

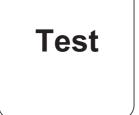

Test

Premere il tasto **TEST** (XD: **START**).

Prelevare la **cuvetta** dal vano di misurazione.

Aprire la cuvetta del campione.


Chiudaya la/a su



Aggiungere un micro cucchiaio raso di Reagent Pb-2K.

Chiudere la/e cuvetta/e.

Far sciogliere la polvere capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Piombo, in acque da dure a molto dure (procedura B).

Tenore di piombo in mg/l = valore di misura A - valore di misura B

Metodo chimico

4-(2-piridilazo-)-resorcinolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm
а	-3.23149 • 10 ⁻²
b	4.63126 • 10 ⁺⁰
С	
d	
е	
f	

Interferenze

da / [mg/L]
100
1000
500
100
10
50
100
1000
2
50
250
0,1
1000
100
100
1000

Interferenze	da / [mg/L]
Zn	100
EDTA	0,1
Tensioattivi	1000
Na-Ac	0,2
NaNO ₃	0.4
Na ₂ SO ₄	0.02

Riferimenti bibliografici

Shvoeva, O.P., Dedkova, V.P. & Savvin, S.B. Journal of Analytical Chemistry (2001) 56: 1080

^dSpectroquant[®] è un marchio registrato della Ditta MERCK KGaA

Manganese T

M240

0.2 - 4 mg/L Mn

Mn

Formaldossima

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	530 nm	0.2 - 4 mg/L Mn
SpectroDirect, XD 7000, XD 7500	ø 24 mm	450 nm	0.2 - 4 mg/L Mn

Materiale

Materiale richiesto (in parte facoltativo):

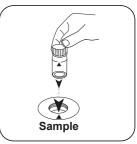
Reagenti	Unità di imbal- laggio	N. ordine
Manganese LR 1	Pastiglia / 100	516080BT
Manganese LR 1	Pastiglia / 250	516081BT
Manganese LR 2	Pastiglia / 100	516090BT
Manganese LR 2	Pastiglia / 250	516091BT
Set Manganese LR 1/LR 2#	ciascuna 100	517621BT
Set Manganese LR 1/LR 2#	ciascuna 250	517622BT

Campo di applicazione

- Galvanizzazione
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Esecuzione della rilevazione Manganese con pastiglia

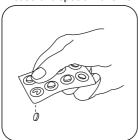
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

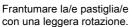


Premere il tasto ZERO.

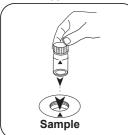
Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

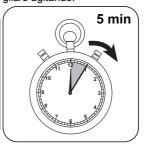
Aggiungere una pastiglia MANGANESE LR 1.


Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia MANGANESE LR 2.



Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 5 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Manganese.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Mn	1
mg/l	MnO₄	2.17
mg/l	KMnO	2.88

Metodo chimico

Formaldossima

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-1.42044 • 10 ⁻¹	-1.42044 • 10 ⁻¹
b	2.41852 • 10+0	5.19982 • 10 ⁺⁰
С		
d		
е		
f		

Riferimenti bibliografici

Gottlieb, A. & Hecht, F. Mikrochim Acta (1950) 35: 337

Secondo

DIN 38406-E2

i) #Bacchetta compresa

Manganese LR PP	M242
0.01 - 0.7 mg/L M n	Mn1
PAN	

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	560 nm	0.01 - 0.7 mg/L Mn
SpectroDirect, XD 7000, XD 7500	ø 24 mm	558 nm	0.01 - 0.7 mg/L Mn

Materiale

Materiale richiesto (in parte facoltativo):

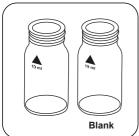
Reagenti	Unità di imbal- laggio	N. ordine
VARIO Manganese Reagent Set LR 10 ml	1 pz.	535090
VARIO Rochelle soluzione salina, 30 ml ^{h)}	30 mL	530640

Campo di applicazione

- · Galvanizzazione
- · Trattamento acqua potabile
- Trattamento acqua non depurata

Preparazione

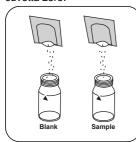
 Prima dell'analisi sciacquare tutti i vetri di laboratorio con una soluzione di acido cloridrico diluita e successivamente con acqua demineralizzata.

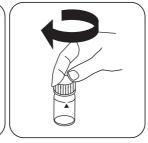

Note

- Se un campione ha una durezza di più di 300 mg/L di CaCO₃, dopo l'aggiunta della polvere Vario Ascorbic Acid si aggiungono 10 gocce di soluzione salina Rochelle.
- In alcuni campioni dopo l'aggiunta della soluzione reagente "Alkaline-Cyanide" può formarsi una soluzione velata o torbida. Dopo l'aggiunta della soluzione di indicatore PAN la torbidità dovrebbe scomparire.
- 3. Se il campione contiene grandi quantità di ferro (a partire da 5 mg/L) è necessario osservare un tempo di reazione di 10 minuti.

Esecuzione della rilevazione Manganese LR con polvere in bustine Vario

Selezionare il metodo nel dispositivo.

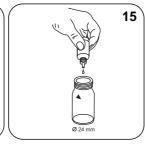

Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.


Immettere 10 ml di acqua demineralizzata nella cuvetta zero.

Immettere 10 ml di campione nella cuvetta del campione.


Immettere una bustina di polvere Vario Ascorbic Acid in ogni cuvetta.

Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

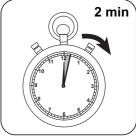
Aggiunger di Alkaline Reagenz.

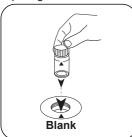
Aggiungere 15 gocce di Alkaline-Cyanide Reagenz.

Chiudere la/e cuvetta/e.

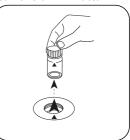
Miscelare il contenuto capovolgendo.

Aggiungere 21 gocce di PAN Indikator.

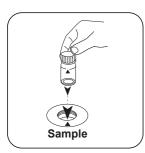

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Premere il tasto **ENTER**.


Attendere un tempo di reazione di 2 minuto/i.

Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Sul display compare il risultato in mg/l di Manganese.

Premere il tasto **TEST** (XD: **START**).

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Mn	1
mg/l	MnO₄	2.17
mg/l	KMnO₄	2.88

Metodo chimico

PAN

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-3.05268 • 10 ⁻²	-3.05268 • 10 ⁻²
b	7.28484 • 10-1	1.56624 • 10+0
С		
d		
е		
f		

Riferimenti bibliografici

Goto, K., et al., Talanta, 24, 652-3 (1977)

^{h)}Reagente ausiliario, è utilizzato anche per campioni con durezza superiore a 300 mg / I CaCO₃

Manganese HR PP

M243

0.1 - 18 mg/L Mn

M_n2

Ossidazione con periodato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	530 nm	0.1 - 18 mg/L Mn
SpectroDirect, XD 7000, XD 7500	ø 24 mm	525 nm	0.1 - 18 mg/L Mn

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Manganese HR, set high range F10	1 set	535100

Campo di applicazione

- · Galvanizzazione
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

 I campioni di acqua fortemente tamponati o i campioni di acqua con valori di pH estremi possono superare il potere tamponante dei reagenti e rendono necessaria una regolazione del valore del pH.

I campioni acidificati per la conservazione devono essere regolati prima dell'analisi su un valore di pH compreso tra 4 e 5 con 5 mol/l (5N) di biossido di sodio. Non superare il valore di pH 5 per evitare precipitazioni di manganese.

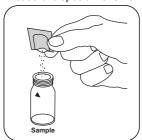
Esecuzione della rilevazione Manganese HR con polvere in **bustine Vario**

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

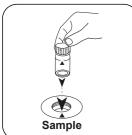

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

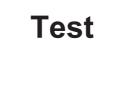
Premere il tasto ZERO.

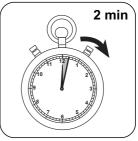
Prelevare la cuvetta dal vano di misurazione.

Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Vario Manganese Citrate Buffer F10.

Miscelare il contenuto agitando.


Aggiungere una bustina di polvere Vario Sodium Periodate F10.


Chiudere la/e cuvetta/e.


Miscelare il contenuto agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Manganese.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Mn	1
mg/l	MnO₄	2.17
mg/l	KMnO₄	2.88

Metodo chimico

Ossidazione con periodato

Appendice

Interferenze

Interferenze	da / [mg/L]
Ca	700
Cl ⁻	70000
Fe	5
Mg	100000

Validazione metodo

0.16 mg/L
0.49 mg/L
18 mg/L
13.02 mg/L / Abs
0.28 mg/L
0.12 mg/L
1.29 %

Secondo

40 CFR 136 (US EPA approved HACH)

Manganese L

M245

0.05 - 5 mg/L Mn

Formaldossima

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640	ø 24 mm	430 nm	0.05 - 5 mg/L Mn
XD 7000, XD 7500	ø 24 mm	450 nm	0.05 - 5 mg/L Mn

Materiale

Materiale richiesto (in parte facoltativo):

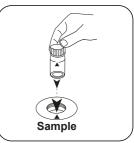
Reagenti	Unità di imbal- laggio	N. ordine
Set di reagenti per manganese L	1 pz.	56R024055

Campo di applicazione

- · Galvanizzazione
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Esecuzione della rilevazione Manganese con reagente liquido

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo Reagent A). lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 10 gocce di KS265 (Manganese

Chiudere la/e cuvetta/e.

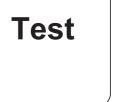
Miscelare il contenuto capovolgendo.

Aggiungere 10 gocce di KS266 (Manganese Reagent B).

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Aggiungere 10 gocce di KS304 (Manganese Reagent C).


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 3 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Manganese.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Mn	1
mg/l	MnO ₄	2.17
mg/l	KMnO₄	2.88

Metodo chimico

Formaldossima

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-6.20417 • 10 ⁻²	-5.24512 • 10 ⁻²
b	2.8192 • 10⁺⁰	6.04027 • 10 ⁺⁰
С		
d		
е		
f		

Interferenze

Interferenze	da / [mg/L]
Са	500
Na	500
Ni	0,5
Fe	5
Cr	5

Validazione metodo

Limite di rilevabilità	0.01 mg/L
Limite di quantificazione	0.04 mg/L
Estremità campo di misura	5 mg/L
Sensibilità	2.8 mg/L / Abs
Intervallo di confidenza	0.03 mg/L
Deviazione standard della procedura	0.01 mg/L
Coefficiente di variazione della procedura	0.46 %

Riferimenti bibliografici

Gottlieb, A. & Hecht, F. Mikrochim Acta (1950) 35: 337

Secondo

DIN 38406-E2

Molibdato T

M250

1 - 50 mg/L MoO₄

Mo3

Tioglicolato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	430 nm	1 - 50 mg/L MoO ₄
XD 7000, XD 7500	ø 24 mm	366 nm	1 - 50 mg/L MoO₄
MD 100	ø 24 mm	430 nm	0.6 - 50 mg/L MoO ₄
SpectroDirect	ø 24 mm	366 nm	1 - 30 mg/L MoO₄

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Molibdato HR No. 1	Pastiglia / 100	513060BT
Molibdato HR No. 1	Pastiglia / 250	513061BT
Molibdato HR No. 2	Pastiglia / 100	513070BT
Molibdato HR No. 2	Pastiglia / 250	513071BT
Set Molibdato No. 1/no. 2#	ciascuna 100	517631BT
Set Molibdato No. 1/no. 2#	ciascuna 250	517632BT

Campo di applicazione

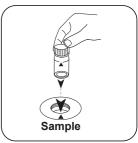
- · Acqua di caldaia
- · Acqua di raffreddamento

Note

1. Attenersi scrupolosamente all'ordine con cui aggiungere le pastiglie.

Esecuzione della rilevazione Molibdato HR con pastiglia

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

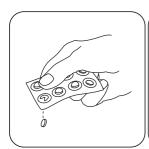
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta.

Immettere 20 ml di campione in un misurino da 100 ml.



Aggiungere una pastiglia MOLYBDATE HR No. 1.

Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia MOLYBDATE HR No. 2.

Frantumare la/e pastiglia/e con una leggera rotazione.

Far sciogliere la/e pastiglia/e mescolando con una barretta di agitazione pulita.

Sciacquare internamente la cuvetta con il campione preparato.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Molibdato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	MoO_4	1
mg/l	Мо	0.6
mg/l	Na₂MoO₄	1.29

Metodo chimico

Tioglicolato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-1.30232 • 10 ⁺⁰	-1.30232 • 10 ⁺⁰
b	1.7691 • 10+1	3.80356 • 10+1
С		
d		
е		
f		

Interferenze

Interferenze escludibili

- L'interferenza da parte di niobio, tantalio, titanio e zirconio può essere mascherata con acido citrico.
- 2. L'interferenza da parte del vanadio(V) viene mascherata con fluoruro di potassio.
- Nelle condizioni di reazione (pH 3,8 3,9) il ferro non reagisce. Anche gli altri metalli, nelle normali concentrazioni presenti nell'acqua di caldaia, non producono interferenze significative.

Riferimenti bibliografici

Photometrische Analyse, Lange/Vjedelek, Verlag Chemie 1980

ⁱ⁾ *Bacchetta compresa

Molibdato LR PP 0.03 - 3 mg/L Mo M251

Mo₁

Complesso Ternario

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect, SpectroDirect, XD 7000, XD 7500	ø 24 mm	610 nm	0.03 - 3 mg/L Mo

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Molibdeno LR, Set	1 pz.	535450
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Cilindro di miscelazione con tappo accessorio necessario per la determinazione del molibdeno LR con MD 100 (276140)	1 pz.	19802650

Campo di applicazione

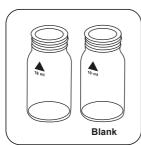
- · Acqua di caldaia
- · Acqua di raffreddamento

Preparazione

- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 3 e 5 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).
- Per evitare errori dovuti a depositi, prima dell'analisi sciacquare i dispositivi in vetro con una soluzione di acido cloridrico (al 20% circa) e successivamente con acqua demineralizzata.

Esecuzione della rilevazione Molibdato LR con polvere in bustine Vario

Selezionare il metodo nel dispositivo.


Immettere **20 ml di campione** in un cilindro di miscelazione da 25 ml.

Aggiungere una bustina di polvere Vario Molybdenum 1 LR F20.

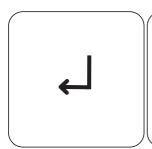
Chiudere il cilindro di miscelazione con un tappo. Far sciogliere la polvere agitando.

Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.

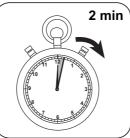
Immettere 10 ml di campione in ogni cuvetta.

Chiudere bene la **cuvetta zero**.

Introdurre 0.5 ml di soluzione Molybdenum 2 LR nella cuvetta del campione.



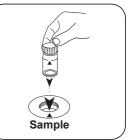
Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo.

Premere il tasto ENTER.

Attendere un tempo di reazione di 2 minuto/i.



Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto ZERO.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Molibdato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	MoO_4	1
mg/l	Мо	0.6
mg/l	Na₃MoO₄	1.29

Metodo chimico

Complesso Ternario

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	5.09465 • 10 ⁻²	5.09465 • 10 ⁻²
b	3.34565 • 10⁺0	7.19315 • 10 ⁺⁰
С	4.35719 • 10 ⁻¹	2.01411 • 10+0
d		
е		
f		

Interferenze

Interferenze	da / [mg/L]	Influenza
Al	50	
Cr	1000	
Fe	50	
Ni	50	
NO ₂	in tutte le quan- tità	
Cu	10	Porta a letture più elevate con un tempo di risposta superiore a 5 minuti

Riferimenti bibliografici

Analytical Chemistry, 25(9) 1363 (1953)

Molibdato HR PP

M252

0.3 - 40 mg/L Mo

MO₂

Acido tioglicolico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	430 nm	0.3 - 40 mg/L Mo
SpectroDirect, XD 7000, XD 7500	ø 24 mm	420 nm	0.3 - 40 mg/L Mo

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Molibdeno HR, set F10	1 set	535300

Campo di applicazione

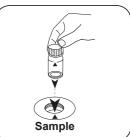
- · Acqua di caldaia
- · Acqua di raffreddamento

Preparazione

- 1. Prima dell'analisi filtrare i campioni di acqua torbidi con un filtro a pieghe.
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere regolati prima dell'analisi su un pH di 7 circa con 1 mol/l di acido nitrico o 1 mol/l di liscivia.

Esecuzione della rilevazione Molibdato HR con polvere in bustine Vario

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Aggiungere una bustina di polvere Vario Molybdenum HR 1 F10 .

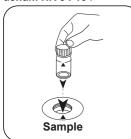
Chiudere la/e cuvetta/e.

Far sciogliere la polvere capovolgendo.

Aggiungere una bustina di polvere Vario Molybdenum HR 2 F10.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere una bustina di polvere Vario Molybdenum HR 3 F10.

Chiudere la/e cuvetta/e.


Far sciogliere la polvere capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 5 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Molibdato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	MoO_4	1
mg/l	Мо	0.6
mg/l	Na ₂ MoO ₄	1.29

Metodo chimico

Acido tioglicolico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-1.654•10 ⁻²	-1.654•10 ⁻²
b	2.49983•10*1	5.37464•10*1
С		
d		
е		
f		

Interferenze

Interferenze permanenti

 A partire da una concentrazione di 10 mg/L di Cu, oltrepassando il tempo di reazione di 5 minuti indicato si ottengono valori di misura troppo elevati. È quindi particolarmente importante eseguire il test rapidamente.

Interferenze	da / [mg/L]
Al	50
Cr	1000
Fe	50
Ni	50
NO ₂ ·	in tutte le quan- tità

Validazione metodo

Limite di rilevabilità	0.16 mg/L
Limite di quantificazione	0.47 mg/L
Estremità campo di misura	40 mg/L
Sensibilità	25.04 mg/L / Abs
Intervallo di confidenza	0.712 mg/L
Deviazione standard della procedura	0.294 mg/L
Coefficiente di variazione della procedura	1.46 %

Riferimenti bibliografici

Analytical Chemistry, 25(9) 1363 (1953)

Molibdato HR L

M254

1 - 100 mg/L MoO₄

Mo2

Tioglicolato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, XD 7000, XD 7500	ø 24 mm	430 nm	1 - 100 mg/L MoO ₄

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
KS63-FE6-Tioglicolato/molibdato HR RGT	65 mL	56L006365

Campo di applicazione

- · Acqua di caldaia
- · Acqua di raffreddamento

Prelievo del campione

 Il test deve essere eseguito subito dopo il prelievo del campione. Il molibdato si deposita sulle pareti del recipiente di campionamento provocando risultati di misura troppo bassi.

Esecuzione della rilevazione Molibdato HR con reagente liquido

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

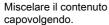
Chiudere la/e cuvetta/e.

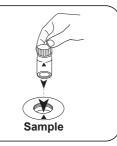
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.


Aggiungere 10 gocce di KS63 (Thyoglycolate) .



Chiudere la/e cuvetta/e.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Molibdato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	MoO_4	1
mg/l	Мо	0.6
mg/l	Na₂MoO₄	1.29

Metodo chimico

Tioglicolato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	2.04522 • 10-1	2.04522 • 10-1
b	5.4588 • 10 ⁺¹	1.17364 • 10+2
С		
d		
е		
f		

Interferenze

Interferenze escludibili

- L'interferenza da parte di niobio, tantalio, titanio e zirconio può essere mascherata con acido citrico.
- 2. L'interferenza da parte del vanadio(V) viene mascherata con fluoruro di potassio.

Riferimenti bibliografici

Photometrische Analyse, Lange/Vjedelek, Verlag Chemie 1980

M255

Nichel 50 L

0.02 - 1 mg/L Ni

Dimetilgliossima

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	443 nm	0.02 - 1 mg/L Ni

Materiale

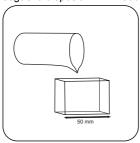
Materiale richiesto (in parte facoltativo):

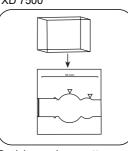
Reagenti	Unità di imbal- laggio	N. ordine
Test a reagenti al nichel	1 pz.	2419033
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Cucchiaio dosatore n. 8. nero	1 pz.	424513

Campo di applicazione

- Galvanizzazione
- · Trattamento acqua non depurata
- · Trattamento acqua di scarico

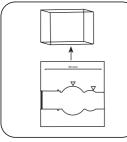
Preparazione


- Nell'esecuzione della rilevazione, il campione e i reagenti devono essere possibilmente a temperatura ambiente.
- 2. Il valore di pH del campione deve essere compreso tra 3 e 10.

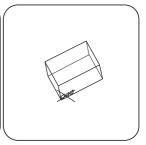

Esecuzione della rilevazione Nichel con test reagenti

Selezionare il metodo nel dispositivo.

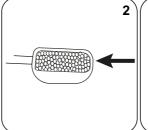
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

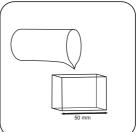
Prelevare la **cuvetta** dal vano di misurazione.


Svuotare la cuvetta.

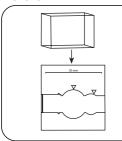
Asciugare bene la cuvetta.

Riempire un recipiente per campioni adeguato con **10 ml di campione**.

Aggiungere 2 cucchiai dosatori rasi di No. 8 (nero) Nickel-51.



Miscelare il contenuto capovolgendo.



Aggiungere 0.2 ml di Nickel-52.

Miscelare il contenuto capovolgendo.

Riempire una cuvetta da 50 mm con il campione.

Test

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 3 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Nichel.

Metodo chimico

Dimetilgliossima

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 50 mm
а	-1.35208 • 10 ⁻²
b	9.07687 • 10 ⁻¹
С	
d	
е	
f	

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwedt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

Nichel L M256

0.2 - 7 mg/L Ni

Dimetilgliossima

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 24 mm	443 nm	0.2 - 7 mg/L Ni
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	430 nm	0.2 - 7 mg/L Ni

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test a reagenti al nichel	1 pz.	2419033

Campo di applicazione

- Galvanizzazione
- · Trattamento acqua non depurata
- · Trattamento acqua di scarico

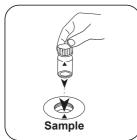
Preparazione

- Nell'esecuzione della rilevazione, il campione e i reagenti devono essere possibilmente a temperatura ambiente.
- 2. Il valore di pH del campione deve essere compreso tra 3 e 10.

Esecuzione della rilevazione Nichel con test reagenti

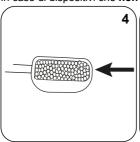
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Immettere 3 ml di campione nella cuvetta.

Riempire una cuvetta da 24 mm con **7 ml di acqua demineralizzata**.

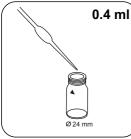
Chiudere la/e cuvetta/e.


Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **ZERO**.

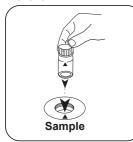
Prelevare la cuvetta dal vano di misurazione.

Aggiungere 4 cucchiai dosatori rasi di No. 8 (nero) Nickel-51.



Chiudere la/e cuvetta/e.

Miscelare il contenuto agitando.


Aggiungere 0.4 ml di Nickel-52.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 3 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Nichel.

Metodo chimico

Dimetilgliossima

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-1.53212 • 10 ⁻¹	-1.53212 • 10 ⁻¹
b	7.07103 • 10+0	1.52027 • 10 ⁺¹
С		
d		
е		
f		

Interferenze

Interferenze escludibili

 In presenza di grandi quantità di questi metalli è necessario isolare il nichel prima della rilevazione. L'isolamento viene eseguito con una soluzione di dimetilgliossima in cloroformio.

Nelle quantità biologicamente comuni, Al, Co, Cu, Fe, Mn, Zn e fosfati non hanno effetti avversi. Nella maggior parte dei casi i campioni biologici vengono prima mineralizzati con una miscela di acido solforico e acido nitrico.

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwedt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

Nitrato T

M260

0.08 - 1 mg/L N

Riduzione di zinco / NED

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura	
, MD 600, MD 610, MD 640,	ø 24 mm	530 nm	0.08 - 1 mg/L N	
Test Kit. XD 7000. XD 7500				

Materiale

Materiale richiesto (in parte facoltativo):

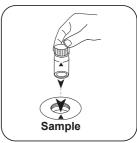
Reagenti	Unità di imbal- laggio	N. ordine
Test dei nitrati	Pastiglia / 100	502810
Nitriti LR	Pastiglia / 100	512310BT
Nitriti LR	Pastiglia / 250	512311BT
Test nitrati in polvere	Polvere / 15 g	465230
Provette NITRATE	1 pz.	366220

Campo di applicazione

- Trattamento acqua di scarico
- Trattamento acqua potabile
- Trattamento acqua non depurata

Esecuzione della rilevazione Nitrato con pastiglia e polvere

Selezionare il metodo nel dispositivo.

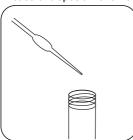

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

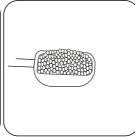
Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.



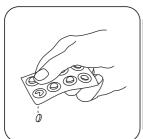
Prelevare la cuvetta dal vano di misurazione.



Svuotare la cuvetta.

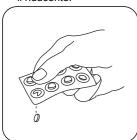
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Riempire un tubo Nitratest con **20 ml di campione**.



Aggiungere un micro cucchiaio di polvere NITRATE TEST.

Chiudere il tubo di reazione con il coperchio e miscelarne il contenuto agitando vigorosamente per 1 minuto.



Aggiungere una pastiglia NITRATE TEST.

Chiudere il tubo di reazione con il coperchio e miscelarne il contenuto agitando vigorosamente per 1 minuto.

- Inserire il tubicino di reazione in posizione verticale. Attendere che il riducente si stabilizzi
- Successivamente capovolgere il tubo di reazione da tre a quattro volte.
- · Lasciar riposare il tubo di reazione per 2 minuti.
- Aprire il tubo di reazione e rimuovere i residui di riducente con un panno pulito.
- Decantare 10 ml di questo campione in una cuvetta da 24 mm senza trasferire il riducente

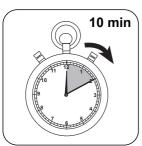
© 24 mm

Aggiungere una pastiglia NITRITE LR.

Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 10 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Nitrato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NO ₃	4.4268

Metodo chimico

Riduzione di zinco / NED

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-9.38065 • 10 ⁻³	-9.38065 • 10 ⁻³
b	3.20151 • 10 ⁻¹	6.88325 • 10 ⁻¹
С	2.5446 • 10 ⁻³	1.17624 • 10 ⁻²
d		
е		
f		

Interferenze

Interferenze permanenti

- 1. Antimonio(III), ferro(III), piombo, mercurio(I), argento, cloroplatinato, metavanadato e bismuto provocano precipitazioni.
- In presenza di rame(II) si ottengono valori di misura più piccoli, in quanto il rame accelera la decomposizione dei sali di diazonio.

Interferenze escludibili

- Se il campione di acqua originale contiene nitrito si ottengono valori di azoto nitrico troppo elevati. Per correggere tali valori si rileva il tenore di azoto nitrico con il metodo 270 e lo si sottrae dal risultato della misurazione dell'azoto nitrico. Il valore così calcolato rappresenta il tenore effettivo di azoto nitrico nel campione di acqua da esaminare.
- 2. Con concentrazioni di azoto nitrico maggiori di 1 mg/L, dopo un tempo di reazione di 10 minuti si ottiene una misurazione errata (in questo caso la colorazione va verso i toni dell'albicocca e non verso il rosa-rosso come altrimenti accadrebbe). Diluendo il campione di acqua è possibile estendere il range di misura. Il risultato dell'analisi dovrà quindi essere moltiplicato per il fattore di diluizione.

Derivato di

ASTM D 3867-09 APHA 4500 NO3- E-2000 US EPA 353.3 (1983)

Nitrato TT M265

1 - 30 mg/L N

Acido cromotropico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	430 nm	1 - 30 mg/L N
SpectroDirect, XD 7000, XD 7500	ø 16 mm	410 nm	1 - 30 mg/L N

Materiale

Materiale richiesto (in parte facoltativo):

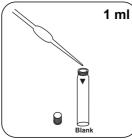
Reagenti	Unità di imbal- laggio	N. ordine
VARIO Nitra X, set di reagenti	1 set	535580
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Imbuto in plastica con manico	1 pz.	471007

Campo di applicazione

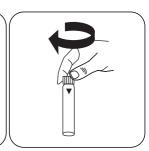
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Note

1. Una piccola quantità di solidi potrebbe restare allo stato non disciolto.



Esecuzione della rilevazione Nitrato con test in cuvetta Vario


Selezionare il metodo nel dispositivo.

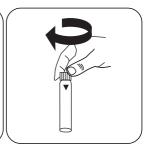
Aprire la cuvetta per reagenti (Reagent A).

Immettere 1 ml di campione nella cuvetta.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo con cautela. Attenzione: sviluppo di calore!

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

Aggiungere una bustina di polvere Vario Nitrate Chromotropic.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (10 x).

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Nitrate.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NO₃	4.43

Metodo chimico

Acido cromotropico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	-3.25164 • 10 ⁻¹
b	2.03754 • 10+1
С	1.45821 • 10+0
d	
е	
f	

Interferenze

Interferenze	da / [mg/L]
Ва	1
Cl ⁻	1000
Cu	in tutte le quan- tità
NO ₂ -	12

Riferimenti bibliografici

P. W. West, G. L. Lyles, A new method for the determination of nitrates, Analytica Chimica Acta, 23, 1960, pagg. 227-232

Nitrato LR2 TT

M266

0.2 - 15 mg/L N

2,6-dimetilfenolo

Informazioni specifiche dello strumento

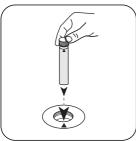
Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	340 nm	0.2 - 15 mg/L N

Materiale

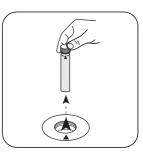
Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Nitrato-DMP LR2 / 25	25 pz.	2423330

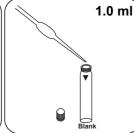

Campo di applicazione

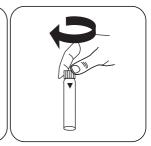
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Esecuzione della rilevazione Nitrato LR2 con test in cuvetta


Selezionare il metodo nel dispositivo.

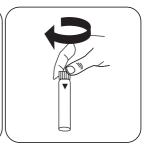
Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto **ZERO**.


Prelevare la **cuvetta** dal vano di misurazione.

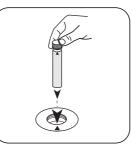
Aprire una cuvetta per reagenti.

Immettere 1.0 ml di campione nella cuvetta.


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo con cautela. **Attenzione: sviluppo di**

Aggiungere 0.2 ml di Nitrate-111.



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 15 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di NO_3 -N o NO_3 .

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NO ₃	4.4268

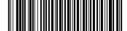
Metodo chimico

2.6-dimetilfenolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵


	ø 16 mm	
а	2.4531•10-2	
b	1.34256 •10 ¹	
С		
d		
е		
f		

Interferenze

Interferenze permanenti

- 1. Concentrazioni di nitrito maggiori di 2 mg/L danno risultati troppo elevati.
- 2. Un elevato tenore di sostanze organiche ossidabili (CSB) danno risultati troppo elevati.

Interferenze	da / [mg/L]
Cr ⁶⁺	2
Fe ²⁺	25
Sn ²⁺	25
Ca ²⁺	50
Co ²⁺	50

Interferenze	da / [mg/L]
Cu ²⁺	50
Fe³+	50
Ni ²⁺	50
Pb ²⁺	50
Zn²+	50
Cd ²⁺	100
K⁺	250
NO ₂ ·	1
Cl ⁻	250

Validazione metodo

Limite di rilevabilità	0.06 mg/L
Limite di quantificazione	0.17 mg/L
Estremità campo di misura	15.0 mg/L
Sensibilità	13.19 mg/L / Abs
Intervallo di confidenza	0.063 mg/L
Deviazione standard della procedura	0.026 mg/L
Coefficiente di variazione della procedura	0.71 %

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwedt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

Derivato di

ISO 7890-1-1986 DIN 38405 D9

Nitrato LR TT

M267

0.5 - 14 mg/L N

2,6-dimetilfenolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

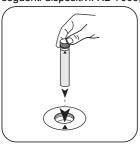
Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	340 nm	0.5 - 14 mg/L N

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Nitrato-DMP LR / 25	25 pz.	2423340

Campo di applicazione


- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Esecuzione della rilevazione Nitrato LR con test in cuvetta

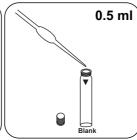
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

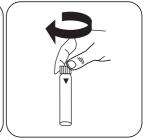
Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.



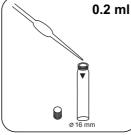
Premere il tasto ZERO.

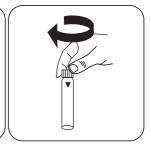


Prelevare la cuvetta dal vano di misurazione.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aprire una cuvetta per reagenti.

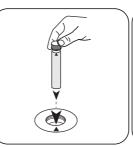

Immettere 0.5 ml di campione nella cuvetta.


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo con cautela.

Aggiungere 0.2 ml di Nitrate-111.

Chiudere la/e cuvetta/e.


Attenzione: sviluppo di

calore!

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 15 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di NO_3 -N o NO_3 .

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NO₃	4.4268

Metodo chimico

2.6-dimetilfenolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	-3.34651 • 10 ⁻¹
b	2.53157 • 10*1
С	
d	
е	
f	

Interferenze

Interferenze permanenti

- 1. Concentrazioni di nitrito maggiori di 2 mg/L danno risultati troppo elevati.
- Un elevato tenore di sostanze organiche ossidabili (CSB) danno risultati troppo elevati.

Interferenze	da / [mg/L]
Cr ⁶⁺	5
Fe ²⁺	50
Sn ²⁺	50
Ca ²⁺	100
Co ²⁺	100

Interferenze	da / [mg/L]
Cu ²⁺	100
Fe³+	100
Ni ²⁺	100
Pb ²⁺	100
Zn ²⁺	100
Cd ²⁺	200
K⁺	500
NO ₂ ·	2
Cl ⁻	500

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwedt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

Derivato di

ISO 7890-1-2-1986 DIN 38405 D9-2

Nitrate HR M268

1.2 - 35 mg/L N

2,6-dimetilfenolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	340 nm	1.2 - 35 mg/L N

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Nitrato-DMP HR / 25	25 pz.	2423370

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Esecuzione della rilevazione Nitrate HR with tube test

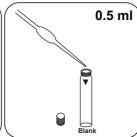
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

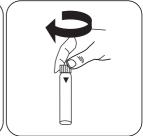
Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto **ZERO**.

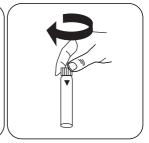


Prelevare la cuvetta dal vano di misurazione.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

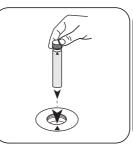
Aprire una cuvetta per reagenti.

Immettere 0.5 ml di campione nella cuvetta.

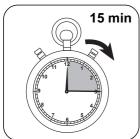

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo con cautela. Attenzione: sviluppo di

Aggiungere 0.2 ml di Nitrate-111.



Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 15 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di NO_3 -N o NO_3 .

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NO ₃	4.4268

Metodo chimico

2.6-dimetilfenolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	-2.73451 • 10 ⁻¹
b	2.47521 • 10*1
С	
d	
е	
f	

Interferenze

Interferenze permanenti

- 1. Nitrite concentrations above 2 mg/L result in higher results.
- 2. High levels of oxidisable organic substances (COD) lead to higher results.

Interferenze	da / [mg/L]
Cr ⁶⁺	5
Fe ²⁺	50
Sn ²⁺	50
Ca ²⁺	100
Co ²⁺	100
Cu ²⁺	100

Interferenze	da / [mg/L]
Fe³+	100
Ni ²⁺	100
Pb ²⁺	100
Zn ²⁺	100
Cd ²⁺	200
K⁺	500
NO ₂ -	2
Cl-	500

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwedt, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1989

Derivato di

ISO 7890-1-2-1986 DIN 38405 D9-2

Nitrito T M270

0.01 - 0.5 mg/L N

N-(1-naftil)-etilendiammina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	560 nm	0.01 - 0.5 mg/L N
XD 7000, XD 7500	ø 24 mm	540 nm	0.01 - 0.5 mg/L N
SpectroDirect	ø 24 mm	545 nm	0.01 - 0.5 mg/L N

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Nitriti LR	Pastiglia / 100	512310BT
Nitriti LR	Pastiglia / 250	512311BT

Campo di applicazione

- · Galvanizzazione
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Esecuzione della rilevazione Nitrito con pastiglia

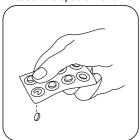
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

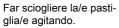


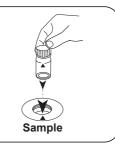
Premere il tasto ZERO.

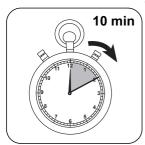
Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia NITRITE LR.




Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 10 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Nitrito.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NO ₂	3.2846

Metodo chimico

N-(1-naftil)-etilendiammina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-5.14368 • 10 ⁻³	-5.14368 • 10 ⁻³
b	1.76663 • 10-1	3.79825 • 10-1
С	1.20299 • 10 ⁻²	5.56082 • 10 ⁻²
d		
е		
f		

Interferenze

Interferenze permanenti

- 1. Antimonio(III), ferro(III), piombo, mercurio(I), argento, cloroplatinato, metavanadato e bismuto possono provocare interferenze in seguito a precipitazione.
- Gli ioni di rame(II) accelerano la decomposizione dei sali di diazonio e danno valori di misura più bassi.
- 3. Nella pratica è improbabile che gli ioni sopra menzionati compaiano a concentrazioni che possono provocare errori di misurazione significativi.

Derivato di

DIN ISO 15923-1 D49

Nitrite VHR L M271

25 - 2500 mg/L NO₂ ·

Ferrous Sulfate Method

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640	ø 24 mm	580 nm	25 - 2500 mg/L NO ₂ -
XD 7000, XD 7500	ø 24 mm	585 nm	25 - 2500 mg/L NO ₂ -

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Nitrite VHR L, 500 ml	500 mL	471170
Nitrite VHR L, 500 ml, Set	500 mL	471160

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Pipette, 1000 μl	1 pz.	365045
Puntali per pipette, 0,1-1 ml (blu), 1000 pezzi	1 pz.	419073

Campo di applicazione

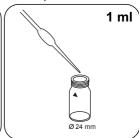
· Acqua di raffreddamento

Esecuzione della rilevazione Nitrito VHR L

Selezionare il metodo nel dispositivo.

Introdurre 10 ml di soluzione Nitrite VHR L nella cuvetta del campione.

Chiudere la/e cuvetta/e.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Aggiungere 1 ml di campione.


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (1-2 volte).

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Nitrite.

Metodo chimico

Ferrous Sulfate Method

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	1.45432•10⁺⁰	1.45432•10+1
b	1.22994•10+3	2.64437•10⁺³
С		
d		
е		
f		

Validazione metodo

Limite di rilevabilità	8.77 mg/L
Limite di quantificazione	26.31 mg/L
Estremità campo di misura	2500 mg/L
Sensibilità	1235.02 mg/L / Abs
Intervallo di confidenza	13.11 mg/L
Deviazione standard della procedura	5.42 mg/L
Coefficiente di variazione della procedura	0.43 %

Nitrito PP M272

0.01 - 0.3 mg/L N

Diazotazione

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	530 nm	0.01 - 0.3 mg/L N
SpectroDirect, XD 7000, XD 7500	ø 24 mm	507 nm	0.01 - 0.3 mg/L N

Materiale

Materiale richiesto (in parte facoltativo):

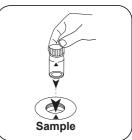
Reagenti	Unità di imbal- laggio	N. ordine
VARIO Nitri 3 F10	Polvere / 100 pz.	530980

Campo di applicazione

- · Galvanizzazione
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Esecuzione della rilevazione Nitrito con polvere in bustine Vario

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

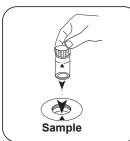
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

polvere Vario Nitri 3 F10.



Aggiungere una bustina di Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

20 min

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 20 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Nitrito.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NO ₂	3.2846

Metodo chimico

Diazotazione

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.54687 • 10 ⁻³	-2.54687 • 10 ⁻³
b	1.89212 • 10 ⁻¹	4.06806 • 10-1
С	1.10586 • 10 ⁻²	5.11184 • 10 ⁻²
d		
е		
f		

Interferenze

Interferenze permanenti

- 1. Le sostanze fortemente ossidanti e riducenti interferiscono in qualunque quantità.
- 2. Gli ioni di rame e ferro(II) danno risultati bassi.
- 3. Gli ioni di antimonio, piombo, cloroplatinato, ferro(III), oro, metavanadato, mercurio, argento e bismuto interferiscono in quanto provocano precipitazioni.
- 4. Con concentrazioni molto elevate di nitrato (>100 mg/L N) viene rilevata sempre una piccola quantità di nitrito. Questa sembra essere provocata da una bassa riduzione del nitrato in nitrito, che si verifica spontaneamente o nel corso della rilevazione.

Derivato di

USGS I-4540-85

Nitrito LR TT

M275

0.03 - 0.6 mg/L N

Solfanile/naftilammina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	545 nm	0.03 - 0.6 mg/L N

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Nitrito LR / 25	1 pz.	2423420
Nitrito / 25	1 pz.	2419018

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Cucchiaio dosatore n. 8, nero	1 pz.	424513

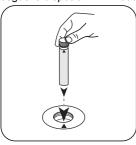
Campo di applicazione

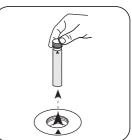
- Galvanizzazione
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

 Nell'esecuzione del test, il campione e i reagenti devono essere possibilmente a temperatura ambiente.

Note

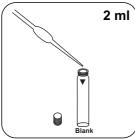

1. I reagenti devono essere conservati a una temperatura compresa tra +4 °C e +8 °C.


Esecuzione della rilevazione Nitrito LR con test in cuvetta

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

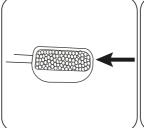
Zero

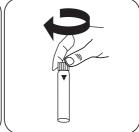


Posizionare la cuvetta zero Premere il tasto **ZERO**. in dotazione (etichetta rossa) nel vano di misurazione. Fare attenzione al posizionamento.

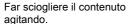
Prelevare la cuvetta dal vano di misurazione

Aprire la cuvetta per reagenti.

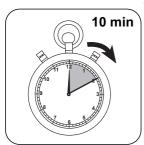

Immettere 2 ml di campione nella cuvetta.


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere un cucchiaio dosatore raso di No. 8 (nero) Nitrite-101.

Chiudere la/e cuvetta/e.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 10 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Nitrito.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NO ₂	3.2846

Metodo chimico

Solfanile/naftilammina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	-4.32137 • 10 ⁻²
b	2.05096 • 10+0
С	
d	
е	
f	

Interferenze

Interferenze	da / [mg/L]
Fe³+	5
Fe ²⁺	10
Cu ²⁺	100
Cr³+	100
Al ³⁺	1000
Cd ²⁺	1000
Durezza totale	178,6 mmol/l (1000 °dH)
CrO ₄ ²⁻	0,5

Interferenze	da / [mg/L]
p-PO ₄	2
S ²⁻	10
SO ₃ ²⁻	10
NO ₃ -	25
HCO ₃ ·	35,8 mmol/l (100 °dH)
Hg ²⁺	250
Mn ²⁺	1000
NH ₄ ⁺	1000
Ni ²⁺	1000
Pb ²⁺	1000
Zn ²⁺	1000
Cl ⁻	1000
CN ⁻	250
EDTA	250
o-PO ₄ 3-	1000
SO ₄ ²⁻	1000

Validazione metodo

Limite di rilevabilità	0.01 mg/L
Limite di quantificazione	0.04 mg/L
Estremità campo di misura	0.6 mg/L
Sensibilità	2.03 mg/L / Abs
Intervallo di confidenza	0.014 mg/L
Deviazione standard della procedura	0.006 mg/L
Coefficiente di variazione della procedura	1.79 %

Derivato di

DIN EN 26777 ISO 6777

Nitrito HR TT

M276

0.3 - 3 mg/L N

Solfanile/naftilammina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	545 nm	0.3 - 3 mg/L N

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Nitrito HR / 25	1 pz.	2423470
Nitrito / 25	1 pz.	2419018

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Cucchiaio dosatore n. 8, nero	1 pz.	424513

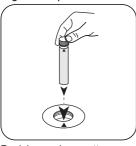
Campo di applicazione

- Galvanizzazione
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

 Nell'esecuzione del test, il campione e i reagenti devono essere possibilmente a temperatura ambiente.

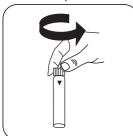
Note


1. I reagenti devono essere conservati a una temperatura compresa tra +4 °C e +8 °C.

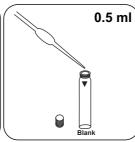
Esecuzione della rilevazione Nitrito HR con test in cuvetta

Selezionare il metodo nel dispositivo.

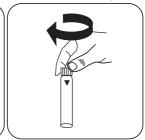
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500



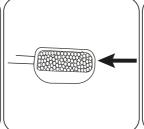
Zero


Posizionare la cuvetta zero Premere il tasto **ZERO**. in dotazione (etichetta rossa) nel vano di misurazione. Fare attenzione al posizionamento.

Prelevare la cuvetta dal vano di misurazione

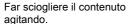

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aprire la cuvetta per reagenti.

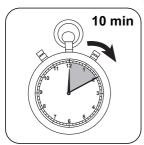

Immettere 0.5 ml di campione nella cuvetta.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere un cucchiaio dosatore raso di No. 8 (nero) Nitrite-101.

Chiudere la/e cuvetta/e.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 10 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Nitrito.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NO ₂	3.2846

Metodo chimico

Solfanile/naftilammina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	-3.31219 • 10 ⁻²
b	7.53948 • 10 ⁺⁰
С	
d	
е	
f	

Interferenze

Interferenze	da / [mg/L]
Fe³+	20
Fe ²⁺	50
Cu ²⁺	500
Cr³+	500
Al ³⁺	1000
Cd ²⁺	1000
Durezza totale	178,6 mmol/l (1000 °dH)
CrO ₄ ²⁻	0,5

Interferenze	da / [mg/L]
p-PO ₄	10
S ²⁻	50
SO ₃ ²⁻	50
NO ₃ ·	100
HCO ₃ -	143,2 mmol/l (400 °dH)
Hg ²⁺	1000
Mn ²⁺	1000
NH ₄ ⁺	1000
Ni ²⁺	1000
Pb ²⁺	1000
Zn ²⁺	1000
Cl ⁻	1000
CN ⁻	1000
EDTA	1000
o-PO ₄ 3-	1000
SO ₄ ²⁻	1000

Validazione metodo

Limite di rilevabilità	0.05 mg/L
Limite di quantificazione	0.15 mg/L
Estremità campo di misura	3 mg/L
Sensibilità	8.54 mg/L / Abs
Intervallo di confidenza	0.61 mg/L
Deviazione standard della procedura	0.25 mg/L
Coefficiente di variazione della procedura	15.16 %

Derivato di

DIN EN 26777 ISO 6777

2418940

TN LR TT M280

0.5 - 25 mg/L N^{b)}

Metodo della digestione con persolfato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	430 nm	0.5 - 25 mg/L N ^{b)}
SpectroDirect, XD 7000, XD 7500	ø 16 mm	410 nm	0.5 - 25 mg/L N ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Azoto totale LR, set	1 set	535550
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine

1 pz.

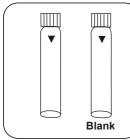
Campo di applicazione

Termoreattore RD 125

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

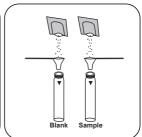
Preparazione

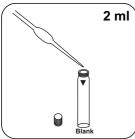
1. Grandi quantità di composti organici privi di azoto, presenti in alcuni campioni, possono compromettere l'efficacia della digestione in quanto consumano in parte il reagente persolfato. Se è noto che un campione contiene grandi quantità di composti organici, tale campione deve essere diluito e nuovamente sottoposto a digestione, quindi misurato per verificare l'efficacia della digestione.

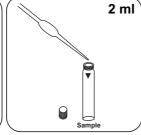

Note

- Il reagente persolfato non deve giungere sulla filettatura delle cuvette. Per rimuovere eventuali schizzi di reagente persolfato, pulire a fondo la filettatura della cuvetta con un panno pulito.
- 2. Dosare i volumi per il campione e il valore zero con pipette tarate da 2 ml (classe A).
- 3. Per ogni kit di campioni è sufficiente una cuvetta zero.
- 4. I reagenti TN Hydroxide LR, TN Persulfate Rgt. E TN Reagent B potrebbero non sciogliersi completamente.
- La cuvetta zero (conservata al buio) può essere utilizzata per 7 giorni, purché i campioni delle misurazioni comparative siano addizionati con lo stesso lotto di reagenti.

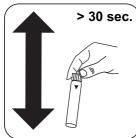
Esecuzione della rilevazione Azoto totale LR con test in cuvetta Vario


Selezionare il metodo nel dispositivo.


Preparare due cuvette di digestione TN Hydroxide LR. Contrassegnare una cuvetta come cuvetta zero.


Aprire le cuvette.

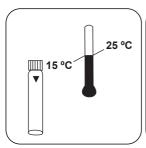

Immettere una bustina di polvere Vario TN Persulfate Rgt. in ogni cuvetta.


Immettere 2 ml di acqua demineralizzata nella cuvetta zero.


Immettere 2 ml di campione nella cuvetta del campione.

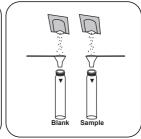
Chiudere la/e cuvetta/e.

Miscelare il contenuto agitando vigorosamente (> 30 sec.).

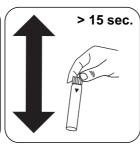


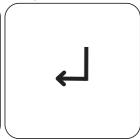
Sottoporre a digestione la/e Prelevare la cuvetta dal preriscaldato per 30 minuti la cuvetta è bollente!) a 100 °C .

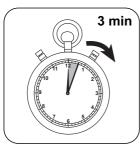
cuvetta/e nel termoreattore termoreattore. (Attenzione:



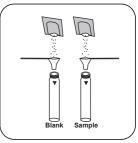
Lasciar raffreddare il campione a **temperatura ambiente**.


Aprire le cuvette.

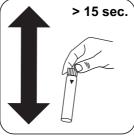

Immettere una bustina di polvere Vario TN Reagent A in ogni cuvetta.

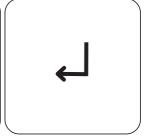

Chiudere la/e cuvetta/e.

Miscelare il contenuto agitando (> 15 sec.).

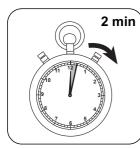

Premere il tasto ENTER.


Attendere un **tempo di** reazione di 3 minuto/i.

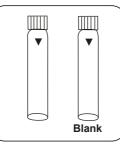

Aprire le cuvette.


Immettere una bustina di polvere Vario TN Reagent B in ogni cuvetta.

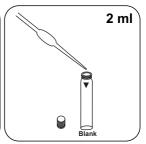
Chiudere la/e cuvetta/e.

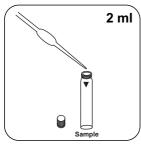


Miscelare il contenuto agitando (> 15 sec.).



Premere il tasto ENTER.




Attendere un tempo di reazione di 2 minuto/i.

Preparare due cuvette TN Acid LR/HR (Reagent C). Contrassegnare una cuvetta come cuvetta zero.

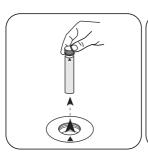
Immettere 2 ml del campione zero trattato e sottoposto a digestione nella cuvetta zero.

Immettere 2 ml del campione preparato e sottoposto a digestione nella cuvetta del campione.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo con cautela (10 volte). Attenzione: sviluppo di calore!

Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto **ZERO**.


Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.

Prelevare la **cuvetta** dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Azoto.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NH ₄	1.288
mg/l	NH ₃	1.22

Metodo chimico

Metodo della digestione con persolfato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
a	2.32198 • 10 ⁻¹
b	4.83314 • 10+1
С	
d	
е	
f	

Interferenze

Interferenze	da / [mg/L]
Cr ⁶⁺	5
Fe ²⁺	50
Sn ²⁺	50
Ca ²⁺	100
Co ²⁺	100
Cu ²⁺	100
Fe³+	100
Ni ²⁺	100

Interferenze	da / [mg/L]
Pb ²⁺	100
Zn ²⁺	100
Cd ²⁺	200
K ⁺	500
Cl ⁻	500

Riferimenti bibliografici

M. Hosomi, R. Sudo, Simultaneous determination of total nitrogen and total phosphorus in freshwater samples using persulfate digestion, Int. J. of. Env. Stud. (1986), 27 (3-4), pagg. 267-275

 $^{^{\}text{b}}\textsc{Reattore}$ richiesto per COD (150 $^{\circ}$ C), TOC (120 $^{\circ}$ C) e cromo totale, - fosfato, azoto, (100 $^{\circ}$ C)

TN HR TT M281

5 - 150 mg/L Nb)

Metodo della digestione con persolfato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	430 nm	5 - 150 mg/L N ^{b)}
SpectroDirect, XD 7000, XD 7500	ø 16 mm	410 nm	5 - 150 mg/L N ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Azoto totale HR, set	1 set	535560
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine

1 pz.

Campo di applicazione

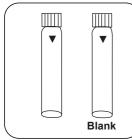
Termoreattore RD 125

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

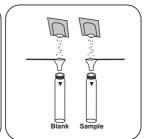
 Grandi quantità di composti organici privi di azoto, presenti in alcuni campioni, possono compromettere l'efficacia della digestione in quanto consumano in parte il reagente persolfato. Se è noto che un campione contiene grandi quantità di composti organici, tale campione deve essere diluito e nuovamente sottoposto a digestione, quindi misurato per verificare l'efficacia della digestione.

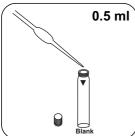
2418940

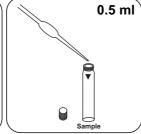

Note

- Il reagente persolfato non deve giungere sulla filettatura delle cuvette. Per rimuovere eventuali schizzi di reagente persolfato, pulire a fondo la filettatura della cuvetta con un panno pulito.
- 2. Dosare i volumi per il campione e il valore zero con pipette adeguate di classe A.
- 3. Per ogni kit di campioni è sufficiente una cuvetta zero.
- 4. I reagenti TN Hydroxide LR, TN Persulfate Rgt. E TN Reagent B potrebbero non sciogliersi completamente.
- La cuvetta zero (conservata al buio) può essere utilizzata per 7 giorni, purché i campioni delle misurazioni comparative siano addizionati con lo stesso lotto di reagenti.

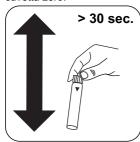
Esecuzione della rilevazione Azoto totale HR con test in cuvetta Vario


Selezionare il metodo nel dispositivo.


Preparare due cuvette di digestione TN Hydroxide HR. Contrassegnare una cuvetta come cuvetta zero.


Aprire le cuvette.

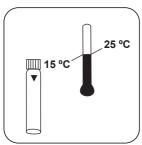
Immettere una bustina di polvere Vario TN Persulfate Rgt. in ogni cuvetta.


Immettere 0.5 ml di acqua demineralizzata nella cuvetta zero.

Immettere 0.5 ml di campione nella cuvetta del campione.

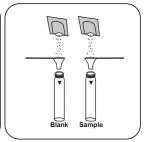
Chiudere la/e cuvetta/e.

Miscelare il contenuto agitando vigorosamente (> 30 sec.).

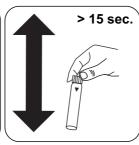


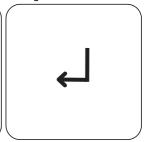
Sottoporre a digestione la/e Prelevare la cuvetta dal cuvetta/e nel termoreattore preriscaldato per 30 minuti la cuvetta è bollente!) a 100 °C .

termoreattore. (Attenzione:



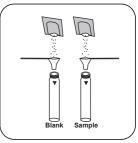
Lasciar raffreddare il campione a **temperatura ambiente**.

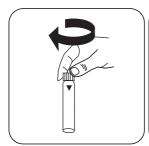

Aprire le cuvette.

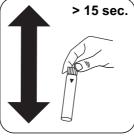

Immettere una bustina di polvere Vario TN Reagent A in ogni cuvetta.

Chiudere la/e cuvetta/e.

Miscelare il contenuto agitando (> 15 sec.).

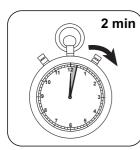

Premere il tasto ENTER.


Attendere un **tempo di** reazione di 3 minuto/i .

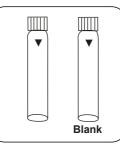

Aprire le cuvette.


Immettere una bustina di polvere Vario TN Reagent B in ogni cuvetta.

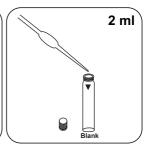
Chiudere la/e cuvetta/e.



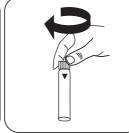
Miscelare il contenuto agitando (> 15 sec.).

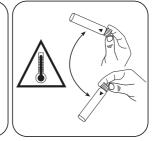


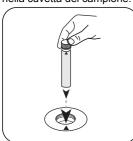
Premere il tasto ENTER.



Attendere un tempo di reazione di 2 minuto/i.


Preparare due cuvette TN Acid LR/HR (Reagent C). Contrassegnare una cuvetta come cuvetta zero.

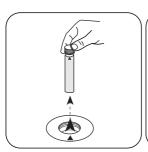

Immettere 2 ml del campione zero trattato e sottoposto a digestione nella cuvetta zero.

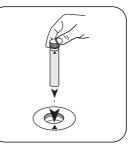

Immettere 2 ml del campione preparato e sottoposto a digestione nella cuvetta del campione.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo con cautela (10 volte). Attenzione: sviluppo di calore!

Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto **ZERO**.


Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.

Prelevare la **cuvetta** dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Azoto.

Metodo chimico

Metodo della digestione con persolfato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm	
а	-8.05265 • 10 ⁻¹	
b	4.93335 • 10*1	
С		
d		
е		
f		

Interferenze

Interferenze	da / [mg/L]
Cr ⁶⁺	5
Fe ²⁺	50
Sn²⁺	50
Ca ²⁺	100
Co² +	100
Cu ²⁺	100
Fe³+	100
Ni ²⁺	100
Pb ²⁺	100
Zn ²⁺	100
Cd ²⁺	200
K ⁺	500
Cl ⁻	500

Riferimenti bibliografici

M. Hosomi, R. Sudo, Simultaneous determination of total nitrogen and total phosphorus in freshwater samples using persulfate digestion, Int. J. of. Env. Stud. (1986), 27 (3-4), pagg. 267-275

 $^{\text{\tiny b)}}$ Reattore richiesto per COD (150 $^{\circ}$ C), TOC (120 $^{\circ}$ C) e cromo totale, - fosfato, azoto, (100 $^{\circ}$ C)

TN LR 2 TT M283

0.5 - 14 mg/L N^{b)}

2,6-dimetilfenolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	340 nm	0.5 - 14 mg/L N ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Azoto totale DMP LR / 25	1 pz.	2423540
Azoto totale	1 pz.	2420703

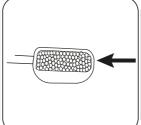
Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Note

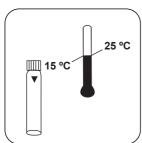

1. Questo test rileva i composti inorganici ammonio, nitrato e nitrito nonché composti organici quali amminoacidi, urea, complessanti ecc.


Digestione

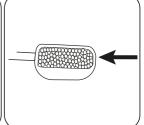
Immettere 5 ml di campione nella cuvetta di digestione.

Aggiungere un cucchiaio dosatore raso di No. 8 (nero) Digestion Reagent.

Chiudere la/e cuvetta/e.

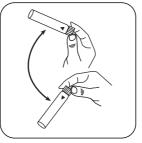

Miscelare il contenuto capovolgendo.

Sottoporre a digestione la/e cuvetta/e nel termoreattore preriscaldato per 60 minuti a 100 °C.


Prelevare la cuvetta dal termoreattore. (Attenzione: la cuvetta è bollente!)

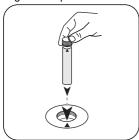
Lasciar raffreddare il campione a temperatura ambiente.




Miscelare il contenuto capovolgendo.

Aggiungere un cucchiaio dosatore raso di No. 4 (bianco) Compensation Reagent.

Chiudere la/e cuvetta/e.

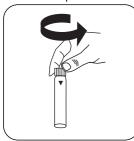

Miscelare il contenuto capovolgendo.

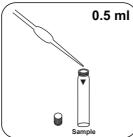
Esecuzione della rilevazione Azoto totale LR con test in cuvetta

Selezionare il metodo nel dispositivo.

Per la determinazione di Azoto totale LR con test in cuvetta eseguire la digestione descritta.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui sequenti dispositivi: XD 7000, XD 7500


Zero


Posizionare la cuvetta zero Premere il tasto ZERO. in dotazione (etichetta rossa) nel vano di misurazione. Fare attenzione al posizionamento.

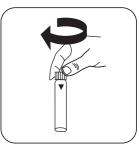
Prelevare la cuvetta dal vano di misurazione

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aprire una cuvetta per reagenti.

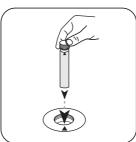
Immettere 0.5 ml del campione preparato e sottoposto a digestione nella cuvetta del campione.

Chiudere la/e cuvetta/e.

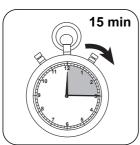


Miscelare il contenuto capovolgendo con cautela. **Attenzione: sviluppo di**

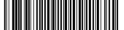
0.2 ml


Aggiungere 0.2 ml di Nitrate-111.

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 15 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Azoto.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NH ₄	1.288
mg/l	NH₃	1.2158

Metodo chimico

2,6-dimetilfenolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

ø 16 mm
2.35054 • 10 ⁻¹
1.92879 • 10*2

Interferenze

Interferenze permanenti

 I composti di azoto difficilmente ossidabili, come quelli presenti nelle acque di scarico industriali, non vengono digeriti o vengono digeriti solo in parte.

Secondo

US EPA 40 CFR 141

Derivato di

EN ISO 11905-1

^{b)}Reattore richiesto per COD (150 ° C), TOC (120 ° C) e cromo totale, - fosfato, azoto, (100 ° C)

TN HR 2 TT M284

5 - 140 mg/L N^{b) i)}

2,6-dimetilfenolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	340 nm	5 - 140 mg/L N ^{b) i)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Azoto totale DMP HR / 25	1 pz.	2423570
Azoto totale	1 pz.	2420703

Sono necessari inoltre i seguenti accessori.

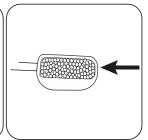
Accessori	Unità di imballaggio	N. ordine	
Termoreattore RD 125	1 pz.	2418940	

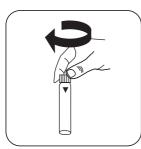
Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Note

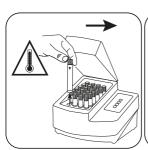
1. Questo test rileva i composti inorganici ammonio, nitrato e nitrito nonché composti organici quali amminoacidi, urea, complessanti ecc.


Digestione

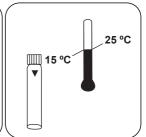

Immettere **0.5 ml di campione** nella cuvetta di digestione.

Immettere **4.5 ml di acqua demineralizzata** nella cuvetta di digestione.

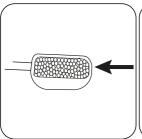
Aggiungere un cucchiaio dosatore raso di No. 8 (nero) Digestion Reagent.


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Sottoporre a digestione la/e cuvetta/e nel termo-reattore preriscaldato per 60 minuti a 100 °C.

Prelevare la cuvetta dal termoreattore. (Attenzione: la cuvetta è bollente!)



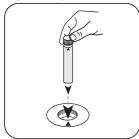
Miscelare il contenuto capovolgendo.

Lasciar raffreddare la/e cuvetta/e a temperatura ambiente.

Aggiungere un cucchiaio dosatore raso di No. 4 (bianco) Compensation

Reagent.

Chiudere la/e cuvetta/e.

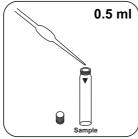

Miscelare il contenuto capovolgendo.

Esecuzione della rilevazione Azoto totale HR con test in cuvetta

Selezionare il metodo nel dispositivo.

Per la determinazione di Azoto totale HR con test in cuvetta eseguire la digestione descritta.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Posizionare la cuvetta zero Premere il tasto **ZERO**. in dotazione (etichetta rossa) nel vano di misurazione. Fare attenzione al posizionamento.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

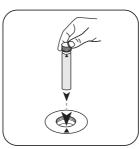
Aprire una cuvetta per reagenti.

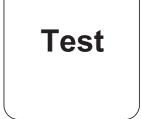
Immettere 0.5 ml del campione preparato e sottoposto a digestione nella cuvetta del campione.

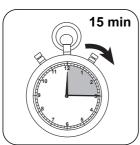
Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo con cautela. **Attenzione: sviluppo di**

0.2 ml


Aggiungere 0.2 ml di Nitrate-111.


Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 15 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Azoto.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	N	1
mg/l	NH ₄	1.288
mg/l	NH ₃	1.2158

Metodo chimico

2,6-dimetilfenolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm	
а	-9.36243 • 10 ⁻¹	
b	2.51666 • 10+1	
С		
d		
е		
f		

Interferenze

Interferenze permanenti

 I composti di azoto difficilmente ossidabili, come quelli presenti nelle acque di scarico industriali, non vengono digeriti o vengono digeriti solo in parte.

Secondo

US EPA 40 CFR 141

Derivato di

EN ISO 11905-1

^ыReattore richiesto per COD (150 ° C), TOC (120 ° C) e cromo totale, - fosfato, azoto, (100 ° C) | [∋] Elevato intervallo di misurazione grazie alla diluizione

M290

Ossigeno attivo T

0.1 - 10 mg/L O₂

DPD

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	530 nm	0.1 - 10 mg/L O ₂
SpectroDirect, XD 7000, XD 7500	ø 24 mm	510 nm	0.1 - 10 mg/L O ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 4	Pastiglia / 100	511220BT
DPD No. 4	Pastiglia / 250	511221BT
DPD No. 4	Pastiglia / 500	511222BT

Campo di applicazione

· Controllo acqua in vasca

Preparazione

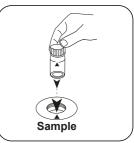
- 1. Nella preparazione del campione occorre evitare la degassificazione dell'ossigeno, ad es. utilizzando pipette e agitando.
- 2. L'analisi deve essere eseguita subito dopo il prelievo del campione.

Note

 Si definisce ossigeno attivo un comune disinfettante a base di ossigeno utilizzato nel trattamento dell'acqua delle piscine.

Esecuzione della rilevazione Ossigeno attivo con pastiglia

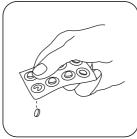
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

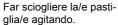


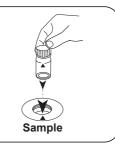
Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia DPD No. 4.




Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ossigeno attivo.

Metodo chimico

DPD

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	5.11265 • 10 ⁻²	5.11265 • 10 ⁻²
b	7.65587 • 10 ⁺⁰	1.64601 • 10+1
С	1.01147 • 10+0	4.67552 • 10 ⁺⁰
d		
е		
f		

Ossigeno disciolto C

M292

10 - 800 μg/L O₂ c)

02

Rodazina D TM

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect	ø 13 mm	530 nm	10 - 800 μg/L O ₂ c)
XD 7000, XD 7500	ø 13 mm	547 nm	10 - 1100 μg/L O ₂ c)

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Kit di analisi dell'ossigeno Vacu-vial	1 set	380450

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Adattatore per cuvette rotonde 13 mm	1 pz.	19802192
Adattatore (13 mm) MultiDirect per Vacu-vial	1 pz.	192075

Campo di applicazione

Acqua di caldaia

Preparazione

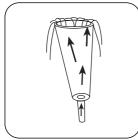
 Prima di eseguire il test leggere le istruzioni originali e le avvertenze di sicurezza accluse al kit di test (gli MSDS sono disponibili sul sito www.chemetrics.com).

Note

1. Questo metodo è un prodotto CHEMetrics. Il range di misura specificato in questo fotometro e la lunghezza d'onda utilizzata possono tuttavia differire dalle indicazioni di CHEMetrics. 2. Conservare i Vacu-Vials® al buio a temperatura ambiente. 4. Vacu-Vials® è un marchio protetto dell'azienda CHEMetrics, Inc. / Calverton, U.S.A.

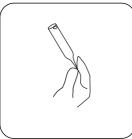
Esecuzione della rilevazione Ossigeno disciolto con Vacu Vials® K-7553

Selezionare il metodo nel dispositivo.


Posizionare la **fiala zero** nel vano di misurazione.

Premere il tasto **ZERO**.

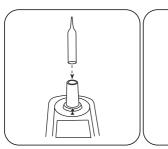
Prelevare la fiala zero dal vano di misurazione.


Far scorrere l'acqua campione nel recipiente di campionamento per diversi minuti dal basso verso l'alto per rimuovere le bolle d'aria.

Posizionare una fiala Vacu-vial® nel recipiente di campionamento. Rompere la punta della fiala premendo leggermente contro la parete del recipiente. Attendere il completo riempimento della fiala.

Successivamente prelevare velocemente la fiala piena dal recipiente di campionamento con la punta rivolta verso il basso.

Chiudere l'apertura con un dito per evitare il contatto con l'aria.



Capovolgere più volte la fiala.

Asciugare esternamente la fiala.

Test

Posizionare la fiala nel vano di misurazione.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Ossigeno.

Metodo chimico

Rodazina D TM

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 13 mm
а	-2.60239 • 10 ⁺¹
b	9.19343 • 10+2
С	
d	
е	
f	

Derivato di

ASTM D 5543-15

^{o)}MultiDirect: necessario adattatore per Vacu-vials[®](numero d'ordine 19 20 75)

Ozono 50 T

M299

0.02 - 0.5 mg/L O₃

DPD/glicina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	510 nm	0.02 - 0.5 mg/L O ₃

Materiale

Materiale richiesto (in parte facoltativo):

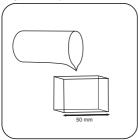
Reagenti	Unità di imbal-	N. ordine
	laggio	
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 3	Pastiglia / 100	511080BT
DPD No. 3	Pastiglia / 250	511081BT
DPD No. 3	Pastiglia / 500	511082BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio ^{e)}	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 100	515730BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 250	515731BT
DPD No. 3 High Calcium e)	Pastiglia / 500	515732BT
Glicina ⁿ	Pastiglia / 100	512170BT
Glicina ^{f)}	Pastiglia / 250	512171BT
Set DPD No. 1/no. 3#	ciascuna 100	517711BT
Set DPD No. 1/no. 3#	ciascuna 250	517712BT
Set DPD No. 1/no. 3 High Calcium#	ciascuna 100	517781BT
Set DPD No. 1/no. 3 High Calcium#	ciascuna 250	517782BT
Set DPD No. 1/glicina #	ciascuna 100	517731BT
Set DPD No. 1/glicina #	ciascuna 250	517732BT

Campo di applicazione

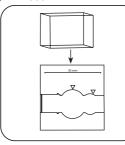
- · Trattamento acqua potabile
- · Acqua di caldaia
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- Trattamento acqua di piscina
- · Controllo disinfettante

Preparazione

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella successiva rilevazione di ossidanti (ad es. ozono, cloro) si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Nella preparazione del campione occorre evitare la degassificazione dell'ozono, ad es. utilizzando pipette e agitando. L'analisi deve essere eseguita subito dopo il prelievo del campione.
- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

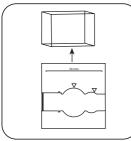


Esecuzione della rilevazione Ozono, in presenza di cloro con pastiglia

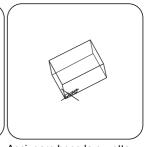

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: in presenza di Cloro

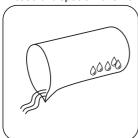
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.



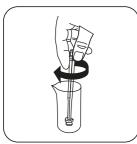
Svuotare la cuvetta.



Asciugare bene la cuvetta.

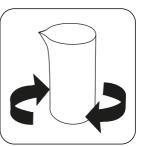
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

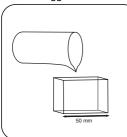
Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.

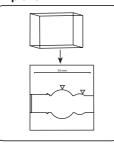


Aggiungere una pastiglia DPD No. 1.

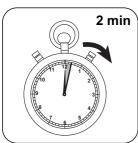
Aggiungere una pastiglia DPD No. 3.



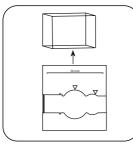

Frantumare la/e pastiglia/e con una leggera rotazione.


Aggiungere 10 ml di campione.

Far sciogliere la/e pastiglia/e agitando.


Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.


Prelevare la **cuvetta** dal vano di misurazione.

Svuotare la cuvetta.

Asciugare bene la cuvetta.

Riempire un recipiente per campioni adeguato con **10 ml di campione**.

Aggiungere una pastiglia Glycine.

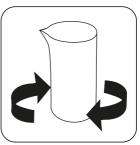
Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

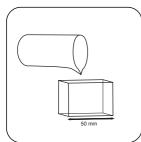
Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.

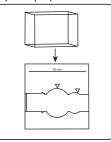


Aggiungere una pastiglia DPD No. 1.

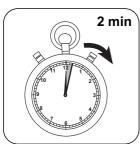
Aggiungere una pastiglia DPD No. 3.




Frantumare la/e pastiglia/e con una leggera rotazione.


Immettere la **soluzione di glicina** preparata nel campione preparato.

Far sciogliere la/e pastiglia/e agitando.


Riempire una cuvetta da 50 mm con il campione.

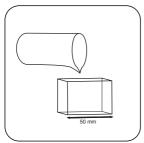
Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

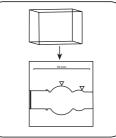
Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ozono; Cloro totale.

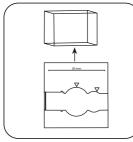
Esecuzione della rilevazione Ozono, in assenza di cloro con pastiglia


Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: senza Cloro


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

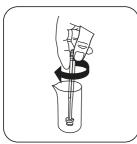
Prelevare la **cuvetta** dal vano di misurazione.

Svuotare la cuvetta.

Asciugare bene la cuvetta.

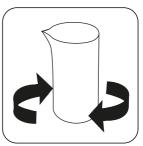
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

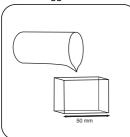
Sciacquare un recipiente per campioni adeguato con un po' di campione e svuotarlo finché non restano alcune gocce.

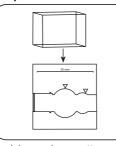


Aggiungere una pastiglia DPD No. 1.

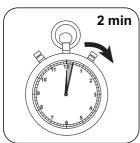
Aggiungere una pastiglia DPD No. 3.




Frantumare la/e pastiglia/e con una leggera rotazione.


Aggiungere 10 ml di campione.

Far sciogliere la/e pastiglia/e agitando.


Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ozono.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	O ₃	1
mg/l	Cl ₂	1.4771049

Metodo chimico

DPD/glicina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 50 mm
а	-3.25456 • 10 ⁻³
b	4.78036 • 10 ⁻¹
С	-3.91741 • 10 ⁻²
d	
е	
f	

Interferenze

Interferenze permanenti

- Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.
- Le concentrazioni di ozono maggiori di 6 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Riferimenti bibliografici

Colorimetric Chemical Analytical Methods, 9th Edition, Lovibond

Derivato di

DIN 38408-3:2011-04

Ozono T M300 $0.02 - 2 \text{ mg/L O}_3$ O3 DPD/glicina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	530 nm	0.02 - 2 mg/L O ₃
XD 7000, XD 7500	ø 24 mm	510 nm	0.02 - 2 mg/L O ₃
SpectroDirect	ø 24 mm	510 nm	0.02 - 1 mg/L O ₃

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 1	Pastiglia / 250	511051BT
DPD No. 1	Pastiglia / 500	511052BT
DPD No. 3	Pastiglia / 100	511080BT
DPD No. 3	Pastiglia / 250	511081BT
DPD No. 3	Pastiglia / 500	511082BT
DPD No. 1 Alto Calcio e)	Pastiglia / 100	515740BT
DPD No. 1 Alto Calcio e)	Pastiglia / 250	515741BT
DPD No. 1 Alto Calcio e)	Pastiglia / 500	515742BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 100	515730BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 250	515731BT
DPD No. 3 High Calcium ^{e)}	Pastiglia / 500	515732BT
Glicina ^{f)}	Pastiglia / 100	512170BT
Glicina ^{f)}	Pastiglia / 250	512171BT
Set DPD No. 1/no. 3#	ciascuna 100	517711BT
Set DPD No. 1/no. 3#	ciascuna 250	517712BT
Set DPD No. 1/no. 3 High Calcium#	ciascuna 100	517781BT
Set DPD No. 1/no. 3 High Calcium#	ciascuna 250	517782BT
Set DPD No. 1/glicina #	ciascuna 100	517731BT
Set DPD No. 1/glicina #	ciascuna 250	517732BT

Campo di applicazione

- · Trattamento acqua potabile
- · Acqua di caldaia
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- Trattamento acqua di piscina
- · Controllo disinfettante

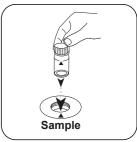
Preparazione

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella successiva rilevazione di ossidanti (ad es. ozono, cloro) si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.
- Nella preparazione del campione occorre evitare la degassificazione dell'ozono, ad es. utilizzando pipette e agitando. L'analisi deve essere eseguita subito dopo il prelievo del campione.
- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione Ozono, in presenza di cloro con pastiglia

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: in presenza di Cloro

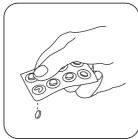

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.



Prelevare la cuvetta dal vano di misurazione.

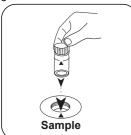
Svuotare la cuvetta finché non rimangono alcune gocce.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia DPD No. 1.

Aggiungere una pastiglia DPD No. 3.

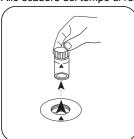
Frantumare la/e pastiglia/e con una leggera rotazione.


Immettere il campione nella cuvetta fino a raggiungere la tacca dei 10 ml .

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto TEST (XD: Attendere un tempo di START).

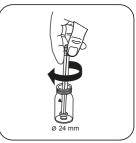
reazione di 2 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.

Prelevare la cuvetta dal vano di misurazione.

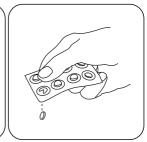
Svuotare la cuvetta.

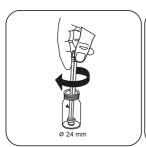
Pulire a fondo la cuvetta e il coperchio della cuvetta.



Riempire una seconda cuvetta con 10 ml di campione.

Aggiungere una pastiglia GLYCINE.


Frantumare la/e pastiglia/e con una leggera rotazione.

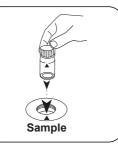

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

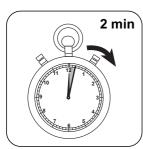
Immettere direttamente dalla pellicola nella prima cuvetta una pastiglia DPD No. 1 e una pastiglia DPD No. 3.

Frantumare la/e pastiglia/e con una leggera rotazione.

Immettere la **soluzione di glicina** preparata nella cuvetta preparata.



Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 2 minuto/i.

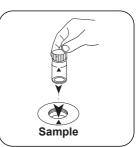
Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ozono; Cloro totale mg/l.

Esecuzione della rilevazione Ozono, in assenza di cloro con pastiglia

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: senza Cloro

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

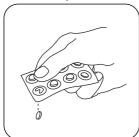

seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di
misurazione. Fare attenzione al posizionamento.

Zero

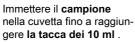

2000


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta finché non rimangono alcune gocce.

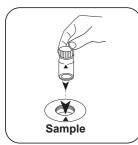
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.



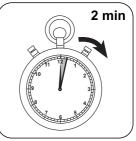
Aggiungere una pastiglia DPD No. 1.

Aggiungere una pastiglia DPD No. 3.

Frantumare la/e pastiglia/e con una leggera rotazione.



Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ozono.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	O ₃	1
mg/l	Cl ₂	1.4771049

Metodo chimico

DPD/glicina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-2.13541 • 10 ⁻²	-2.13541 • 10 ⁻²
b	1.19361 • 10⁺⁰	2.56626 • 10+0
С	-8.66457 • 10 ⁻²	-4.0052 • 10 ⁻¹
d	9.31084 • 10 ⁻²	9.25346 • 10 ⁻¹
е		
f		

Interferenze

Interferenze permanenti

- Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.
- Le concentrazioni di ozono maggiori di 6 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Riferimenti bibliografici

Colorimetric Chemical Analytical Methods, 9th Edition, Lovibond

Derivato di

DIN 38408-3:2011-04

Ozono PP

M301

0.015 - 2 mg/L O₃

DPD/glicina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640	ø 24 mm	530 nm	0.015 - 2 mg/L O ₃
SpectroDirect, XD 7000, XD 7500	ø 24 mm	510 nm	0.015 - 2 mg/L O ₃

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Cloro totale DPD F10	Polvere / 100 pz.	530120
Cloro totale DPD F10	Polvere / 1000 pz.	530123
Glicina ^{f)}	Pastiglia / 100	512170BT
Glicina ¹⁾	Pastiglia / 250	512171BT

Campo di applicazione

- · Trattamento acqua potabile
- · Acqua di caldaia
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- · Trattamento acqua di piscina
- Controllo disinfettante

Preparazione

1. Pulizia delle cuvette:

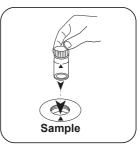
Poiché molti detergenti ad uso domestico (ad es. detersivo per piatti) contengono sostanze riducenti, nella successiva rilevazione di ossidanti (ad es. ozono, cloro) si potrebbero ottenere risultati troppo bassi. Per escludere tali errori di misura è necessario che i dispositivi in vetro siano esenti dal consumo di cloro. I dispositivi in vetro inoltre vengono conservati in una soluzione di ipoclorito di sodio (0,1 g/L) per un'ora e successivamente vengono risciacquati abbondantemente con acqua demineralizzata.

- Nella preparazione del campione occorre evitare la degassificazione dell'ozono, ad es. utilizzando pipette e agitando. L'analisi deve essere eseguita subito dopo il prelievo del campione.
- Le acque fortemente alcaline o acide devono essere portate prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 0,5 mol/l di acido solforico o 1 mol/l di liscivia).

Esecuzione della rilevazione Ozono, in presenza di cloro con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: in presenza di Cloro


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.



Chiudere la/e cuvetta/e.

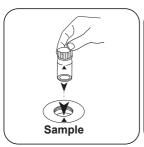
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

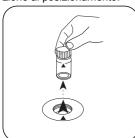
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

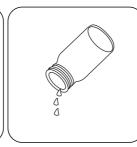
Aggiungere una bustina di polvere Chlorine TOTAL-DPD/F10 .



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (20 sec.).

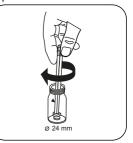

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Attendere un tempo di reazione di 3 minuto/i.

Premere il tasto **TEST** (XD: **START**).

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta.


Pulire a fondo la cuvetta e il coperchio della cuvetta.

Riempire una cuvetta da 24 mm con **10 ml di** campione.

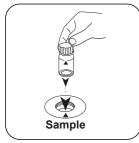
Aggiungere una pastiglia GLYCINE.

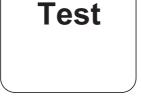
Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.


Aggiungere una bustina di polvere Chlorine TOTAL-DPD/F10 .


Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo (20 sec.).

Attendere un tempo di reazione di 3 minuto/i.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Ozone, mg/l total chlorine.

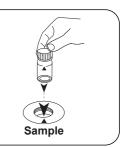
Esecuzione della rilevazione Ozono, in assenza di cloro con confezioni in polvere

Selezionare il metodo nel dispositivo.

Selezionare inoltre la determinazione: senza Cloro

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui

seguenti dispositivi: XD 7000, XD 7500



Riempire una cuvetta da 24 mm con **10 ml di** campione.



Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

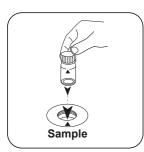
Zero

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una bustina di polvere Chlorine TOTAL-DPD/F10



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (20 sec.).

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di Ozone.

Attendere un tempo di reazione di 3 minuto/i . **Test**

Premere il tasto TEST (XD: START).

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	O_3	1
mg/l	Cl ₂	1.4771049

Metodo chimico

DPD/glicina

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-3.94263•10 ⁻²	-3.94263•10 ⁻²
b	1.70509•10+0	3.66594•10+0
С		
d		
е		
f		

Interferenze

Interferenze permanenti

- Tutti gli ossidanti presenti nei campioni reagiscono come il cloro dando risultati troppo elevati.
- Le concentrazioni di ozono maggiori di 6 mg/L possono dare risultati entro il range di misura fino a 0 mg/L. In questo caso il campione di acqua deve essere diluito. 10 ml del campione diluito vengono addizionati con il reagente e la misurazione viene ripetuta (test di plausibilità).

Validazione metodo

Limite di rilevabilità	0.01 mg/L
Limite di quantificazione	0.03 mg/L
Estremità campo di misura	2 mg/L
Sensibilità	1.68 mg/L / Abs
Intervallo di confidenza	0.033 mg/L
Deviazione standard della procedura	0.014 mg/L
Coefficiente di variazione della procedura	1.34 %

[®]Reagente ausiliario, è inoltre necessario per la determinazione di bromo, biossido di cloro o ozono in presenza di cloro.

Fenoli T M315

0.1 - 5 mg/L C₆H₅OH

4-amminoantipirina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640	ø 24 mm	530 nm	0.1 - 5 mg/L C ₆ H₅OH
SpectroDirect, XD 7000, XD 7500	ø 24 mm	507 nm	0.1 - 5 mg/L C ₆ H₅OH

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fenolo No. 1	Pastiglia / 100	515950BT
Fenolo No. 2	Pastiglia / 100	515960BT

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua non depurata

Preparazione

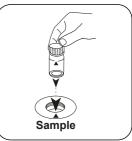
 La soluzione acquosa campione dovrebbe avere un valore di pH compreso tra 3 e 11.

Note

 Questo metodo rileva i fenoli sostituiti in orto e meta; non vengono rilevati tutti i fenoli sostituiti in para (vedere a questo proposito: "Standard Methods of Examination of Water and Wastewater", 22nd Edition, pagg. 5-46 e segg.)

Esecuzione della rilevazione Fenoli con pastiglia

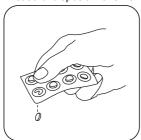
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

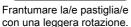


Premere il tasto ZERO.

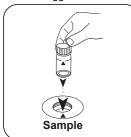
Prelevare la cuvetta dal vano di misurazione.

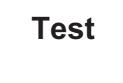
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

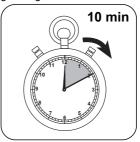
Aggiungere una pastiglia PHENOLE No. 1.


Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia PHENOLE No. 2.




Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 10 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Fenoli.

Metodo chimico

4-amminoantipirina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-4.16246•10 ⁻²	-4.16246•10 ⁻²
b	3.18197•10⁺⁰	6.84124•10+0
С		
d		
е		
f		

Interferenze

Interferenze escludibili

 In caso di interferenze note o sospette (ad es. batteri in decomposizione fenolica, agenti ossidanti, agenti riducenti, composti dello zolfo e solidi sospesi) il campione deve essere pretrattato di conseguenza, vedere "Standard Methods for Examination of Water and Wastewater, 22nd Edition, 5-46 ff".

Validazione metodo

Limite di rilevabilità	0.03 mg/L
Limite di quantificazione	0.09 mg/L
Estremità campo di misura	5 mg/L
Sensibilità	3.21 mg/L / Abs
Intervallo di confidenza	0.024 mg/L
Deviazione standard della procedura	0.01 mg/L
Coefficiente di variazione della procedura	0.39 %

Secondo

Standard Method 5530 US EPA Method 420.1

Fosfonato PP

M316

0.2 - 125 mg/L PO₄

Metodo dell'ossidazione UV con persolfato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	660 nm	0.2 - 125 mg/L PO ₄
SpectroDirect, XD 7000, XD 7500	ø 24 mm	890 nm	0.2 - 125 mg/L PO ₄

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Set fosfonati	1 set	535220
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Lampada a penna UV, 254 nm	1 pz.	400740

Campo di applicazione

· Acqua di raffreddamento

Preparazione

Prima dell'analisi sciacquare tutti i dispositivi in vetro con acido cloridrico diluito (1:1)
e successivamente con acqua demineralizzata. Non utilizzare detergente contenenti
fosfati.

Note

- Durante la digestione UV i fosfonati vengono trasformati in ortofosfati. Di norma questa procedura viene completata in 10 minuti. Tuttavia i campioni con un elevato inquinamento organico o una lampada UV non sufficientemente potente possono provocare una trasformazione incompleta.
- 2. Lampada UV disponibile su richiesta.
- 3. Per l'uso della lampada UV fare riferimento al manuale del produttore. Non toccare la superficie della lampada UV. Le impronte digitali corrodono il vetro. Tra una misurazione e l'altra pulire la lampada UV con un panno morbido e pulito.
- 4. Il reagente Vario Phosphate Rgt. F10 non si scioglie completamente.
- 5. Il tempo di reazione di 2 minuti specificato si riferisce a campioni con una temperatura superiore a 15 °C. Se la temperatura del campione è minore di 15 °C si deve osservare un tempo di reazione di 4 minuti.

Digestione

Selezionare il volume del campione adatto in base alla seguente tabella:

Range di misura previsto (mg/l di fosfonato)	Volume del campione in ml	Fattore
0 - 2,5	50	0,1
0 - 5,0	25	0,2
0 - 12,5	10	0,5
0 - 25	5	1,0
0 - 125	1	5,0

Riempire un cilindro di misura da 50 ml con il volume di campione selezionato. Se necessario, aggiungere acqua demineralizzata fino a raggiungere i 50 ml e miscelare.

Riempire una cuvetta di digestione con 25 ml del campione preparato.

Aggiungere una bustina di polvere Vario Potassium Persulfate F10.

Chiudere la cuvetta di digestione.



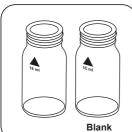
Far sciogliere la polvere capovolgendo.

Tenere la lampada UV nel campione. Attenzione: indossare occhiali di protezione contro i raggi UV!

Accendere la lampada UV.

Attendere un tempo di reazione di 10 minuto/i.

Spegnere la lampada UV al termine del conto alla rovescia



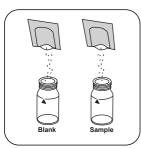
Prelevare la lampada UV dal campione.

Esecuzione della rilevazione Fosfonato, metodo di ossidazione con UV in persolfato con polvere in bustine Vario

Selezionare il metodo nel dispositivo.

Per la determinazione di Fosfonato con confezioni in polvere eseguire la digestione descritta.

Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.

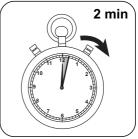


Immettere 10 ml del campione preparato e non sottoposto a digestione nella cuvetta zero.

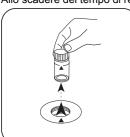
Immettere 10 ml del campione preparato e sottoposto a digestione nella cuvetta del campione.

Immettere una bustina di polvere Vario Phosphate Rgt. F10 in ogni cuvetta.

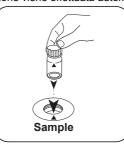
Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo (30 sec.).

Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.



Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Sul display compare il risultato in mg/l di PO_4 3 .

Premere il tasto **TEST** (XD: **START**).

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	PBTC	2.84
mg/l	NTP	1.05
mg/l	HEDPA	1.085
mg/l	EDTMPA	1.148
mg/l	HMDTMPA	1.295
mg/l	DETPMPA	1.207

Metodo chimico

Metodo dell'ossidazione UV con persolfato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-9.32417 • 10 ⁻¹	-9.32417 • 10 ⁻¹
b	1.93355 • 10+1	4.15713 • 10 ⁺¹
С		
d		
е		
f		

Interferenze

Interferenze	da / [mg/L]	Influenza
Alluminio (da 100 mg / I)	1000	
Arsenico	in tutte le concentrazioni	
Benzotriazoles	10	
HCO ₃ -	1000	
Br	100	
Ca	5000	
CDTA	100	
Cl ⁻	5000	
CrO ₄ ²⁻	100	
Cu	100	
CN ⁻	100	
Diethanoldithiocarba- mate	50	
EDTA	100	
Fe	200	
NO ₃ -	200	
NTA	250	
PO ₄ 3-	15	
Fosfiti, composti orga- nici del fosforo	grandi quantità	Meta e polifosfati non interferiscono
SiO ₂	500	
Si(OH) ₄	100	
SO ₄ ²⁻	2000	
S ²⁻	in tutte le quan- tità	
SO ₃ ²⁻	100	
Thiourea (da 10 mg / l)	10	
Campione pesante- mente tamponato o campioni con valori di pH estremi		Può superare la capacità tampone dei reagenti

Riferimenti bibliografici

Blystone, P., Larson, P., A Rapid Method for Analysis of Phosphate Compounds, International Water Conference, Pittsburgh, PA. (Oct 26-28, 1981)

Secondo

Standard Method 4500-P I

Fosfato tot. LR TT

M317

0.07 - 3 mg/L Pb)

Blu di fosfomolibdeno

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	690 nm	0.07 - 3 mg/L P ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fosfato totale LR	24 pz.	2419019
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

Campo di applicazione

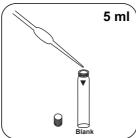
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

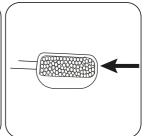
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Il colore blu ottenuto viene prodotto dalla reazione tra il reagente e gli ioni di ortofosfato. I fosfati presenti in forma organica e inorganica condensata (meta/piro/polifosfati) devono quindi essere trasformati in ioni di ortofosfato prima dell'analisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati legati organicamente vengono trasformati in ioni di ortofosfato tramite riscaldamento con acido e persolfato.
 La quantità di fosfato legato organicamente può essere così calcolata: mg/L di fosfati organici = mg/L di fosfato totale mg/L di fosfato idrolizzabile con acido.

Note

 Se la rilevazione viene eseguita senza digestione, vengono rilevati soltanto ortofosfati


Esecuzione della rilevazione Fosfato totale LR con test in cuvetta

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

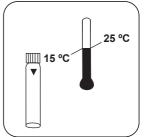
Aprire la cuvetta per reagenti.

Immettere 5 ml di campione nella cuvetta.

Aggiungere un cucchiaio dosatore raso di No. 4 (bianco) Phosphate-103.

Chiudere la/e cuvetta/e.

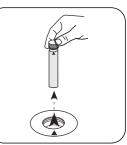
Miscelare il contenuto capovolgendo.


Sottoporre a digestione la/e cuvetta/e nel termoreattore preriscaldato per 30 minuti a 100 °C.

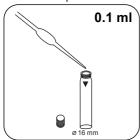
Prelevare la cuvetta dal termoreattore. (Attenzione: capovolgendo. la cuvetta è bollente!)

Miscelare il contenuto

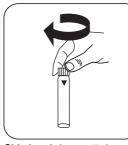
Lasciar raffreddare il campione a temperatura ambiente.



Posizionare la cuvetta zero in dotazione (etichetta rossa) nel vano di misurazione. Fare attenzione al posizionamento.

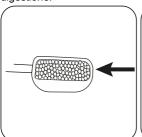

Zero

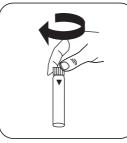
Premere il tasto **ZERO**.

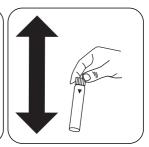


Prelevare la **cuvetta** dal vano di misurazione.

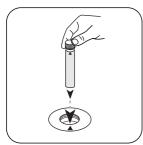
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Aggiungere 0.1 ml (2 gocce) Phosphate-101 del campione sottoposto a digestione.

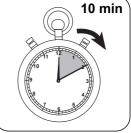

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Aggiungere un cucchiaio dosatore raso di Nr. 4 (bianco) Phosphate-102.



Chiudere la/e cuvetta/e.


Far sciogliere il contenuto agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 10 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Fosfato totale.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
ma/l	P ₂ O ₅	2.29137

Metodo chimico

Blu di fosfomolibdeno

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	-6.41247 • 10 ⁻²
b	4.92913 • 10+0
С	
d	
е	
f	

Interferenze

Interferenze permanenti

 Grandi quantità di solidi non disciolti possono provocare risultati di misura non riproducibili.

Interferenze	da / [mg/L]
Hg²⁺	100
Durezza totale	178,6 mmol/l (100 °dH)
NO ₂ ·	1
CrO ₄ ²⁻	10
p-PO ₄	10
S ²⁻	10
SiO ₂	10
CN ⁻	100
HCO ₃ -	35,8 mmol/l (100 °dH)
Al³+	500
Cr ³⁺	500
Cd ²⁺	1000
Mn ²⁺	1000
NH ₄ ⁺	1000
Zn ²⁺	1000
EDTA	100
Cl ⁻	1000
NO ₃ ·	1000
SO ₄ ²⁻	1000
SO ₃ 2-	1000

Secondo

ISO 6878-1-1986, DIN 38405 D11-4 Standard Method 4500-P E US EPA 365.2

 $^{^{\}text{b}}$ Reattore richiesto per COD (150 $^{\circ}$ C), TOC (120 $^{\circ}$ C) e cromo totale, - fosfato, azoto, (100 $^{\circ}$ C)

Fosfato tot. HR TT

M318

1.5 - 20 mg/L Pb)

Blu di fosfomolibdeno

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	ø 16 mm	690 nm	1.5 - 20 mg/L P ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fosfato totale HR	24 pz.	2420700
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

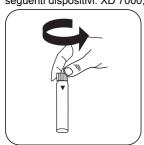
Campo di applicazione

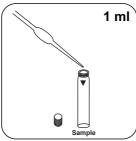
- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

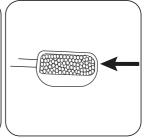
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Il colore blu ottenuto viene prodotto dalla reazione tra il reagente e gli ioni di ortofosfato. I fosfati presenti in forma organica e inorganica condensata (meta/piro/polifosfati) devono quindi essere trasformati in ioni di ortofosfato prima dell'analisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati legati organicamente vengono trasformati in ioni di ortofosfato tramite riscaldamento con acido e persolfato.
 La quantità di fosfato legato organicamente può essere così calcolata: mg/L di fosfati organici = mg/L di fosfato totale mg/L di fosfato idrolizzabile con acido.

Note


 Se la rilevazione viene eseguita senza digestione, vengono rilevati soltanto ortofosfati


Esecuzione della rilevazione Fosfato totale HR con test in cuvetta

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

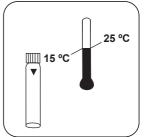
Aprire la cuvetta per reagenti.


Immettere 1 ml di campione nella cuvetta del campione.

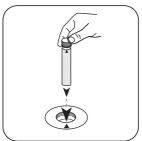
Aggiungere un cucchiaio dosatore raso di No. 4 (bianco) Phosphate-103.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Sottoporre a digestione la/e cuvetta/e nel termoreattore preriscaldato per 30 minuti a 100 °C.

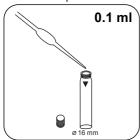
Prelevare la cuvetta dal termoreattore. (Attenzione: capovolgendo. la cuvetta è bollente!)



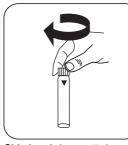
Miscelare il contenuto

Lasciar raffreddare la/e cuvetta/e a temperatura ambiente.

Posizionare la cuvetta zero in dotazione (etichetta rossa) nel vano di misurazione. Fare attenzione al posizionamento.

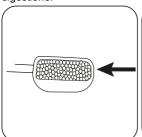

Zero

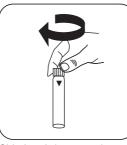
Premere il tasto **ZERO**.

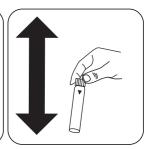


Prelevare la **cuvetta** dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Aggiungere 0.1 ml (2 gocce) Phosphate-101 del campione sottoposto a digestione.


Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Aggiungere un cucchiaio dosatore raso di No. 4 (bianco) Phosphate-102.

Chiudere la/e cuvetta/e.

Far sciogliere il contenuto agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 10 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Fosfato totale.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P ₂ O ₅	2.29137

Metodo chimico

Blu di fosfomolibdeno

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm
а	-2.31245 • 10 ⁻¹
b	2.78092 • 10+1
С	4.2385 • 10+0
d	
е	
f	

Interferenze

Interferenze	da / [mg/L]
Cu ²⁺	5
Ni ²⁺	25
Pb ²⁺	25
Fe ²⁺	250
Fe³+	250
Hg ²⁺	250
Al ³⁺	1000
Cr ³⁺	1000

Interferenze	da / [mg/L]
Cd ²⁺	1000
Mn ²⁺	1000
NH ₄ ⁺	1000
Zn²+	1000
Durezza totale	446,5 (2500 °dH)
NO ₂ -	5
CrO ₄ ²⁻	30
p-PO ₄	30
S ²⁻	30
SiO ₂	30
CN ⁻	250
HCO ₃ ·	89,5 mmol/l (250 °dH)
EDTA	250
Cl ⁻	1000
NO ₃ ·	1000
SO ₄ ²⁻	1000
SO ₃ ²⁻	1000

Secondo

DIN ISO 15923-1 D49 Standard Method 4500-P E US EPA 365.2

 $^{^{\}text{b}}$ Reattore richiesto per COD (150 $^{\circ}$ C), TOC (120 $^{\circ}$ C) e cromo totale, - fosfato, azoto, (100 $^{\circ}$ C)

Fosfato LR T M319

0.05 - 4 mg/L P

P

Blu di fosfomolibdeno

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
PM 600, PM 620, PM 630	ø 24 mm	610 nm	0.05 - 4 mg/L P

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fosfati No. 1 LR	Pastiglia / 100	513040BT
Fosfati No. 2 LR	Pastiglia / 100	513050BT
Fosfati No. 2 LR	Pastiglia / 250	513051BT
Set Fosfati No. 1 LR/No. 2 LR #	ciascuna 100	517651BT

Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di caldaia
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Controllo acqua in vasca

Preparazione

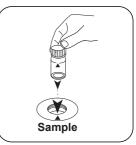
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Il colore blu ottenuto viene prodotto dalla reazione tra il reagente e gli ioni di ortofosfato. I fosfati presenti in forma organica e inorganica condensata (meta/piro/polifosfati) devono quindi essere trasformati in ioni di ortofosfato prima dell'analisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati legati organicamente vengono trasformati in ioni di ortofosfato tramite riscaldamento con acido e persolfato.
 La quantità di fosfato legato organicamente può essere così calcolata: mg/L di fosfati organici = mg/L di fosfato totale mg/L di fosfato idrolizzabile con acido.

Note

- 1. Reagiscono soltanto gli ioni di ortofosfato.
- 2. Attenersi scrupolosamente all'ordine con cui aggiungere le pastiglie.

Esecuzione della rilevazione Fosfato orto LR con pastiglia

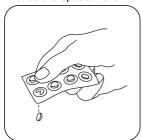
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

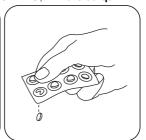
Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

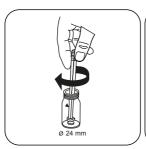


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

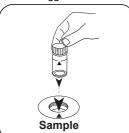

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

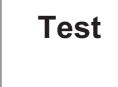
Aggiungere una pastiglia PHOSPHATE No. 1 LR .

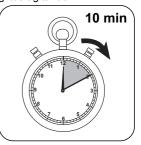


Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia PHOSPHATE No. 2 LR


Frantumare la/e pastiglia/e con una leggera rotazione.


Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 10 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ortofosfato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P ₂ O ₅	2.29137

Metodo chimico

Blu di fosfomolibdeno

Appendice

Interferenze

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100
Ni	300
H ₂ S	in tutte le quan- tità
SiO ₂	50
S ²⁻	in tutte le quan- tità
Zn	80
V(V)	grandi quantità
W(VI)	grandi quantità

Secondo

DIN ISO 15923-1 D49 Standard Method 4500-P E US EPA 365.2

[®]*Bacchetta compresa

Fosfato LR T

0.02 - 1.3 mg/L P

PO4

M320

Blu di fosfomolibdeno

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	660 nm	0.02 - 1.3 mg/L P
XD 7000, XD 7500	ø 24 mm	710 nm	0.016 - 1.305 mg/L P
SpectroDirect	ø 24 mm	710 nm	0.02 - 1.3 mg/L P

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fosfati No. 1 LR	Pastiglia / 100	513040BT
Fosfati No. 2 LR	Pastiglia / 100	513050BT
Fosfati No. 2 LR	Pastiglia / 250	513051BT
Set Fosfati No. 1 LR/No. 2 LR #	ciascuna 100	517651BT

Campo di applicazione

- · Trattamento acqua di scarico
- Acqua di caldaia
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Controllo acqua in vasca

Preparazione

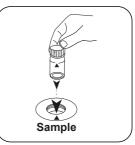
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Il colore blu ottenuto viene prodotto dalla reazione tra il reagente e gli ioni di ortofosfato. I fosfati presenti in forma organica e inorganica condensata (meta/piro/polifosfati) devono quindi essere trasformati in ioni di ortofosfato prima dell'analisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati legati organicamente vengono trasformati in ioni di ortofosfato tramite riscaldamento con acido e persolfato.
 La quantità di fosfato legato organicamente può essere così calcolata: mg/L di fosfati organici = mg/L di fosfato totale mg/L di fosfato idrolizzabile con acido.

Note

- 1. Reagiscono soltanto gli ioni di ortofosfato.
- 2. Attenersi scrupolosamente all'ordine con cui aggiungere le pastiglie.

Esecuzione della rilevazione Fosfato orto LR con pastiglia

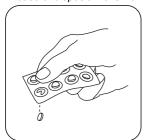
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

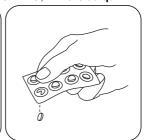
Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

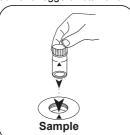
Prelevare la cuvetta dal vano di misurazione.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

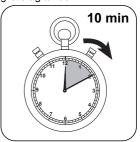
Aggiungere una pastiglia PHOSPHATE No. 1 LR .

Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia PHOSPHATE No. 2 LR


Frantumare la/e pastiglia/e con una leggera rotazione.


Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 10 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ortofosfato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P_2O_5	2.29137

Metodo chimico

Blu di fosfomolibdeno

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-3.51239 • 10 ⁻²	-3.51239 • 10 ⁻²
b	8.89272 • 10 ⁻¹	1.91193 • 10⁺⁰
С		
d		
е		
f		

Interferenze

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100
Ni	300
H ₂ S	in tutte le quan- tità

Interferenze	da / [mg/L]
SiO ₂	50
S ²⁻	in tutte le quan- tità
Zn	80
V(V)	grandi quantità
W(VI)	grandi quantità

Secondo

DIN ISO 15923-1 D49 Standard Method 4500-P E US EPA 365.2

[∋]#Bacchetta compresa

Fosfato HR T

M321

0.33 - 26 mg/L P

Molibdato di vanadio

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	430 nm	0.33 - 26 mg/L P
XD 7000, XD 7500	ø 24 mm	470 nm	0.33 - 26.09 mg/L P
SpectroDirect	ø 24 mm	470 nm	0.33 - 26 mg/L P

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Set Fosfati No. 1 HR/No. 2 HR #	ciascuna 100	517661BT
Fosfati HR P1	Pastiglia / 100	515810BT
Fosfati HR P2	Pastiglia / 100	515820BT

Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di caldaia
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

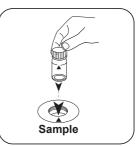
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Il colore giallo ottenuto viene prodotto dalla reazione tra il reagente e gli ioni di ortofosfato. I fosfati presenti in forma organica e inorganica condensata (meta/piro/polifosfati) devono quindi essere trasformati in ioni di ortofosfato prima dell'analisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati legati organicamente vengono trasformati in ioni di ortofosfato tramite riscaldamento con acido e persolfato.
 La quantità di fosfato legato organicamente può essere così calcolata: mg/L di fosfati organici = mg/L di fosfato totale mg/L di fosfato idrolizzabile con acido.

Note

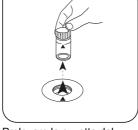
- 1. Reagiscono soltanto gli ioni di ortofosfato.
- Per i campioni con un tenore di fosforo inferiore a 5 mg/L PO₄ si consiglia di eseguire l'analisi con un metodo avente un basso range di misura, ad es. il metodo 320 "Fosfato orto LR con pastiglia".

Esecuzione della rilevazione Fosfato orto HR con pastiglia

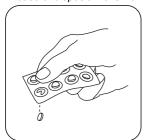
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

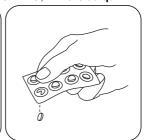

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

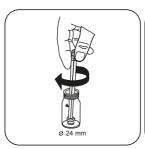


Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

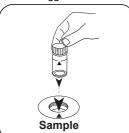

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia PHOSPHATE HR P1.

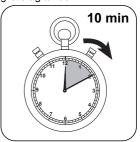


Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia PHOSPHATE HR P2.


Frantumare la/e pastiglia/e con una leggera rotazione.


Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 10 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ortofosfato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P ₂ O ₅	2.29137

Metodo chimico

Molibdato di vanadio

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.62225 • 10 ⁺⁰	-2.62225 • 10 ⁺⁰
b	2.53376 • 10+1	5.44759 • 10 ⁺¹
С	2.7388 • 10+0	1.26601 • 10+1
d		
е		
f		

Interferenze

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100
Ni	300
H ₂ S	in tutte le quan- tità

Interferenze	da / [mg/L]
SiO ₂	50
Si(OH) ₄	10
S ^{2.}	in tutte le quan- tità
Zn	80

Secondo

Standard Method 4500-P C

¹⁾ *Bacchetta compresa

Fosfato HR TT

M322

1 - 20 mg/L P

Molibdato di vanadio

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect	ø 16 mm	438 nm	1 - 20 mg/L P
XD 7000, XD 7500	ø 16 mm	438 nm	0.98 - 19.57 mg/L P

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Ortofosfato	24 pz.	2420701

Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di caldaia
- · Trattamento acqua potabile
- Trattamento acqua non depurata

Preparazione

- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Il colore giallo ottenuto viene prodotto dalla reazione tra il reagente e gli ioni di ortofosfato. I fosfati presenti in forma organica e inorganica condensata (meta/piro/polifosfati) devono quindi essere trasformati in ioni di ortofosfato prima dell'analisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati legati organicamente vengono trasformati in ioni di ortofosfato tramite riscaldamento con acido e persolfato.
 La quantità di fosfato legato organicamente può essere così calcolata: mg/L di fosfati organici = mg/L di fosfato totale mg/L di fosfato idrolizzabile con acido.

Note


1. Reagiscono soltanto gli ioni di ortofosfato.

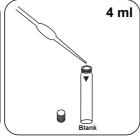
Esecuzione della rilevazione Fosfato orto con test in cuvetta


Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Posizionare la cuvetta zero Premere il tasto ZERO. in dotazione (etichetta rossa) nel vano di misurazione. Fare attenzione al posizionamento.

Zero

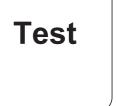


Prelevare la cuvetta dal vano di misurazione

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aprire una cuvetta per reagenti.


Immettere 4 ml di campione nella cuvetta.


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: START).

Attendere un tempo di reazione di 3 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ortofosfato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P_2O_5	2.29137

Metodo chimico

Molibdato di vanadio

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm	
а	-6.17854 • 10 ⁻¹	
b	3.31124 • 10+1	
С		
d		
е		
f		

Interferenze

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100
Ni	300
H ₂ S	in tutte le quan- tità

Interferenze	da / [mg/L]
SiO ₂	50
Si(OH) ₄	10
S ^{2.}	in tutte le quan- tità
Zn	80

Secondo

Standard Method 4500-P C

Fosfato PP M323

0.02 - 0.8 mg/L P

PO4

Blu di fosfomolibdeno

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	660 nm	0.02 - 0.8 mg/L P
XD 7000, XD 7500	ø 24 mm	890 nm	0.02 - 0.815 mg/L P
SpectroDirect	ø 24 mm	890 nm	0.02 - 0.8 mg/L P

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Phos 3 F10	Polvere / 100 pz.	531550

Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di caldaia
- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- · Controllo acqua in vasca

Preparazione

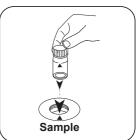
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Il colore blu ottenuto viene prodotto dalla reazione tra il reagente e gli ioni di ortofosfato. I fosfati presenti in forma organica e inorganica condensata (meta/piro/polifosfati) devono quindi essere trasformati in ioni di ortofosfato prima dell'analisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati legati organicamente vengono trasformati in ioni di ortofosfato tramite riscaldamento con acido e persolfato.
 La quantità di fosfato legato organicamente può essere così calcolata: mg/L di fosfati organici = mg/L di fosfato totale mg/L di fosfato idrolizzabile con acido.

Note

1. Il reagente Vario Phosphate Rgt. F10 non si scioglie completamente.

Esecuzione della rilevazione Fosfato orto con polvere in bustine Vario

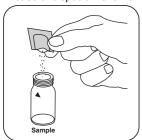
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

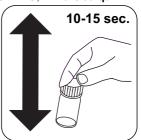
Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

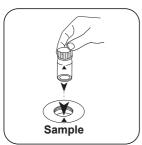
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.


Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Vario Phosphate Rgt. F10.

Miscelare il contenuto agitando (10-15 sec.).

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ortofosfato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P_2O_5	2.29137

Metodo chimico

Blu di fosfomolibdeno

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm	
а	-2.76562 • 10 ⁻²	-2.76562 • 10 ⁻²	
b	6.41362 • 10-1	1.37893 • 10⁺⁰	
С			
d			
е			
f			_

Interferenze

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100
Ni	300
H ₂ S	in tutte le quan- tità

Interferenze	da / [mg/L]
SiO ₂	50
Si(OH) ₄	10
S ²⁻	in tutte le quan- tità
Zn	80

Secondo

DIN ISO 15923-1 D49 Standard Method 4500-P E US EPA 365.2

Fosfato TT

M324

0.06 - 5 mg/L P

Blu di fosfomolibdeno

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	660 nm	0.06 - 5 mg/L P
XD 7000, XD 7500	ø 16 mm	890 nm	0.02 - 1.63 mg/L P
SpectroDirect	ø 16 mm	890 nm	0.02 - 1.6 mg/L P

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Ortofosfato, kit	1 set	535200

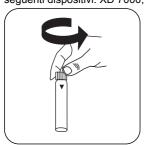
Campo di applicazione

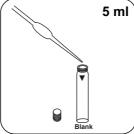
- · Trattamento acqua di scarico
- Acqua di caldaia
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

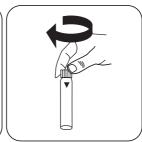
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Il colore blu ottenuto viene prodotto dalla reazione tra il reagente e gli ioni di ortofosfato. I fosfati presenti in forma organica e inorganica condensata (meta/piro/polifosfati) devono quindi essere trasformati in ioni di ortofosfato prima dell'analisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati legati organicamente vengono trasformati in ioni di ortofosfato tramite riscaldamento con acido e persolfato.
 La quantità di fosfato legato organicamente può essere così calcolata: mg/L di fosfati organici = mg/L di fosfato totale mg/L di fosfato idrolizzabile con acido.

Note


1. Il reagente non si scioglie completamente.


Esecuzione della rilevazione Fosfato orto con test in cuvetta Vario

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Aprire la cuvetta per reagenti Phosphate Dilution.

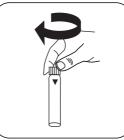
Immettere 5 ml di campione nella cuvetta.

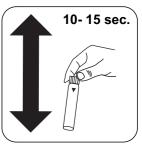
Chiudere la/e cuvetta/e.

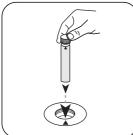
Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

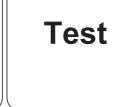
Premere il tasto ZERO.


Prelevare la **cuvetta** dal vano di misurazione.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.



Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Vario Phosphate Rgt. F10.



Miscelare il contenuto agitando (10- 15 sec.).

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ortofosfato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P ₂ O ₅	2.29137

Metodo chimico

Blu di fosfomolibdeno

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm
а	2.18629 • 10 ⁻²
b	1.71913 • 10+0
С	
d	
е	
f	

Interferenze

Interferenze permanenti

 Grandi quantità di solidi non disciolti possono provocare risultati di misura non riproducibili.

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100

Interferenze	da / [mg/L]
Ni	300
H ₂ S	in tutte le quan- tità
SiO ₂	50
Si(OH) ₄	10
S ²⁻	in tutte le quan- tità
Zn	80

Secondo

DIN ISO 15923-1 D49 Standard Method 4500-P E

Fosfato idr. TT

M325

0.02 - 1.6 mg/L Pb)

Blu di fosfomolibdeno

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	660 nm	0.02 - 1.6 mg/L P ^{b)}
SpectroDirect, XD 7000, XD 7500	ø 16 mm	890 nm	0.02 - 1.6 mg/L P ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Fosfato, idrolizzabile in acido, set totale	1 set	535250
Sono necessari inoltre i seguenti accessori.		

Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

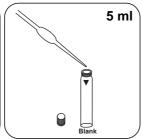
Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Il colore blu ottenuto viene prodotto dalla reazione tra il reagente e gli ioni di ortofosfato. I fosfati presenti in forma organica e inorganica condensata (meta/piro/polifosfati) devono quindi essere trasformati in ioni di ortofosfato prima dell'analisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati legati organicamente vengono trasformati in ioni di ortofosfato tramite riscaldamento con acido e persolfato.
 La quantità di fosfato legato organicamente può essere così calcolata: mg/L di fosfati organici = mg/L di fosfato totale mg/L di fosfato idrolizzabile con acido.

Note

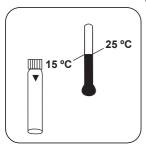

 Il reagente Vario Phosphat Rgt. F 10 deve essere agitato subito dopo l'aggiunta come descritto nella seguente procedura. Un'attesa eccessiva prima di agitare può ridurre la precisione. Dopo aver agitato per 10-15 secondi, alcuni componenti del reagente restano non disciolti.


Digestione

Aprire una cuvetta di digestione PO₄-P Acid Reagent.

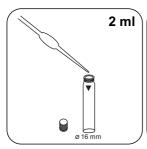
Immettere 5 ml di campione nella cuvetta.

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Sottoporre a digestione la/e Prelevare la cuvetta dal cuvetta/e nel termoreattore preriscaldato per 30 minuti la cuvetta è bollente!) a 100 °C.

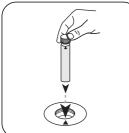
termoreattore. (Attenzione:


Lasciar raffreddare il campione a temperatura ambiente.

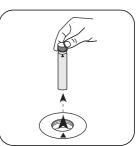
Esecuzione della rilevazione Fosfato idrolizzabile con acido con test in cuvetta Vario

Selezionare il metodo nel dispositivo.

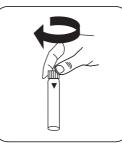
Per la determinazione di Fosfato idrolizzabile acido con Vario test nel tubo eseguire la digestione descritta.

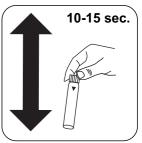

Aggiungere 2 ml 1,00 N Sodium Hydroxide solution del campione sottoposto a digestione.

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.



Prelevare la cuvetta dal vano di misurazione.


Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Vario Phosphate Rgt. F10.

Miscelare il contenuto agitando (10-15 sec.).

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Fosfato idrolizzabile acido.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P ₂ O ₅	2.29137

Metodo chimico

Blu di fosfomolibdeno

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	-1.65745 • 10 ⁻²
b	1.75186 • 10⁺⁰
С	
d	
е	
f	

Interferenze

Interferenze permanenti

 Grandi quantità di solidi non disciolti possono provocare risultati di misura non riproducibili.

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100

Interferenze	da / [mg/L]
Ni	300
H ₂ S	in tutte le quan- tità
SiO ₂	50
Si(OH) ₄	10
S ²⁻	in tutte le quan- tità
Zn	80

Secondo

ISO 6878-1-1986, DIN 38405 D11-4 Standard Method 4500-P E US EPA 365.2

 $^{^{\}text{\tiny b)}}$ Reattore richiesto per COD (150 $^{\circ}$ C), TOC (120 $^{\circ}$ C) e cromo totale, - fosfato, azoto, (100 $^{\circ}$ C)

Fosfato tot. TT

M326

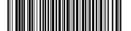
0.02 - 1.1 mg/L Pb)

Blu di fosfomolibdeno

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	660 nm	0.02 - 1.1 mg/L P ^{b)}
SpectroDirect, XD 7000, XD 7500	ø 16 mm	890 nm	0.02 - 1.1 mg/L P ^{b)}


Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Fosfato, set totale	1 set	535210
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940

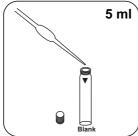
Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Preparazione

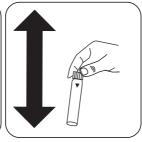
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Il colore blu ottenuto viene prodotto dalla reazione tra il reagente e gli ioni di ortofosfato. I fosfati presenti in forma organica e inorganica condensata (meta/piro/polifosfati) devono quindi essere trasformati in ioni di ortofosfato prima dell'analisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati legati organicamente vengono trasformati in ioni di ortofosfato tramite riscaldamento con acido e persolfato.
 La quantità di fosfato legato organicamente può essere così calcolata: mg/L di fosfati organici = mg/L di fosfato totale mg/L di fosfato idrolizzabile con acido.

Note


 Il reagente Vario Phosphat Rgt. F 10 deve essere agitato subito dopo l'aggiunta come descritto nella seguente procedura. Un'attesa eccessiva prima di agitare può ridurre la precisione. Dopo aver agitato per 10-15 secondi, alcuni componenti del reagente restano non disciolti.

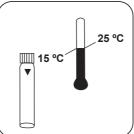
Digestione

Aprire una cuvetta di digestione PO₄-P Acid Reagent.


Immettere 5 ml di campione nella cuvetta.

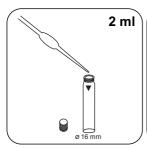
Aggiungere una bustina di polvere Vario Potassium Persulfate F10.

Chiudere la/e cuvetta/e.

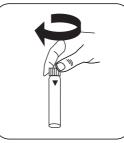

Miscelare il contenuto agitando.

Sottoporre a digestione la/e cuvetta/e nel termoreattore preriscaldato per 30 minuti a 100 °C .

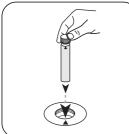
Prelevare la cuvetta dal termoreattore. (Attenzione: campione a temperatura la cuvetta è bollente!)


Lasciar raffreddare il ambiente.

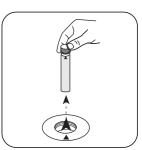
Esecuzione della rilevazione Fosfato totale con test in cuvetta Vario


Selezionare il metodo nel dispositivo.

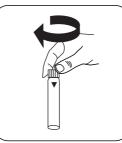
Per la determinazione di Fosfato, totale con Vario Vial Test eseguire la digestione descritta.

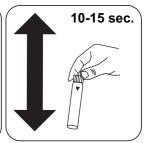

Aggiungere 2 ml 1,54 N soluzione di idrossido di sodio del campione sottoposto a digestione.

Chiudere la/e cuvetta/e.

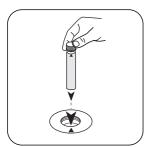

Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.



Prelevare la cuvetta dal vano di misurazione.


Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Vario Phosphate Rgt. F10.

Miscelare il contenuto agitando (10-15 sec.).

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Fosfato totale.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P_2O_5	2.29137

Metodo chimico

Blu di fosfomolibdeno

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm	
а	-8.23365 • 10 ⁻³	
b	1.74336 • 10+0	
С		
d		
е		
f		

Interferenze

Interferenze permanenti

 Grandi quantità di solidi non disciolti possono provocare risultati di misura non riproducibili.

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100

Interferenze	da / [mg/L]
Ni	300
H ₂ S	in tutte le quan- tità
SiO ₂	50
Si(OH) ₄	10
S ²⁻	in tutte le quan- tità
Zn	80

Secondo

ISO 6878-1-1986, DIN 38405 D11-4 Standard Method 4500-P E US EPA 365.2

 $^{^{\}text{\tiny b)}}$ Reattore richiesto per COD (150 $^{\circ}$ C), TOC (120 $^{\circ}$ C) e cromo totale, - fosfato, azoto, (100 $^{\circ}$ C)

Fosfato HR C

M327

1.6 - 13 mg/L Pc)

Molibdato di vanadio

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, XD 7000, XD 7500	ø 13 mm	430 nm	1.6 - 13 mg/L P ^{c)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Kit di analisi dei fosfati Vacu-vial	1 set	380460

Sono necessari inoltre i seguenti accessori.

· · · · · · · · · · · · · · · · · · ·		
Accessori	Unità di imballaggio	N. ordine
Adattatore per cuvette rotonde 13 mm	1 pz.	19802192
Adattatore (13 mm) MultiDirect per Vacu-vial	1 pz.	192075

Campo di applicazione

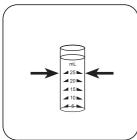
- · Trattamento acqua di scarico
- · Acqua di caldaia
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

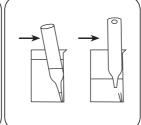
Note

- Questo metodo è un prodotto CHEMetrics. Il range di misura specificato in questo fotometro e la lunghezza d'onda utilizzata possono tuttavia differire dalle indicazioni di CHEMetrics.
- Prima di eseguire il test leggere le istruzioni originali e la scheda tecnica di sicurezza accluse al kit di test (gli MSDS sono anche disponibili sul sito www.chemetrics.com).
- 3. Vacu-Vials® è un marchio protetto dell'azienda CHEMetrics, Inc / Calverton, U.S.A.
- 4. Reagiscono soltanto gli ioni di ortofosfato.

Esecuzione della rilevazione Fosfato HR orto con Vacu Vials® K-8503

Selezionare il metodo nel dispositivo.

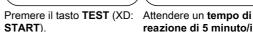

Posizionare la fiala zero nel vano di misurazione.

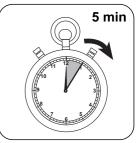

Premere il tasto ZERO.

Prelevare la fiala zero dal vano di misurazione.

Immettere il campione nella Posizionare una fiala Vacucuvetta fino a raggiungere la tacca dei 25 ml.

vial® nel recipiente per campioni. Rompere la punta della fiala premendo leggermente contro la parete del recipiente. Atten- gare esternamente. dere il completo riempimento della fiala.




Capovolgere più volte la fiala in modo tale che la bolla d'aria si sposti da un'estremità all'altra. Successivamente asciu-

Posizionare la fiala nel vano di misurazione.

Test

reazione di 5 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ortofosfato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066
mg/l	P_2O_5	2.3

Metodo chimico

Molibdato di vanadio

Appendice

	ø 13 mm	
а	-5.56981 • 10 ⁻¹	
b	2.94923 • 10+1	
С		
d		
е		
f		

Interferenze

Interferenze permanenti

• Solfuri, tiosolfati e tiocianidi producono risultati più bassi.

Interferenze	da / [mg/L]
Al	200
AsO ₄ 3-	in tutte le quan- tità
Cr	100
Cu	10
Fe	100
Ni	300
SiO ₂	50
Si(OH) ₄	10
S ²⁻	in tutte le quan- tità
Zn	80

Secondo

Standard Method 4500-P C

^{o)}MultiDirect: necessario adattatore per Vacu-vials[®](numero d'ordine 19 20 75)

Fosfato LR C

M328

0.02 - 1.6 mg/L Pc)

Cloruro stannoso

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 13 mm	660 nm	0.02 - 1.6 mg/L P ^{c)}
XD 7000, XD 7500	ø 13 mm	660 nm	0.016 - 1.6 mg/L P ^{c)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Kit di analisi dei fosfati Vacu-vial	1 set	380480

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Adattatore per cuvette rotonde 13 mm	1 pz.	19802192
Adattatore (13 mm) MultiDirect per Vacu-vial	1 pz.	192075

Campo di applicazione

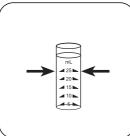
- · Trattamento acqua di scarico
- · Acqua di caldaia
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Note

- Questo metodo è un prodotto CHEMetrics. Il range di misura specificato in questo fotometro e la lunghezza d'onda utilizzata possono tuttavia differire dalle indicazioni di CHEMetrics.
- Prima di eseguire il test leggere le istruzioni originali e la scheda tecnica di sicurezza accluse al kit di test (gli MSDS sono anche disponibili sul sito www.chemetrics.com).
- 3. Vacu-Vials® è un marchio protetto dell'azienda CHEMetrics, Inc / Calverton, U.S.A.
- 4. Reagiscono soltanto gli ioni di ortofosfato.

Esecuzione della rilevazione Fosfato LR orto con Vacu Vials® K-8513

Selezionare il metodo nel dispositivo.


Posizionare la **fiala zero** nel vano di misurazione.

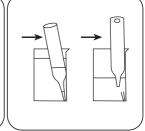
Premere il tasto ZERO.

Prelevare la fiala zero dal vano di misurazione.

Immettere il campione nella cuvetta fino a raggiungere la tacca dei 25 ml.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo

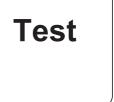
Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

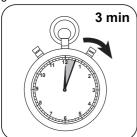

Aggiungere 2 gocce di attivatore A-8500.

Chiudere la cuvetta con il coperchio.

Miscelare il contenuto capovolgendo.

Posizionare una fiala Vacuvial® nel recipiente per campioni. Rompere la punta della fiala premendo leggermente contro la parete del recipiente. Attendere il completo riempimento della fiala




Capovolgere più volte la fiala in modo tale che la bolla d'aria si sposti da un'estremità all'altra. Successivamente asciugare esternamente.

Posizionare la fiala nel vano di misurazione.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 3 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Ortofosfato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066
mg/l	P ₂ O ₅	2.3

Metodo chimico

Cloruro stannoso

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 13 mm	
а	-2.51412 • 10 ⁻²	
b	1.93277 • 10⁺⁰	
С		
d		
е		
f		

Interferenze

Interferenze permanenti

• Solfuri, tiosolfati e tiocianidi producono risultati più bassi.

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100
Ni	300
SiO ₂	50
Si(OH) ₄	10
S ²⁻	in tutte le quan- tità
Zn	80

Secondo

Standard Method 4500-P D

^oMultiDirect: necessario adattatore per Vacu-vials®(numero d'ordine 19 20 75)

Valore pH LR T

M329

5.2 - 6.8

Porpora di bromocresolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630, XD 7000, XD 7500	ø 24 mm	560 nm	- 6.8
MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630, XD 7000, XD 7500	ø 24 mm	560 nm	5.2 - 6.8

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fotometro violetto di bromocresolo	Pastiglia / 100	515700BT
Fotometro violetto di bromocresolo	Pastiglia / 250	515701BT

Campo di applicazione

- · Acqua di caldaia
- · Controllo acqua in vasca
- Trattamento acqua di piscina
- · Trattamento acqua non depurata

Note

- 1. Per la rilevazione fotometrica si devono utilizzare soltanto pastiglie BROMCRESOL PURPLE con etichetta nera contrassegnate con il termine PHOTOMETER.
- 2. L'accuratezza dei valori di pH ottenuti con la rilevazione colorimetrica dipende da diverse condizioni collaterali (potere tamponante del campione, salinità ecc.).

Esecuzione della rilevazione Valore pH LR con pastiglia

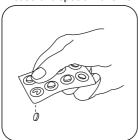
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

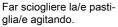


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia **BROMCRESOLPURPLE** PHOTOMETER.



Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come valore pH.

Metodo chimico

Porpora di bromocresolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	4.59342 • 10 ⁺⁰	4.59342 • 10+0
b	2.8352 • 10+0	6.09568 • 10+0
С	-2.28986 • 10 ⁺⁰	-1.05849 • 10 ⁺¹
d	9.993 • 10-1	9.93142 • 10+0
е	-1.5366 • 10 ⁻¹	-3.28333 • 10⁺⁰
f		

Interferenze

Interferenze permanenti

 I valori di pH minori di 5,2 e maggiori di 6,8 possono dare risultati entro il range di misura. Si consiglia un test di plausibilità (misuratore di pH).

Interferenze escludibili

Errore salino: Correzione del valore di misura (valori medi) per i campioni con una salinità di:

Indicatore	Salinità del cam	Salinità del campione		
Bromcresol-	1 molare -0,26	2 molare -0,33	3 molare -0,31	
purpur				

I valori di Parson und Douglas (1926) si riferiscono all'uso di tamponi Clark e Lubs. 1 Mol NaCl = 58.4 q/L = 5.8 %

Riferimenti bibliografici

Colorimetric Chemical Analytical Methods, 9th Edition, London

Valore pH T	M330
6.5 - 8.4	РН
Rosso fenolo	

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	560 nm	- 8.4
Scuba II	ø 24 mm	530 nm	6.5 - 8.4
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	560 nm	6.5 - 8.4
SpectroDirect, XD 7000, XD 7500	ø 24 mm	558 nm	6.5 - 8.4

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fotometro rosso fenolo	Pastiglia / 100	511770BT
Fotometro rosso fenolo	Pastiglia / 250	511771BT
Fotometro rosso fenolo	Pastiglia / 500	511772BT

Campo di applicazione

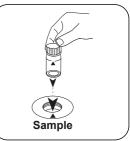
- · Acqua di caldaia
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- Trattamento acqua non depurata

Note

 Per la rilevazione fotometrica del valore di pH si devono utilizzare soltanto pastiglie PHENOL RED con etichetta nera contrassegnate con il termine PHOTOMETER.

Esecuzione della rilevazione Valore pH con pastiglia

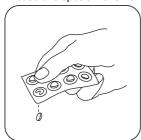
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

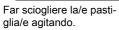


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia PHENOL RED PHOTO-METER.



Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come valore pH.

Metodo chimico

Rosso fenolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	5.95215 • 10⁺⁰	5.95215 • 10 ⁺⁰
b	4.13767 • 10+0	8.89599 • 10+0
С	-5.29861 • 10⁺⁰	-2.44928 • 10 ⁺¹
d	3.74419 • 10+0	3.72112 • 10+1
е	-1.25321 • 10 ⁺⁰	-2.6778 • 10 ⁺¹
f	1.6149 • 10 ⁻¹	7.41887 • 10+0

Interferenze

Interferenze permanenti

 I campioni di acqua con una bassa durezza carbonatica* possono far ottenere valori di pH errati.

Interferenze escludibili

- I valori di pH minori di 6,5 e maggiori di 8,4 possono dare risultati entro il range di misura. Si consiglia un test di plausibilità (misuratore di pH).
- 2. Errore salino:

Con una salinità fino a 2 g/L non è previsto alcun errore salino significativo dovuto alla salinità della pastiglia di reagente. Con salinità maggiori è necessario correggere i valori di misura nel modo seguente:

Salinità del campione in g/L	30 (acqua di mare)	60	120	180
Correzione	-0,15¹)	-0,212)	-0,262)	-0,292)

¹⁾ secondo Kolthoff (1922)

Riferimenti bibliografici

Colorimetric Chemical Analytical Methods, 9th Edition, London

^{*}K_{s4,3} < 0,7 mmol/l ≙ alcalinità totale < 35 mg/L CaCO₃.

²⁾ secondo Parson e Douglas (1926)

Valore pH L	M331
6.5 - 8.4	PH
Rosso fenolo	

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	560 nm	- 8.4
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	560 nm	6.5 - 8.4
SpectroDirect, XD 7000, XD 7500	ø 24 mm	558 nm	6.5 - 8.4

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Soluzione di rosso fenolo	15 mL	471040
Soluzione di rosso fenolo	100 mL	471041
Soluzione di rosso fenolo in confezione da 6	1 pz.	471046

Campo di applicazione

- Acqua di caldaia
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua non depurata

Preparazione

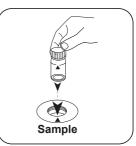
 Per via della dimensione variabile delle gocce, il risultato della misurazione può presentare divergenze maggiori di quanto avvenga con l'uso delle pastiglie. Utilizzando una pipetta (0,18 ml corrispondono a 6 gocce) si può ridurre al minimo questa divergenza.

Note

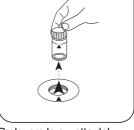
- Dopo l'uso bisogna richiudere immediatamente la boccetta contagocce con il relativo tappo dello stesso colore.
- 2. Conservare al fresco il reagente a una temperatura compresa tra +6 °C e +10 °C.

Esecuzione della rilevazione Valore pH con reagente liquido

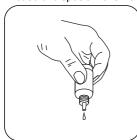
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.


Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



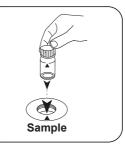
Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 6 gocce di PHENOL Red-Lösung.



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Sul display compare il risultato come valore pH.

Test

Premere il tasto **TEST** (XD: **START**).

Metodo chimico

Rosso fenolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	5.95215 • 10 ⁺⁰	5.95215 • 10⁺⁰
b	4.13767 • 10 ⁺⁰	8.89599 • 10+0
С	-5.29861 • 10 ⁺⁰	-2.44928 • 10 ⁺¹
d	3.74419 • 10 ⁺⁰	3.72112 • 10 ⁺¹
е	-1.25321 • 10 ⁺⁰	-2.6778 • 10 ⁺¹
f	1.6149 • 10 ⁻¹	7.41887 • 10 ⁺⁰

Interferenze

Interferenze escludibili

 Errore salino: Correzione del valore di misura (valori medi) per i campioni con una salinità di:

2.	Salinità del campione	Correzione
	30 g/L (acqua di mare)	-0,15 ¹⁾
_	60 g/L	-0,21 ²⁾
	120 g/L	-0,262)
_	180 g/L	-0,292)
	¹) secondo Kolthoff (1922)	²⁾ secondo Parson e Douglas (1926)

 Nell'analisi di acqua clorurata, il tenore di cloro residuo può influenzare la reazione cromatica del reagente liquido. Tale interferenza viene evitata immettendo un piccolo cristallo di tiosolfato di sodio (Na₂S₂O₃·5 H₂O) nella soluzione campione prima di aggiungere la soluzione PHENOL RED.

Riferimenti bibliografici

Colorimetric Chemical Analytical Methods, 9th Edition, London

Valore pH HR T

M332

8.0 - 9.6

Blu di timolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630, XD 7000, XD 7500	ø 24 mm	560 nm	- 9.6
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630, XD 7000, XD 7500	ø 24 mm	560 nm	8.0 - 9.6

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fotometro blu timolo	Pastiglia / 100	515710BT
Fotometro blu timolo	Pastiglia / 250	515711BT

Campo di applicazione

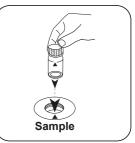
- · Acqua di caldaia
- · Controllo acqua in vasca
- · Trattamento acqua di piscina
- · Trattamento acqua non depurata

Note

- Per la rilevazione fotometrica si devono utilizzare soltanto pastiglie THYMOBLUE con etichetta nera contrassegnate con il termine PHOTOMETER.
- 2. L'accuratezza dei valori di pH ottenuti con la rilevazione colorimetrica dipende da diverse condizioni collaterali (potere tamponante del campione, salinità ecc.).

Esecuzione della rilevazione Valore pH con pastiglia

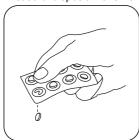
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

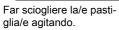


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia THYMOLBLUE PHOTO-METER.



Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato come valore pH.

Test

Premere il tasto TEST (XD: START).

Metodo chimico

Blu di timolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	7.35421 • 10+0	7.35421 • 10⁺⁰
b	2.35059 • 10+0	5.05377 • 10⁺⁰
С	-1.31655 • 10⁺⁰	-6.08575 • 10 ⁺⁰
d	3.4837 • 10 ⁻¹	3.46223 • 10⁺⁰
е		
f		

Interferenze

Interferenze permanenti

1. I valori di pH minori di 8,0 e maggiori di 9,6 possono dare risultati entro il range di misura. Si consiglia un test di plausibilità (misuratore di pH).

Interferenze escludibili

Errore salino: Correzione del valore di misura (valori medi) per i campioni con una salinità di:

Indicatore	Salinità del campione			
Thymolblau	1 molare -0,22	2 molare -0,29	3 molare -0,34	
I valori di Parson	und Douglas (192	26) și riferiscono a	ll'uso di tamponi Cl	ark e l

I valori di Parson und Douglas (1926) si riferiscono all'uso di tamponi Clark e Lubs. 1 Mol NaCl = 58,4 g/L = 5,8 %

Riferimenti bibliografici

Colorimetric Chemical Analytical Methods, 9th Edition, London

Fosfato LR L

M334

0.1 - 10 mg/L PO₄

Acido fosfomolibdico / acido ascorbico

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640,	ø 24 mm	660 nm	0.1 - 10 mg/L PO ₄
XD 7000. XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Confezione di reagenti per fosfati LR	1 pz.	56R023765
KS278-Acido solforico 50%	65 mL	56L027865
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P	65 mL	56L013565
KS144-CH2-FC4-Tampone durezza calcica	65 mL	56L014465
KP962-Persolfato di ammonio in polvere	Polvere / 40 g	56P096240

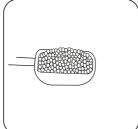
Campo di applicazione

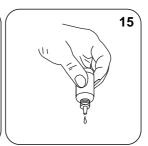
- · Trattamento acqua di scarico
- · Acqua di caldaia
- · Trattamento acqua potabile
- Trattamento acqua non depurata
- · Controllo acqua in vasca

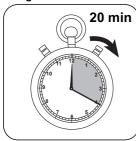
Preparazione

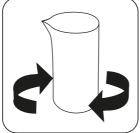
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Per l'analisi di polifosfati e fosfato totale è necessaria una digestione.

Note


- 1. Per il dosaggio corretto si deve utilizzare il cucchiaio dosatore fornito in dotazione con i reagenti.
- 2. Il cucchiaio lungo viene utilizzato per il reagente KP962. Il cucchiaio corto viene utilizzato per il reagente KP119.


Digestione Fosfato, LR totale con reagenti liquidi


Riempire un recipiente di digestione adeguato con 50 ml di campione omogeneizzato.


Aggiungere un cucchiaio dosatore di KP962 (Ammonium Persulfate Powder).


Aggiungere 15 gocce di KS278 (50% acido solforico).

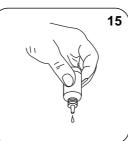
Cuocere il campione per 20 minuti . Il volume del campione dovrebbe restare al di sopra dei 25 ml; se necessario, rabboccare con acqua demineralizzata.

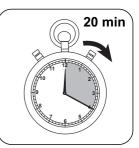
Capovolgere il recipiente di digestione e lasciarla raffreddare a temperatura ambiente.

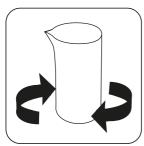
Aggiungere 2 gocce di KS135 (Phenolphthalein Substitute Indikator).

Aggiungere allo stesso campione KS 144 (Calcium Hardness Puffer) in gocce finché non si presenta una colorazione da rosa chiaro a rosso. (Attenzione: dopo l'aggiunta di ogni goccia far

oscillare il campione!)


Aggiungere al campione acqua demineralizzata fino a raggiungere i 50 ml


Digestione Polifosfato LR con reagenti liquidi


Riempire un recipiente di digestione adeguato con 50 ml di campione omogeneizzato.

Aggiungere 15 gocce di KS278 (50% acido solforico).

Cuocere il campione per 20 minuti . Il volume del campione dovrebbe restare al di sopra dei 25 ml; se necessario, rabboccare con acqua demineralizzata.

Capovolgere il recipiente di digestione e lasciarla raffreddare a temperatura ambiente.

Aggiungere 2 gocce di KS135 (Phenolphthalein Substitute Indikator).

Aggiungere allo stesso campione KS 144 (Calcium Hardness Puffer) in gocce finché non si presenta una colorazione da rosa chiaro a rosso. (Attenzione: dopo l'aggiunta di ogni goccia far oscillare il campione!)

Aggiungere al campione acqua demineralizzata fino a raggiungere i 50 ml

.

Esecuzione della rilevazione Fosfato LR con reagente liquido

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Filtrare circa 14 ml di campione con un filtro precedentemente risciacquato (diametro pori 0,45 µm).

Riempire una cuvetta da 24 mm con 10 ml del campione preparato.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **ZERO**.

Prelevare la cuvetta dal vano di misurazione.

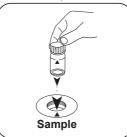
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 50 gocce di KS80 (CRP) .

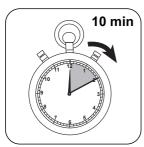
Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere un cucchiaio dosatore di KP119 (Ascorbic Acid).

Chiudere la/e cuvetta/e.

Far sciogliere la polvere capovolgendo.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 10 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Fosfato.

Esecuzione della rilevazione Polifosfato LR con reagenti liquidi

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui sequenti dispositivi: XD 7000, XD 7500

Per la determinazione di **Polifosfato LR con reagenti liquidi** eseguire la **digestione** descritta

Questo test rileva il tenore di fosfato totale inorganico. Il tenore di polifosfati si ottiene dalla differenza tra il fosfato organico e l'ortofosfato.

La determinazione di Polifosfato LR con reagenti liquidi si esegue come la determinazione descritta in Metodo 334, fosfato LR con reagenti liquidi.

Sul display compare il risultato in mg/l di Fosfato totale inorganico (orto-fosfato e polifosfato).

Esecuzione della rilevazione Fosfato, LR totale con reagenti liquidi

Selezionare il metodo nel dispositivo.

Per la determinazione di Fosfato, LR totale con reagenti liquidi eseguire la digestione descritta.

Questo test rileva tutti i composti di fosforo presenti nel campione, inclusi ortofosfato, polifosfato e composti di fosforo organici.

La determinazione di Fosfato, LR totale con reagenti liquidi si esegue come la determinazione descritta in Metodo 334, fosfato LR con reagenti liquidi.

Sul display compare il risultato in mg/l di total Phosphate.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P ₂ O ₅	2.29137

Metodo chimico

Acido fosfomolibdico / acido ascorbico

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-4.14247 • 10 ⁻²	-4.14247 • 10 ⁻²
b	1.33552 • 10⁺⁰	2.87137 • 10+0
С	-2.89775 • 10 ⁻¹	-1.33948 • 10 ⁺⁰
d	2.04577 • 10-1	2.03316 • 10+0
е		
f		

Interferenze

Interferenze permanenti

 Grandi quantità di sostanze non disciolte possono provocare risultati di misura non riproducibili.

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100
Ni	300
SiO ₂	50
Si(OH) ₄	10
S ²⁻	in tutte le quan- tità
Zn	80

Secondo

DIN ISO 15923-1 D49 Standard Method 4500-P E US EPA 365.2

Fosfato HR L

M335

5 - 80 mg/L PO₄

PO4

Molibdato di vanadio

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, XD 7000, XD 7500	ø 24 mm	430 nm	5 - 80 mg/L PO ₄

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Fosfato HR, set di reagenti ortofosfati	1 pz.	56R019090
KS278-Acido solforico 50%	65 mL	56L027865
KS135 Pa1/Alk1-Fenolftaleina Sub-Alk P	65 mL	56L013565
KS144-CH2-FC4-Tampone durezza calcica	65 mL	56L014465
KP962-Persolfato di ammonio in polvere	Polvere / 40 g	56P096240

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Asta di agitazione e cucchiaio per la polvere	1 pz.	56A006601

Campo di applicazione

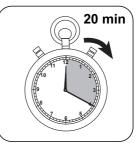
- · Trattamento acqua di scarico
- · Acqua di caldaia
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

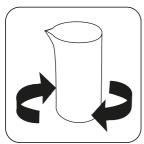
Preparazione

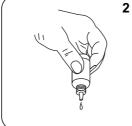
- I campioni fortemente tamponati o i campioni con valori di pH estremi dovrebbero essere portati prima dell'analisi entro un range di pH compreso tra 6 e 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).
- 2. Per l'analisi di polifosfati e fosfato totale è necessaria una digestione.

Note

1. Reagenti e accessori disponibili su richiesta.


Digestione Polifosfato HR con reagenti liquidi


Riempire un recipiente di digestione adeguato con 50 ml di campione omogeneizzato.

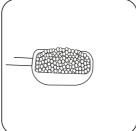

Aggiungere 15 gocce di KS278 (50% acido solforico).

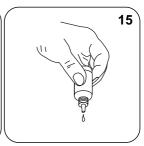
Cuocere il campione per 20 minuti . Il volume del campione dovrebbe restare al di sopra dei 25 ml; se necessario, rabboccare con acqua demineralizzata.

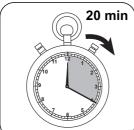
Capovolgere il recipiente di digestione e lasciarla raffreddare a temperatura ambiente.

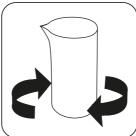
Aggiungere 2 gocce di KS135 (Phenolphthalein Substitute Indikator).

Aggiungere allo stesso campione KS 144 (Calcium Hardness Puffer) in gocce finché non si presenta una colorazione da rosa chiaro a rosso. (Attenzione: dopo l'aggiunta di ogni goccia far oscillare il campione!)


Aggiungere al campione acqua demineralizzata fino a raggiungere i 50 ml


Digestione Fosfato, HR totale con reagenti liquidi


Riempire un recipiente di digestione adeguato con 50 ml di campione omogeneizzato.


Aggiungere un cucchiaio dosatore di KP962 (Ammonium Persulfate Powder).

Aggiungere 15 gocce di KS278 (50% sulfuric acid).

Cuocere il campione per 20 minuti . Il volume del campione dovrebbe restare al di sopra dei 25 ml; se necessario, rabboccare con acqua demineralizzata.

Capovolgere il recipiente di digestione e lasciarla raffreddare a temperatura ambiente.

Aggiungere 2 gocce di KS135 (Phenolphthalein Substitute Indikator).

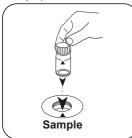
Aggiungere allo stesso campione KS 144 (Calcium Hardness Puffer) in gocce finché non si presenta una colorazione da rosa chiaro a rosso. (Attenzione: dopo l'aggiunta di ogni goccia far oscillare il campione!)

Aggiungere al campione acqua demineralizzata fino a raggiungere i 50 ml

Esecuzione della rilevazione Fosfato HR con reagente liquido

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

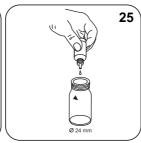

Filtrare circa 14 ml di campione con un filtro precedentemente risciacquato (diametro pori 0,45 µm).

Riempire una cuvetta da 24 mm con 10 ml del campione preparato.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.



Prelevare la cuvetta dal vano di misurazione.

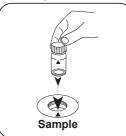
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

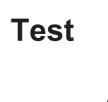
Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 25 gocce di KS228 (Ammonium Molybdate).

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere 25 gocce di KS229 (Ammonium Metavanadate).


Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 10 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Fosfato.

Esecuzione della rilevazione Polifosfato con reagenti liquidi

Selezionare il metodo nel dispositivo.

Per la determinazione di **Polifosfato HR con reagenti liquidi** eseguire la **digestione** descritta.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Questo test rileva il tenore di fosfato totale inorganico. Il tenore di polifosfati si ottiene dalla differenza tra il fosfato organico e l'ortofosfato.

La determinazione di Fosfato, LR totale con reagenti liquidi si esegue come la determinazione descritta in Metodo 335, fosfato HR con reagenti liquidi.

Sul display compare il risultato in mg/l di Fosfato totale inorganico (orto-fosfato e polifosfato).

Esecuzione della rilevazione Fosfato, totale con reagenti liquidi

Selezionare il metodo nel dispositivo.

Per la determinazione di Fosfato, HR totale con reagenti liquidi eseguire la digestione descritta.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Questo test rileva tutti i composti di fosforo presenti nel campione, inclusi ortofosfato, polifosfato e composti di fosforo organici.

La determinazione di Fosfato, HR totale con reagenti liquidi si esegue come la determinazione descritta in Metodo 335, fosfato HR con reagenti liquidi.

Sul display compare il risultato in mg/l di Fosfato totale.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

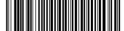
Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P ₂ O ₅	2.29137

Metodo chimico

Molibdato di vanadio

Appendice

Funzione di calibrazione per fotometri di terze parti


Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-3.32247 • 10 ⁻¹	-3.32247 • 10 ⁻¹
b	1.37619 • 10+1	2.95881 • 10+1
С		
d		
е		
f		

Interferenze

Interferenze permanenti

 Grandi quantità di sostanze non disciolte possono provocare risultati di misura non riproducibili.

Interferenze	da / [mg/L]
Al	200
AsO ₄ ³⁻	in tutte le quan- tità
Cr	100
Cu	10
Fe	100
Ni	300
SiO ₂	50
Si(OH) ₄	10
S ²⁻	in tutte le quan- tità
Zn	80

Secondo

Standard Method 4500-P C

Poliacrilati L

M338

1 - 30 mg/L Polyacryl

POLY

Torbidità

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110	ø 24 mm	530 nm	1 - 30 mg/L Polyacryl
MD 600, MD 610, MD 640, XD 7000, XD 7500	ø 24 mm	660 nm	1 - 30 mg/L Polyacryl

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Set di reagenti per poliacrilato	1 pz.	56R019165
KS336-Propan-2-ol	65 mL	56L033665
Cartuccia C18	1 pz.	56A020101
KS173-P2-2,4 Indicatore di dinitrofenolo	65 mL	56L017365
KS183-QA2-MO1-P3-Acido nitrico	65 mL	56L018365

Campo di applicazione

- · Acqua di raffreddamento
- · Acqua di caldaia
- · Trattamento acqua non depurata

Preparazione

· Preparazione della cartuccia:

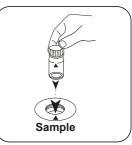
- Rimuovere lo stantuffo di una siringa adeguata. Fissare la cartuccia C18 al cilindro della siringa.
- 2. Immettere 5 ml di KS336 (propan-2-olo) nel cilindro della siringa.
- 3. Con l'ausilio dello stantuffo introdurre il solvente, a gocce, nella cartuccia.
- 4. Rimuovere il solvente fuoriuscito.
- Rimuovere nuovamente lo stantuffo. Riempire il cilindro della siringa con 20 ml di acqua demineralizzata.
- 6. Con l'ausilio dello stantuffo introdurre il contenuto, a gocce, nella cartuccia.
- 7. Scartare l'acqua demineralizzata fuoriuscita.
- 8. La cartuccia è ora pronta all'uso.

Note

- Se nonostante un dosaggio corretto dei campioni e dei reagenti non si verifica alcun intorbidimento o si verifica solo leggermente, per il rilevamento dei poliacrilati/polimeri è necessario concentrare il campione.
- Si possono ottenere risultati divergenti se sono presenti interferenze dovute a componenti o impurità del campione. In questi casi è necessario eliminare le interferenze.
- Il metodo è stato approvato utilizzando acido poliacrilico 2100 sale di sodio nel range 1-30 mg/L. Altri poliacrilati/polimeri danno risultati divergenti, pertanto il range di misura può variare.

Esecuzione della rilevazione Poliacrilati con reagente liquido

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

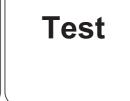
Prelevare la cuvetta dal vano di misurazione.

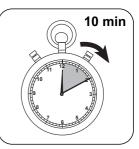
Introdurre 1 ml di soluzione (25 Tropfen) KS255 (Polyacrylate Reagenz 1) nella cuvetta del campione.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Introdurre 1 ml di soluzione (25 Tropfen) KS256 (Polyacrylate Reagenz 2) nella cuvetta del campione.


Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

START).

Premere il tasto TEST (XD: Attendere un tempo di reazione di 10 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Acido poliacrilico 2100 sale di sodio.

Metodo chimico

Torbidità

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	5.21463 • 10 ⁻¹	5.21463 • 10 ⁻¹
b	3.45852 • 10⁺¹	7.43583 • 10+1
С	-2.38855 • 10 ⁺¹	-1.10411 • 10 ⁺²
d	1.52167 • 10⁺¹	1.51229 • 10 ⁺²
е		
f		

Riferimenti bibliografici

W.B. Crummett, R.A. Hummel (1963), The Determination of Polyacrylamides in Water, American Water Works Association, 55 (2), pagg. 209-219

Potassio T

M340

0.7 - 16 mg/L K

Torbidità con tetrafenilborato

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	660 nm	0.7 - 16 mg/L K
SpectroDirect, XD 7000, XD 7500	ø 24 mm	730 nm	0.7 - 16 mg/L K

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Potassio T	Pastiglia / 100	515670BT
Potassio T	Pastiglia / 250	515671BT

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua potabile
- · Trattamento acqua non depurata

Note

 Il potassio provoca un intorbidimento distribuito finemente dall'aspetto lattiginoso. Singole particelle non sono imputabili alla presenza di potassio.

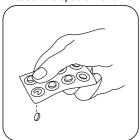
Esecuzione della rilevazione Potassio con pastiglia

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

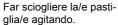
Chiudere la/e cuvetta/e.

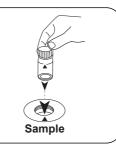

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Aggiungere una pastiglia POTASSIUM T.




Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 3 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Potassio.

Metodo chimico

Torbidità con tetrafenilborato

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	6.25019 • 10 ⁻¹	6.25019 • 10 ⁻¹
b	6.44037 • 10 ⁺⁰	1.38468 • 10+1
С	-1.32631 • 10 ⁺⁰	-6.13087 • 10 ⁺⁰
d	4.95714 • 10 ⁻¹	4.92659 • 10 ⁺⁰
е		
f		

Validazione metodo

Limite di rilevabilità	0.04 mg/L
Limite di quantificazione	0.13 mg/L
Estremità campo di misura	16 mg/L
Sensibilità	6.11 mg/L / Abs
Intervallo di confidenza	0.54 mg/L
Deviazione standard della procedura	0.24 mg/L
Coefficiente di variazione della procedura	2.89 %

Riferimenti bibliografici

R.T. Pflaum, L.C. Howick (1956), Spectrophotometric Determination of Potassium with Tetraphenylborate, Anal. Chem., 28 (10), pagg. 1542-1544

SAC 254 nm

M344

0.5 - 50 m⁻¹

Misurazione diretta EN ISO 7887:1994

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
XD 7500	□ 50 mm	254 nm	0.5 - 50 m ⁻¹

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal-	N. ordine
	laggio	

Nessun reagente richiesto

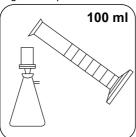
Campo di applicazione

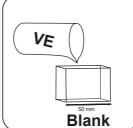
- · Trattamento acqua potabile
- · Trattamento acqua di scarico

Preparazione

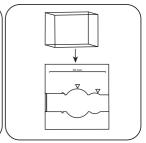
 L'acqua demineralizzata per la taratura a zero viene filtrata con un filtro a membrana con pori di diametro pari a 0,45 μm.

Note

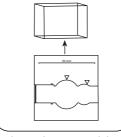

- Poiché la colorazione dipende dal valore del pH e dalla temperatura, questi devono essere determinati nell'ambito della misurazione ottica e specificati insieme al risultato.
- 2. Il coefficienze di assorbimento spettrale è una misura che descrive la colorazione reale di un campione di acqua. La colorazione reale di un campione di acqua è il colore provocato soltanto dalle sostanze disciolte nel campione di acqua. Prima della misurazione il campione di acqua deve quindi essere filtrato. La misurazione con lunghezza d'onda 436 nm è obbligatoria ed è sufficiente per le acque naturali e i processi degli impianti di depurazione comunali. Poiché le acque di scarico industriali spesso non presentano limiti massimi di estinzione particolari, in questo caso sono necessarie misurazioni aggiuntive alle lunghezze d'onda di 525 nm e 620 nm. In caso di dubbi si dovrebbe eseguire una scansione delle lunghezze d'onda da 330 nm a 780 nm con la funzione spettro (Mode 53).

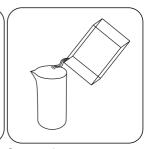

Esecuzione della rilevazione Coefficiente di assorbimento spettrale a 436 nm

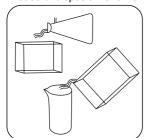
Selezionare il metodo nel dispositivo.

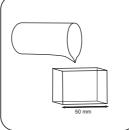

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

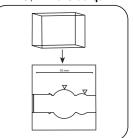
Filtrare circa 100 ml di campione con un filtro precedentemente risciacquato (diametro pori 0,45 µm).


Riempire una cuvetta da 50 mm con acqua demineralizzata.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto **ZERO**.


Prelevare la **cuvetta** dal vano di misurazione.


Svuotare la cuvetta.

Sciacquare internamente la cuvetta con il campione preparato.

Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come (m⁻¹).

Metodo chimico

Misurazione diretta EN ISO 7887:1994

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 50 mm
а	-5.46584 • 10 ⁻¹
b	1.00631 • 10+2
С	
d	
е	
f	

Secondo

EN ISO 7887:1994, paragrafo principale 3

SAC 436 nm

M345

0.5 - 50 m⁻¹

Misurazione diretta EN ISO 7887:1994

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	436 nm	0.5 - 50 m ⁻¹

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine

Nessun reagente richiesto

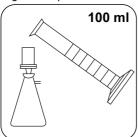
Campo di applicazione

· Trattamento acqua potabile

Preparazione

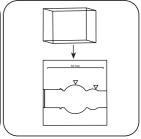
 L'acqua demineralizzata per la taratura a zero viene filtrata con un filtro a membrana con pori di diametro pari a 0,45 μm.

Note

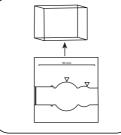

- Poiché la colorazione dipende dal valore del pH e dalla temperatura, questi devono essere determinati nell'ambito della misurazione ottica e specificati insieme al risultato.
- 2. Il coefficienze di assorbimento spettrale è una misura che descrive la colorazione reale di un campione di acqua. La colorazione reale di un campione di acqua è il colore provocato soltanto dalle sostanze disciolte nel campione di acqua. Prima della misurazione il campione di acqua deve quindi essere filtrato. La misurazione con lunghezza d'onda 436 nm è obbligatoria ed è sufficiente per le acque naturali e i processi degli impianti di depurazione comunali. Poiché le acque di scarico industriali spesso non presentano limiti massimi di estinzione particolari, in questo caso sono necessarie misurazioni aggiuntive alle lunghezze d'onda di 525 nm e 620 nm. In caso di dubbi si dovrebbe eseguire una scansione delle lunghezze d'onda da 330 nm a 780 nm con la funzione spettro (Mode 53).

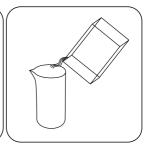
Esecuzione della rilevazione Coefficiente di assorbimento spettrale a 436 nm

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

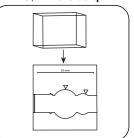
Filtrare circa 100 ml di campione con un filtro precedentemente risciacquato (diametro pori 0,45 µm).


Riempire una cuvetta da 50 mm con acqua demineralizzata.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.


Svuotare la cuvetta.

Sciacquare internamente la cuvetta con il campione preparato.

Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come (m⁻¹).

Metodo chimico

Misurazione diretta EN ISO 7887:1994

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 50 mm
a	-5.4658 • 10 ⁻¹
b	1.00631 • 10+2
С	
d	
е	
f	

Secondo

EN ISO 7887:1994, paragrafo principale 3

SAC 525 nm

M346

0.5 - 50 m⁻¹

Misurazione diretta EN ISO 7887:1994

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	525 nm	0.5 - 50 m ⁻¹

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal-	N. ordine
	laggio	

Nessun reagente richiesto

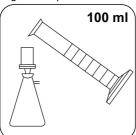
Campo di applicazione

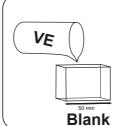
· Trattamento acqua di scarico

Preparazione

1. L'acqua demineralizzata per la taratura a zero viene filtrata con un filtro a membrana con pori di diametro pari a $0.45~\mu m$.

Note

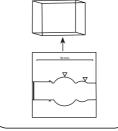

- Poiché la colorazione dipende dal valore del pH e dalla temperatura, questi devono essere determinati nell'ambito della misurazione ottica e specificati insieme al risultato.
- 2. Il coefficienze di assorbimento spettrale è una misura che descrive la colorazione reale di un campione di acqua. La colorazione reale di un campione di acqua è il colore provocato soltanto dalle sostanze disciolte nel campione di acqua. Prima della misurazione il campione di acqua deve quindi essere filtrato. La misurazione con lunghezza d'onda 436 nm è obbligatoria ed è sufficiente per le acque naturali e i processi degli impianti di depurazione comunali. Poiché le acque di scarico industriali spesso non presentano limiti massimi di estinzione particolari, in questo caso sono necessarie misurazioni aggiuntive alle lunghezze d'onda di 525 nm e 620 nm. In caso di dubbi si dovrebbe eseguire una scansione delle lunghezze d'onda da 330 nm a 780 nm con la funzione spettro (Mode 53).

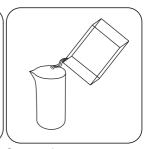

Esecuzione della rilevazione Coefficiente di assorbimento spettrale a 525 nm

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

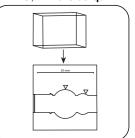
Filtrare circa 100 ml di campione con un filtro precedentemente risciacquato (diametro pori 0,45 µm).


Riempire una cuvetta da 50 mm con acqua demineralizzata.


Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.


Svuotare la cuvetta.

Sciacquare internamente la cuvetta con il campione preparato.

Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come (m⁻¹).

Metodo chimico

Misurazione diretta EN ISO 7887:1994

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 50 mm	
а	-5.4658 • 10 ⁻¹	
b	1.00631 • 10 ⁺²	
С		
d		
е		
f		

Secondo

EN ISO 7887:1994, paragrafo principale 3

SAC 620 nm

M347

0.5 - 50 m⁻¹

Misurazione diretta EN ISO 7887:1994

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	620 nm	0.5 - 50 m ⁻¹

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine

Nessun reagente richiesto

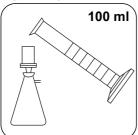
Campo di applicazione

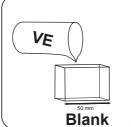
· Trattamento acqua di scarico

Preparazione

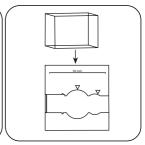
1. L'acqua demineralizzata per la taratura a zero viene filtrata con un filtro a membrana con pori di diametro pari a $0.45~\mu m$.

Note

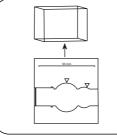

- Poiché la colorazione dipende dal valore del pH e dalla temperatura, questi devono essere determinati nell'ambito della misurazione ottica e specificati insieme al risultato.
- 2. Il coefficienze di assorbimento spettrale è una misura che descrive la colorazione reale di un campione di acqua. La colorazione reale di un campione di acqua è il colore provocato soltanto dalle sostanze disciolte nel campione di acqua. Prima della misurazione il campione di acqua deve quindi essere filtrato. La misurazione con lunghezza d'onda 436 nm è obbligatoria ed è sufficiente per le acque naturali e i processi degli impianti di depurazione comunali. Poiché le acque di scarico industriali spesso non presentano limiti massimi di estinzione particolari, in questo caso sono necessarie misurazioni aggiuntive alle lunghezze d'onda di 525 nm e 620 nm. In caso di dubbi si dovrebbe eseguire una scansione delle lunghezze d'onda da 330 nm a 780 nm con la funzione spettro (Mode 53).


Esecuzione della rilevazione Coefficiente di assorbimento spettrale a 620 nm

Selezionare il metodo nel dispositivo.

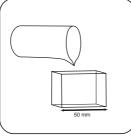

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

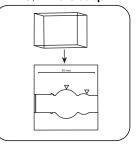
Filtrare circa 100 ml di campione con un filtro precedentemente risciacquato (diametro pori 0,45 µm).


Riempire una cuvetta da 50 mm con acqua demineralizzata.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.


Prelevare la **cuvetta** dal vano di misurazione.


Svuotare la cuvetta.

Sciacquare internamente la cuvetta con il campione preparato.

Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come (m⁻¹).

Metodo chimico

Misurazione diretta EN ISO 7887:1994

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 50 mm
а	-5.4658 • 10 ⁻¹
b	1.00631 • 10+2
С	
d	
е	
f	

Secondo

EN ISO 7887:1994, paragrafo principale 3

Silica VLR PP

M349

0.005 - 0.5 mg/L SiO₂

Blu di eteropolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	820 nm	0.005 - 0.5 mg/L SiO ₂

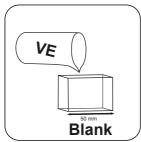
Materiale

Materiale richiesto (in parte facoltativo):

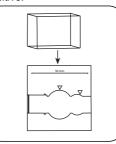
Reagenti	Unità di imbal- laggio	N. ordine
Set di reagenti VLR PP per silicato	1 set	5443002
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
W100/OG/50MM Cuvetta rettangolare, vetro ottico	1 pz.	601070

Campo di applicazione

· Acqua di caldaia

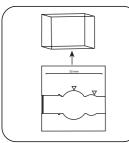

Note

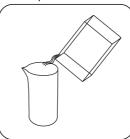
- Dopo l'aggiunta del reagente eptamolibdato il campione di prova deve avere un pH compreso tra 1 e 2.
- Utilizzare un contenitore per campioni in plastica (>15 ml) con tappo (ad esempio numero componente 424648).

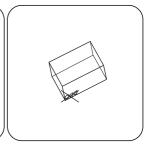


Esecuzione della rilevazione Silica VLR PP

Selezionare il metodo nel dispositivo.


Riempire una cuvetta da 50 mm con acqua demineralizzata.


Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

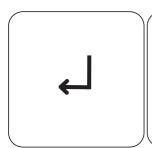

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta.

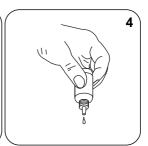
Asciugare bene la cuvetta.

Riempire un recipiente per campioni adeguato con 10 ml di campione.



Aggiungere 4 gocce di Heptamolybdate Reagent. capovolgendo.

Miscelare il contenuto



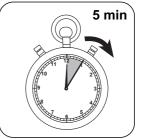
Premere il tasto ENTER.

Attendere un tempo di reazione di 5 minuto/i .

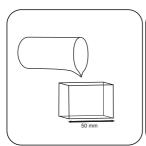
Aggiungere 4 gocce di Tartaric Acid Reagent.

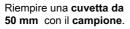
Chiudere la cuvetta di digestione.

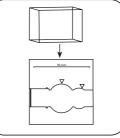
Miscelare il contenuto capovolgendo.


Aggiungere una bustina di polvere Vario Silica Amino Acid F10.

stione.




Chiudere la cuvetta di dige- Far sciogliere la polvere capovolgendo.



Attendere un tempo di reazione di 5 minuto/i .

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di SiO₂.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	SiO2	1
mg/l	Si	0.47

Metodo chimico

Blu di eteropolo

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 50 mm	
а	0.00000 • 10-2	
b	5.77158 • 10 ⁻¹	
С		
d		
е		
f		

Validazione metodo

Limite di rilevabilità	0.003 mg/L
Limite di quantificazione	0.008 mg/L
Estremità campo di misura	0.5 mg/L
Sensibilità	0.58 mg/L / Abs
Intervallo di confidenza	0.004 mg/L
Deviazione standard della procedura	0.002 mg/L
Coefficiente di variazione della procedura	0.73 %

Silicato T M350

0.05 - 4 mg/L SiO₂

Si

Blu di silicomolibdeno

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	660 nm	0.05 - 4 mg/L SiO ₂
SpectroDirect, XD 7000, XD 7500	ø 24 mm	820 nm	0.05 - 4 mg/L SiO ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Silice No. 1	Pastiglia / 100	513130BT
Silice No. 1	Pastiglia / 250	513131BT
Silice No. 2	Pastiglia / 100	513140BT
Silice No. 2	Pastiglia / 250	513141BT
Silice PR	Pastiglia / 100	513150BT
Silice PR	Pastiglia / 250	513151BT
Set Silice No. 1/no. 2#	ciascuna 100	517671BT
Set Silice No. 1/no. 2#	ciascuna 250	517672BT

Campo di applicazione

- · Acqua di caldaia
- · Trattamento acqua non depurata

Note

1. Attenersi scrupolosamente all'ordine con cui aggiungere le pastiglie.

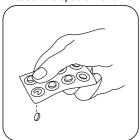
Esecuzione della rilevazione Biossido di silicio con pastiglia

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

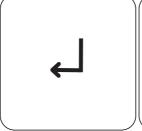
Chiudere la/e cuvetta/e.


Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

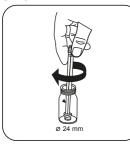
Aggiungere una pastiglia SILICA No. 1.


Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.

Far sciogliere la/e pastiglia/e agitando.

Premere il tasto **ENTER**.

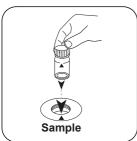

Attendere un tempo di reazione di 5 minuto/i.


Aggiungere una pastiglia SILICA PR.

Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia SILICA No. 2.

Frantumare la/e pastiglia/e con una leggera rotazione.



Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Silicato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	SiO ₂	1
mg/l	Si	0.47

Metodo chimico

Blu di silicomolibdeno

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm	
а	-4.74138 • 10 ⁻²	-4.74138 • 10 ⁻²	
b	1.53143 • 10+0	3.29257 • 10⁺0	
С			
d			
е			
f			

Interferenze

Interferenze escludibili

· I fosfati non provocano interferenze nelle condizioni di reazione specificate.

Derivato di

Standard Method 4500-SiO2 C

^{])}*Bacchetta compresa

Silicato LR PP

M351

0.1 - 1.6 mg/L SiO₂

SiLr

Blu di eteropolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	660 nm	0.1 - 1.6 mg/L SiO ₂
SpectroDirect, XD 7000, XD 7500	ø 24 mm	815 nm	0.05 - 1.6 mg/L SiO ₂

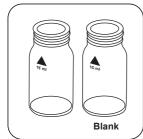
Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Silica LR, F10 Set	1 set	535690

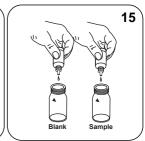
Campo di applicazione

· Acqua di caldaia


Note

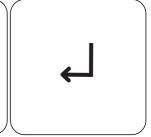
 Il tempo di reazione di 4 minuti specificato si riferisce a campioni con una temperatura di 20 °C. Con una temperatura di 30 °C si deve osservare un tempo di reazione di 2 minuti, con 10 °C di 8 minuti.

Esecuzione della rilevazione Biossido di silicio LR con polvere in bustine Vario e reagente liquido

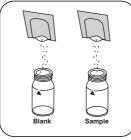

Selezionare il metodo nel dispositivo.

Preparare due cuvette pulite da 24 mm. Contrassegnare una cuvetta come cuvetta zero.

Immettere 10 ml di campione in ogni cuvetta.


Immettere 15 gocce di soluzione Vario Molybdate 3 Reagenz- in ogni cuvetta.

Chiudere la/e cuvetta/e.

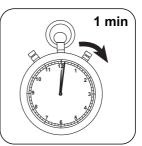

Miscelare il contenuto capovolgendo.

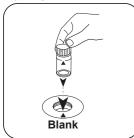
Premere il tasto ENTER.

Attendere un tempo di reazione di 4 minuto/i.

Immettere una bustina di polvere Vario Silica Citric Acid F10 in ogni cuvetta.

Chiudere la/e cuvetta/e.



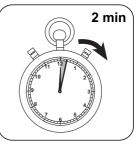

Far sciogliere la polvere capovolgendo.

Premere il tasto **ENTER**.

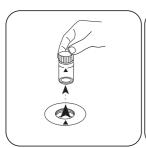
Attendere un tempo di reazione di 1 minuto/i.

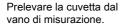
Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Immettere una bustina di polvere Silica Amino Acid F10 nella cuvetta del campione.


Chiudere la/e cuvetta/e.

Far sciogliere la polvere capovolgendo.


Premere il tasto **ZERO**.



Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Sul display compare il risultato in mg/l di Silicato.

Test

Premere il tasto **TEST** (XD: **START**).

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	SiO ₂	1
mg/l	Si	0.47

Metodo chimico

Blu di eteropolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm	
а	-3.52432•10 ⁻²	-3.52432•10 ⁻²	
b	1.45158•10⁺⁰	3.1209•10+0	
С	-7.19729•10 ⁻²	-3.32695•10 ⁻¹	
d			
е			
f			

Interferenze

Interferenze escludibili

- Le cuvette devono essere richiuse con il coperchio subito dopo l'aggiunta della soluzione reagente Vario Molybdate 3, altrimenti si otterranno risultati troppo bassi.
- 2. Talvolta i campioni di acqua contengono forme di acido silicico che reagiscono molto lentamente con il molibdato. Il tipo esatto di tali forme non è attualmente noto. Attraverso un pretrattamento con bicarbonato di sodio e successivamente con acido solforico è possibile trasformarle in forme più reattive (descrizione in "Standard Methods for the Examination of Water and Wastewater" alla sezione "Silica-Digestion with Sodium Bicarbonate").

Interferenze	da / [mg/L]
Fe	grandi quantità
PO ₄ 3-	50
S ²⁻	in tutte le quan- tità

Validazione metodo

Limite di rilevabilità	0.01 mg/L
Limite di quantificazione	0.03 mg/L
Estremità campo di misura	1.6 mg/L
Sensibilità	1.35 mg/L / Abs
Intervallo di confidenza	0.01 mg/L
Deviazione standard della procedura	0.004 mg/L
Coefficiente di variazione della procedura	0.46 %

Derivato di

Standard Method 4500-SiO2 D

Silicato HR PP

M352

1 - 90 mg/L SiO₂

SiHr

Molibdato di silicio

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	430 nm	1 - 90 mg/L SiO ₂
SpectroDirect, XD 7000, XD 7500	ø 24 mm	452 nm	1 - 100 mg/L SiO ₂

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Reagente per silice HR, set F10	1 set	535700

Campo di applicazione

- · Acqua di caldaia
- · Trattamento acqua non depurata

Preparazione

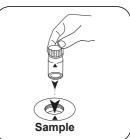
1. La temperatura del campione deve essere compresa tra 15 °C e 25 °C.

Note

 Il metodo effettua la misurazione sul lato della curva di assorbimento della colorazione risultante. Nei fotometri con filtro l'accuratezza del metodo può quindi essere migliorata, se necessario, tramite regolazione con un silicato standard (circa 70 mg/L SiO₂).

Esecuzione della rilevazione Biossido di silicio HR con polvere in bustine Vario

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

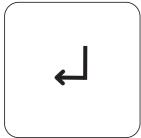
Prelevare la cuvetta dal vano di misurazione.

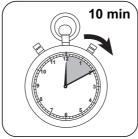
In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una bustina di polvere Vario Silica HR Molybdate F10.

Chiudere la/e cuvetta/e.

Far sciogliere la polvere capovolgendo.

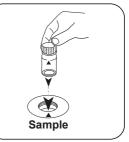

Aggiungere una bustina di polvere Vario Silica HR Acid Rgt. F10.


Chiudere la/e cuvetta/e.

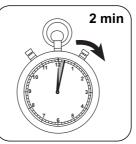
Miscelare il contenuto capovolgendo.

Premere il tasto ENTER.

Attendere un tempo di reazione di 10 minuto/i.


Aggiungere una bustina di polvere Vario Silica Citric Acid F10.

Chiudere la/e cuvetta/e.


Far sciogliere la polvere capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 2 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Silicato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	SiO ₂	1
mg/l	Si	0.47

Metodo chimico

Molibdato di silicio

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm	
а	-4.11457•10 ⁻¹	-4.11457•10 ⁻¹	
b	1.18844•10+2	2.55514•10+2	
С			
d			
е			
f			

Interferenze

Interferenze escludibili

- Talvolta i campioni di acqua contengono forme di acido silicico che reagiscono molto lentamente con il molibdato. Il tipo esatto di tali forme non è attualmente noto. Attraverso un pretrattamento con bicarbonato di sodio e successivamente con acido solforico è possibile trasformarle in forme più reattive (descrizione in "Standard Methods for the Examination of Water and Wastewater" alla sezione "Silica-Digestion with Sodium Bicarbonate").
- Se sono presenti biossido di silicio o fosfato si sviluppa una colorazione gialla.
 Aggiungendo la polvere in bustine Silica Citric Acid F10 si elimina il colore giallo prodotto dal fosfato.

Interferenze	da / [mg/L]	Influenza
Fe	grandi quantità	
PO ₄ 3-	50	
PO ₄ 3-	60	Il disturbo è di circa -2 %
PO ₄ 3-	75	Il disturbo è di circa-11 %
S ²⁻	in tutte le quan- tità	

Validazione metodo

Limite di rilevabilità	0.38 mg/L
Limite di quantificazione	1.14 mg/L
Estremità campo di misura	100 mg/L
Sensibilità	120 mg/L / Abs
Intervallo di confidenza	1.69 mg/L
Deviazione standard della procedura	0.70 mg/L
Coefficiente di variazione della procedura	1.38 %

Derivato di

Standard Method 4500-SiO2 C

Silicato L M353

0.1 - 8 mg/L SiO₂

Blu di eteropolo

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640,	ø 24 mm	660 nm	0.1 - 8 mg/L SiO ₂
XD 7000. XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Silice LR L	1 set	56R023856

Campo di applicazione

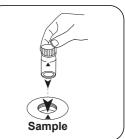
- · Acqua di caldaia
- · Trattamento acqua non depurata

Preparazione

- Per il dosaggio corretto si deve utilizzare il cucchiaio dosatore fornito in dotazione con i reagenti
- 2. Perché i risultati dell'analisi siano accurati è necessario che il campione abbia una temperatura compresa tra 20 °C e 30 °C.

Esecuzione della rilevazione Biossido di silicio con reagente liquido e polvere

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

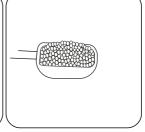
Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuyetta.

Aggiungere 20 gocce di KS104 (Silica Reagent 1).

Chiudere la/e cuvetta/e.

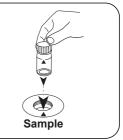
Miscelare il contenuto capovolgendo.

Attendere un tempo di reazione di 5 minuto/i .


Aggiungere 20 gocce di KS105 (Silica Reagent 2).

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere un cucchiaio dosatore di KP106 (Silica Reagent 3).

Chiudere la/e cuvetta/e.

Far sciogliere la polvere capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: Attendere un **tempo di START**). **Attendere un tempo di reazione di 10 minuto/i** .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Silicato.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	SiO ₂	1
mg/l	Si	0.47

Metodo chimico

Blu di eteropolo

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm	
а	-7.53464 • 10 ⁻¹	-7.53464 • 10 ⁻¹	
b	4.10695 • 10 ⁺⁰	8.82994 • 10+0	
С			
d			
е			
f			

Interferenze

Interferenze permanenti

 Con una temperatura inferiore a 20 °C non avviene una reazione completa e si ottengono quindi risultati troppo bassi.

Derivato di

Standard Method 4500-SiO2 D

Solfato T M355

5 - 100 mg/L SO₄ 2-

Torbidità con solfato di bario

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630, XD 7000, XD 7500	ø 24 mm	610 nm	5 - 100 mg/L SO ₄ ²⁻

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Torbidità del solfato	Pastiglia / 100	515450BT
Torbidità del solfato	Pastiglia / 250	515451BT

Campo di applicazione

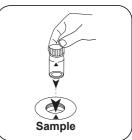
- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Trattamento acqua potabile
- · Trattamento acqua di piscina
- · Trattamento acqua non depurata

Note

1. Il solfato provoca un intorbidimento distribuito finemente dall'aspetto lattiginoso.

Esecuzione della rilevazione Solfato con pastiglia

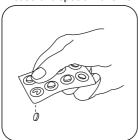
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

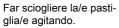


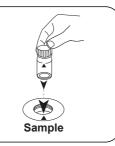
Premere il tasto ZERO.

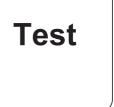
Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia SULFATE T.




Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 2 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Solfato.

Metodo chimico

Torbidità con solfato di bario

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	3.70245 • 10 ⁺⁰	3.70245 • 10⁺0
b	1.39439 • 10+2	2.99793 • 10+2
С		
d		
е		
f		

Derivato di

DIN ISO 15923-1 D49

Solfato PP M360

5 - 100 mg/L SO₄ 2-

SO4

Torbidità con solfato di bario

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, MultiDirect,	ø 24 mm	530 nm	5 - 100 mg/L SO ₄ ²⁻
PM 620, PM 630, SpectroDirect. XD 7000, XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Sulfa 4 F10	Polvere / 100 pz.	532160

Campo di applicazione

- · Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Trattamento acqua potabile
- · Trattamento acqua di piscina
- · Trattamento acqua non depurata

Note

1. Il solfato provoca un intorbidimento distribuito finemente.

Esecuzione della rilevazione Solfato con polvere in bustine Vario

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

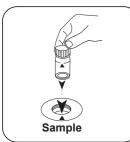
Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Vario Sulpha 4/ F10.

Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START). Attendere un tempo di reazione di 5 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Solfato.

Metodo chimico

Torbidità con solfato di bario

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	2.42421 • 10+0	2.42421 • 10+0
b	1.07243 • 10+2	2.30572 • 10+2
С	-1.11466 • 10 ⁺²	-5.15249 • 10 ⁺²
d	7.93311 • 10 ⁺¹	7.88423 • 10 ⁺²
е	-1.88194 • 10 ⁺¹	-4.02123 • 10 ⁺²
f		

Secondo

Standard Method 4500-SO42- E US EPA 375.4

Derivato di

DIN ISO 15923-1 D49

Solfato HR PP

M361

50 - 1000

Torbidità con solfato di bario

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, SpectroDirect, XD	ø 24 mm	530 nm	50 - 1000
7000 XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Sulfa 4 F10	Polvere / 100 pz.	532160
Acqua demineralizzata	100 mL	461275
Acqua demineralizzata	250 mL	457022

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Cuvetta rotonda con coperchio Ø 24 mm, altezza 48 mm, 10 ml, set da 5	1 set	197629
Pipetta automatica, 1-5 ml	1 pz.	419076
Puntali per pipette, 1-5 ml (bianco) 100 pezzi	1 pz.	419066

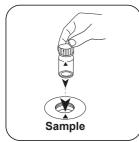
Campo di applicazione

- Trattamento acqua di scarico
- · Acqua di raffreddamento
- · Trattamento acqua potabile
- · Trattamento acqua di piscina
- · Trattamento acqua non depurata

Esecuzione della rilevazione Solfato HR con confezioni in polvere

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 24 mm con 9 ml di acqua demineralizzata.

Immettere 1 ml di campione nella cuvetta.

Chiudere la/e cuvetta/e.

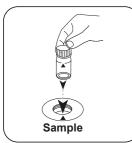
Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.


Zero

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.


Aggiungere una bustina di Chiudere la/e cuvetta/e. polvere Vario Sulpha 4/ F10.

Miscelare il contenuto capovolgendo.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 5 minuto/i .

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Solfato.

Metodo chimico

Torbidità con solfato di bario

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	2.42421 • 10+1	2.42421 • 10+1
b	1.07243 • 10 ⁺³	2.30572 • 10+3
С	-1.11466 • 10 ⁺³	-5.15249 • 10 ⁺³
d	7.93311 • 10 ⁺²	7.88423 • 10 ⁺³
е	-1.88194 • 10 ⁺²	-4.02124 • 10 ⁺³
f		

Validazione metodo

Limite di rilevabilità	2.91 mg/L
Limite di quantificazione	8.74 mg/L
Estremità campo di misura	1,000 mg/L
Sensibilità	516 mg/L / Abs
Intervallo di confidenza	56.16 mg/L
Deviazione standard della procedura	23.22 mg/L
Coefficiente di variazione della procedura	4.42 %

Selenio M363

0.05 - 1.6 mg/L Se

3,3'-diamminobenzidina in toluene

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect	□ 50 mm	445 nm	0.05 - 1.6 mg/L Se
XD 7000, XD 7500	□ 50 mm	445 nm	0.05 - 2 mg/L Se

Prelievo del campione

 I campioni torbidi devono essere filtrati attraverso un filtro a membrana con pori da 0,45 µm.

Preparazione

È necessario acquistare i seguenti reagenti:

- 1. Acido formico 98-100% per analisi (n. CAS: 64-18-6)
- 2. 3,3'-Diaminobenzidina tetraidrocloridrato (n. CAS: 868272-85-9)
- 3. Acqua ammoniacale 25% per analisi (n. CAS: 1336-21-6)
- 4. EDTA Soluzione di sale disodico 0,1 mol/l (n. CAS: 139-33-3)
- 5. Toluene per gascromatografia (n. CAS: 108-33-3)
- 6. Strisce indicatrici pH, pH 2,0 9,0
- 7. Solfato di sodio anidro per analisi (n. CAS: 7757-82-6)
- 8. Acqua per analisi

Altri materiali:

- 1. filtro a membrana (dimensioni dei pori: 0,45 μm)
- Il valore del pH del campione dovrebbe essere quasi neutro prima dell'analisi.

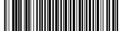
Note

• Le résultat est exprimé en mg/L Se4+

Esecuzione della rilevazione Selenio

Selezionare il metodo nel dispositivo.

Reagente 1


- Versare 9,4 ml di acido formico p.a. in un matraccio tarato da 100 ml
- Riempire con acqua p.a. fino alla tacca.

Reagente 2

- Dissolvere 0,5 g di 3,3'-diamminobenzidina tetraidrocloridrato in 100 ml di acqua refrigerata p.a.
- Questo reagente deve essere preparato al momento per ogni giorno lavorativo e conservato in un flacone ambrato.

Reagente 3

- Versare 48 ml di acqua ammoniacale 25% p.a. in un matraccio tarato da 100 ml.
- Riempire con acqua p.a. fino alla tacca.
- 1. Riempire una cella da 50 mm con toluene.
- Posizionare la cella nella camera di campionamento assicurandosi del corretto posizionamento.
- Premere il tasto Zero.
- Rimuovere la cella dalla camera di campionamento. Vuotare la cella e asciugare completamente.
- 5. Aggiungere 60 ml del campione in un becher.
- 6. Aggiungere 4 ml di Reagente 1.
- 7. Aggiungere 4 ml di soluzione EDTA.
- 8. Aggiungere 4 ml di Reagente 2.
- 9. Miscelare i reagenti con un'asta di agitazione.
- 10. Impostare il valore del pH-su 2,5 utilizzando il Reagente 3.
- 11. Conservare il becher in un luogo buio per 45 minuti.
- 12. Impostare il valore del pH-su 7,0 utilizzando il Reagente 3.
- 13. Trasferire il campione in un imbuto di separazione da 250-ml.
- 14. Aggiungere 30 ml di acqua per analisi.
- 15. Aggiungere 14 ml di toluene.
- 16. Agitare per 1 minuto.
- 17. Eliminare la fase acquosa inferiore.
- 18. Trasferire la fase di toluene in una piccola beuta di Erlenmeyer (25-50 ml).
- 19. Aggiungere la punta di una siringa di solfato di sodio anidro.
- 20. Miscelare i reagenti agitando delicatamente il becher.
- 21. Far decantare l'estratto di toluene in una cella da 50 mm.
- Posizionare la cella nella camera di campionamento assicurandosi del corretto posizionamento.
- 23. Premere il tasto Test.
- Sul display compare il risultato in mg/l di Selenio.

Metodo chimico

3,3'-diamminobenzidina in toluene

Solfuro T

M365

0.04 - 0.5 mg/L S²·

DPD/catalizzatore

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	660 nm	0.04 - 0.5 mg/L S ²⁻
SpectroDirect, XD 7000, XD 7500	ø 24 mm	668 nm	0.04 - 0.5 mg/L S ²⁻

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Solfuro No. 1	Pastiglia / 100	502930
Solfuro No. 2	Pastiglia / 100	502940

Campo di applicazione

- · Trattamento acqua potabile
- · Trattamento acqua non depurata
- Trattamento acqua di scarico

Prelievo del campione

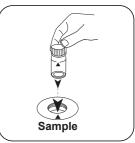
 Per evitare perdite di solfuro, il campione deve essere prelevato con cautela riducendo al minimo l'esposizione all'aria. Il test inoltre deve essere eseguito subito dopo il prelievo del campione.

Note

1. Attenersi scrupolosamente all'ordine con cui aggiungere le pastiglie.

Esecuzione della rilevazione Solfuro con pastiglia

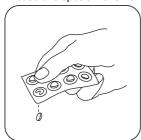
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

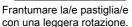


Premere il tasto ZERO.

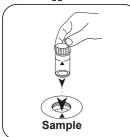
Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

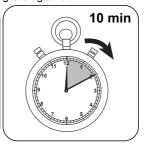
Aggiungere una pastiglia SULFIDE No. 1.


Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia SULFIDE No. 2.



Chiudere la/e cuvetta/e.


Far sciogliere la/e pastiglia/e agitando.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto TEST (XD: Attendere un tempo di START).

reazione di 10 minuto/i

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Solfuro.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione	
mg/l	S ²⁻	1	
mg/l	H ₂ S	1.0629	

Metodo chimico

DPD/catalizzatore

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-5.52335 • 10 ⁻²	-5.52335 • 10 ⁻²
b	3.44705 • 10 ⁻¹	7.41116 • 10 ⁻¹
С	-2.88766 • 10 ⁻²	-1.33482 • 10 ⁻¹
d		
е		
f		

Interferenze

Interferenze escludibili

- Il cloro e gli altri ossidanti che reagiscono con il DPD non interferiscono con il test.
- La temperatura di analisi raccomandata è di 20°C. Temperature differenti possono portare a risultati troppo alti o troppo bassi.

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwedt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

Photometrische Analyse, Lange/Vjedelek, Verlag Chemie 1980

Derivato di

DIN 38405-D26/27

Solfito 10 T

M368

0.1 - 10 mg/L SO₃

DTNB

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 10 mm	405 nm	0.1 - 10 mg/L SO ₃

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Solfiti LR	Pastiglia / 100	518020BT

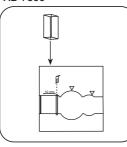
Campo di applicazione

- · Trattamento acqua di scarico
- Galvanizzazione

Note

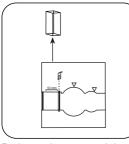
Modificando la lunghezza della cuvetta è possibile estendere il range di misura:

- Cuvetta da 10 mm: 0,1 mg/L 10 mg/L, risoluzione: 0,01
- Cuvetta da 20 mm: 0,05 mg/L 5 mg/L, risoluzione: 0,01
- Cuvetta da 50 mm: 0,02 mg/L 2 mg/L, risoluzione: 0,001

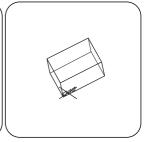

Esecuzione della rilevazione Solfito con pastiglia

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 10 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

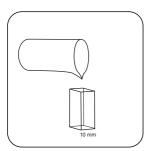
Prelevare la **cuvetta** dal vano di misurazione.

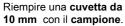
Svuotare la cuvetta.

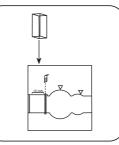
Asciugare bene la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Immettere 10 ml di campione nella recipiente del campione.




Aggiungere una pastiglia SULFITE LR.



Frantumare e far sciogliere la/e pastiglia/e con una leggera rotazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Solfito.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	SO ₃ ²⁻	1
mg/l	Na ₂ SO ₃	1.5743

Metodo chimico

DTNB

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	□ 10 mm
а	-4.72981 • 10 ⁻¹
b	6.87211 • 10+0
С	
d	
е	
f	

Riferimenti bibliografici

R.E. Humphrey, M.H. Ward, W. Hinze, Spectrophotometric determination of sulfite with 4,4'-dithio-dipyridine and 5,5'-dithiobis(2-nitrobenzoic acid), Anal. Chem., 1970, 42 (7), pagg. 698–702

Solfito T M370

0.1 - 5 mg/L SO₃

DTNB

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	430 nm	0.1 - 5 mg/L SO ₃
SpectroDirect	ø 24 mm	405 nm	0.05 - 4 mg/L SO ₃
XD 7000, XD 7500	ø 24 mm	405 nm	0.1 - 5 mg/L SO₃

Materiale

Materiale richiesto (in parte facoltativo):

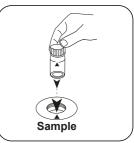
Reagenti	Unità di imbal- laggio	N. ordine
Solfiti LR	Pastiglia / 100	518020BT

Campo di applicazione

- · Trattamento acqua di scarico
- Galvanizzazione

Esecuzione della rilevazione Solfito con pastiglia

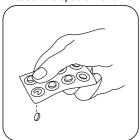
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di campione.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

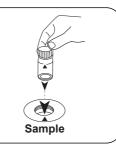


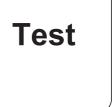
Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Aggiungere una pastiglia SULFITE LR.


Frantumare la/e pastiglia/e Chiudere la/e cuvetta/e. con una leggera rotazione.



Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Solfito.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	SO ₃ ²⁻	1
mg/l	Na ₂ SO ₃	1.5743

Metodo chimico

DTNB

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-2.67453•10 ⁻¹	-4.42153•10 ⁻¹
b	2.78503•10+0	6.69645•10 ⁺⁰
С		
d		
е		
f		

Validazione metodo

Limite di rilevabilità	0.04 mg/L
Limite di quantificazione	0.118 mg/L
Estremità campo di misura	6.0 mg/L
Sensibilità	2.815 mg/L / Abs
Intervallo di confidenza	0.081 mg/L
Deviazione standard della procedura	0.033 mg/L
Coefficiente di variazione della procedura	1.41 %

Riferimenti bibliografici

R.E. Humphrey, M.H. Ward, W. Hinze, Spectrophotometric determination of sulfite with 4,4'-dithio-dipyridine and 5,5'-dithiobis(2-nitrobenzoic acid), Anal. Chem., 1970, 42 (7), pagg. 698-702

Tensioattivi M. (anion.) TT

M376

0.05 - 2 mg/L SDSA

Blu di metilene

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, SpectroDirect, XD	ø 16 mm	660 nm	0.05 - 2 mg/L SDSA
7000, XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test Tensioattivi (anionici) in cuvetta Spectroquant 1.02552.0001 ^{d)}	25 pz.	420763

Campo di applicazione

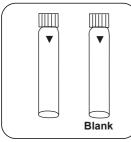
· Trattamento acqua di scarico

Preparazione

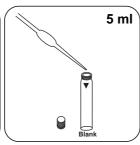
- 1. Poiché la reazione dipende dalla temperatura, bisogna attenersi al range di temperatura 10-20 °C (per la cuvetta di reazione e il campione di acqua).
- Capovolgere la cuvetta prima della misurazione. In caso di intorbidimento della fase inferiore scaldare brevemente la cuvetta con la mano.

Note

- 1. Questo metodo è un metodo MERCK.
- 2. Spectroquant® è un marchio protetto dell'azienda MERCK KGaA.
- Durante l'intera procedura si dovrebbero adottare misure di sicurezza adeguate e una buona tecnica di laboratorio.
- 4. Prima di eseguire il test leggere le istruzioni originali e le avvertenze di sicurezza accluse al kit di test (gli MSDS sono disponibili sul sito www.merckmillipore.com).
- 5. Dosare il volume di campione con una pipetta tarata da 5 ml (classe A).
- 6. I reagenti devono essere conservati a una temperatura compresa tra +15 °C e +25 °C.
- MBAS = Methylene Blue Active Substances (sostanze attive al blu di metilene), calcolato come acido dodecan-1-solfonico sale di sodio.

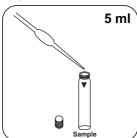


Esecuzione della rilevazione Tensioattivi anionici con test in cuvetta MERCK Spectroquant[®], n. 1.14697.0001


Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Con i seguenti dispositivi, per questo metodo non è necessario eseguire una misurazione ZERO:


Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Immettere 5 ml di acqua demineralizzata nella cuvetta zero.

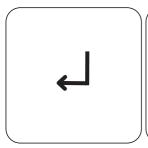
Non miscelare il contenuto!

Immettere 5 ml di campione nella cuvetta del campione.

Non miscelare il contenuto!

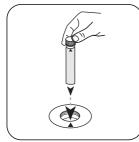
Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuyetta.

Immettere 2 gocce di soluzione Reagenz T-1 K in ogni cuvetta.

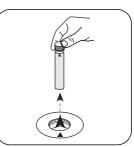


Chiudere la/e cuvetta/e.

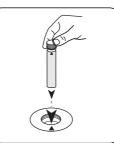
Miscelare il contenuto agitando (30 sec.).


Premere il tasto ENTER.

Attendere un tempo di reazione di 10 minuto/i .


Oscillare la cuvetta zero.

Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Capovolgere la cuvetta del Posizionare la cuvetta campione.

del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di MBAS.

Premere il tasto TEST (XD: START).

Test

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	SDBS	1.28
mg/l	SDS	1.06
mg/l	SDOSSA	1.63

Metodo chimico

Blu di metilene

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	D IV IIIII	
а	1.36547 • 10 ⁻²	
b	1.8329 • 10⁺⁰	
С		
d		
•		

ø 16 mm

Secondo

DIN EN 903:1994

^{d)}Spectroquant[®] è un marchio registrato della Ditta MERCK KGaA

Tensioattivi M. (non ion.) TT

M377

0.1 - 7.5 mg/L Triton X-100

TBPE

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, SpectroDirect, XD 7000, XD 7500	ø 16 mm	610 nm	0.1 - 7.5 mg/L Triton X-100

Materiale

Materiale richiesto (in parte facoltativo):

Unità di imbal- laggio	N. ordine
25 pz.	420764
	laggio

Campo di applicazione

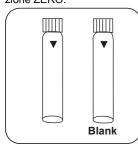
- · Trattamento acqua di scarico
- Galvanizzazione

Preparazione

- Prima di eseguire il test, è necessario leggere le istruzioni originali e i consigli di sicurezza forniti con il kit per il test (le MSDS sono disponibili sulla homepage di www.merckmillipore.com).
- Durante l'intera procedura devono essere adottate opportune precauzioni di sicurezza e una buona tecnica di laboratorio.
- Poiché la reazione dipende dalla temperatura, la temperatura deve attestarsi tra 20 e 25 °C (per cuvetta di reazione e campione d'acqua).
- 4. Il valore del pH del campione deve attestarsi tra 3 e 9.

Note

- 1. Questo metodo è un metodo MERCK.
- 2. Spectroquant® è un marchio protetto dell'azienda MERCK KGaA.
- 3. I volumi di campioni e reagenti devono essere misurati con l'ausilio di un'idonea pipetta graduata da (classe A).
- 4. Triton® è un marchio commerciale registrato dell'azienda DOW Chemical Company.



Esecuzione della rilevazione Tensioattivi non ionici con test in cuvetta MERCK Spectroquant®, n. 1.01787.0001

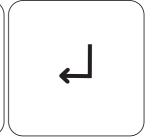
Selezionare il metodo nel dispositivo.

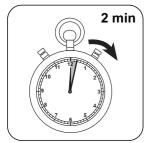
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Con i seguenti dispositivi, per questo metodo non è necessario eseguire una misurazione ZERO:

Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Immettere 4 ml di acqua demineralizzata nella cuvetta zero.

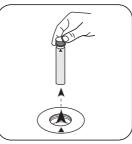

Immettere 4 ml di campione nella cuvetta del campione.


Chiudere la/e cuvetta/e.

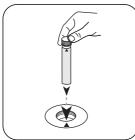
Miscelare il contenuto agitando vigorosamente (1 min.).


Premere il tasto ENTER.

Attendere un tempo di reazione di 2 minuto/i.


Oscillare la cuvetta zero.

Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Capovolgere la cuvetta del campione.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di Triton X-100.

Test

Premere il tasto **TEST** (XD: START).

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	NP10	1.1

Metodo chimico

TBPE

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm	
а	5.64524 • 10 ⁻²	
b	5.9893 • 10 ⁺⁰	
С		
d		
е		
f		

Secondo

DIN EN 903:1994

d)Spectroquant® è un marchio registrato della Ditta MERCK KGaA

Tensioattivi M. (cation.) TT

M378

0.05 - 1.5 mg/L CTAB

Blu di disulfina

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, SpectroDirect, XD 7000, XD 7500	ø 16 mm	610 nm	0.05 - 1.5 mg/L CTAB

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test Tensioattivi (cationici) in cuvetta Spectro- quant 1.01764.0001 ^{d)}	25 pz.	420765

Campo di applicazione

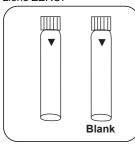
Trattamento acqua di scarico

Preparazione

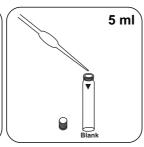
- Prima di eseguire il test, è necessario leggere le istruzioni originali e i consigli di sicurezza forniti con il kit per il test (le MSDS sono disponibili sulla homepage di www.merckmillipore.com).
- Durante l'intera procedura devono essere adottate opportune precauzioni di sicurezza e una buona tecnica di laboratorio.
- 3. Poiché la reazione dipende dalla temperatura, la temperatura deve attestarsi tra 20 e 25 °C (per cuvetta di reazione e campione d'acqua).
- 4. Il valore del pH del campione deve attestarsi tra 3 e 9.

Note

- 1. Questo metodo è un metodo MERCK.
- 2. Spectroquant® è un marchio protetto dell'azienda MERCK KGaA.
- 3. I volumi di campioni devono essere misurati con l'ausilio di un'idonea pipetta graduata da 5 ml e 0,5 ml (classe A).
- 4. Triton® è un marchio commerciale registrato dell'azienda DOW Chemical Company.
- 5. CTAB = calcolato come N-cetil-N,N,N-trimetilammonio bromuro.
- Nel caso in cui la fase inferiore fosse torbida, scaldare brevemente la cella con la mano.

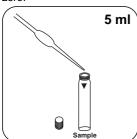


Esecuzione della rilevazione Tensioattivi cationici con test in cuvetta MERCK Spectroquant[®], n. 1.01764.0001


Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Con i seguenti dispositivi, per questo metodo non è necessario eseguire una misurazione ZERO:

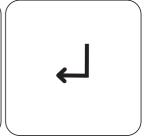

Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Immettere 5 ml di acqua demineralizzata nella cuvetta zero.

Non miscelare il contenuto!


Immettere 5 ml di Non r campione nella cuvetta del nuto! campione.

Non miscelare il contenuto!


Aggiungere 0.5 ml di Reagenz T-1 K

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo (30 sec.).

Premere il tasto ENTER.


Attendere un tempo di reazione di 5 minuto/i.

Posizionare la **cuvetta zero** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la **cuvetta** dal vano di misurazione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di CTAB.

Metodo chimico

Blu di disulfina

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm	
а	8.75489 • 10 ⁻³	
b	1.90333 • 10+0	
С		
d		
е		

Secondo

f

DIN EN 903:1994

^{d)}Spectroquant®è un marchio registrato della Ditta MERCK KGaA

TOC LR M. TT

M380

5 - 80 mg/L TOCb)

H₂SO₄ / Persulphate / Indicator

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, XD 7000, XD 7500	ø 16 mm	610 nm	5 - 80 mg/L TOC ^{b)}
SpectroDirect	ø 16 mm	596 nm	5 - 80 mg/L TOC ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test TOC in cuvetta Spectroquant 1.14878.0001 d)	25 pz.	420761

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940
Tappi a vite TOC	1 set	420757

Campo di applicazione

- · Trattamento acqua potabile
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata

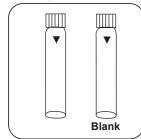
Preparazione

 Prima di eseguire il test, è necessario leggere le istruzioni originali e i consigli di sicurezza forniti con il kit per il test (le MSDS sono disponibili sulla homepage di www.merckmillipore.com).

Note

- 1. Questo metodo è adattato da MERCK.
- 2. Spectroquant® è un marchio commerciale registrato dell'azienda MERCK KGaA.
- Durante l'intera procedura devono essere adottate opportune precauzioni di sicurezza e una buona tecnica di laboratorio.
- 4. I volumi di campioni e reagenti devono essere misurati con l'ausilio di un'idonea pipetta graduata (classe A).
- 5. TOC = Carbonio organico totale
- 6. I tappi in alluminio possono essere riutilizzati (vedere Merck).

Esecuzione della rilevazione TOC LR con test in cuvetta MERCK Spectroguant[®], n. 1.14878.0001

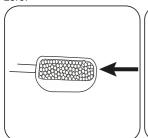

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Con i seguenti dispositivi, per questo metodo non è necessario eseguire una misurazione ZFRO:

Preparare due recipienti in vetro adeguati e puliti. Contrassegnare un recipiente di vetro come campione zero.

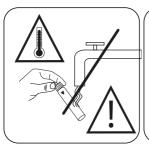
- 1. Immettere 25 ml di acqua demineralizzata nel campione zero.
- 2. Immettere 25 ml di campione nel recipiente del campione.
- 3. Aggiungere 3 gocce di reagente TOC-1K e miscelare.
- 4. Il valore di pH del campione deve essere inferiore a 2,5. Se necessario, regolare con acido solforico.
- 5. Agitare per 10 minuti a velocità media. (Agitatore magnetico, barretta di agitazione)


Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Immettere 3 ml del campione zero preparato nella cuvetta zero.

Immettere 3 ml di campione nella cuvetta del campione.

Aggiungere un micro cucchiaio raso di TOC-2K ciascuno.



Chiudere immediatamente la/e cuvetta/e con il tappo di 120 minuti a 120 °C nel alluminio.

Scaldare la cuvetta per termoreattore preriscaldato in posizione capovolta.

Lasciar raffreddare la cuvetta capovolta per 1 ora. zero nel vano di misura-Non raffreddare con acqua! Dopo il raffreddamento capovolgere e misurare nel fotometro entro 10 minuti.

Posizionare la cuvetta zione. Fare attenzione al posizionamento.

Zero

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la cuvetta misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di TOC.

del campione nel vano di

Test

Premere il tasto TEST (XD: START).

Metodo chimico

H₂SO₄ / Persulphate / Indicator

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm
а	9.84368 • 10 ⁺¹
b	-3.32135 • 10 ⁺¹
С	-2.14517 • 10 ⁺¹
d	
е	
f	

Derivato di

EN 1484:1997

Standard Method 5310 C

^ыReattore richiesto per COD (150 ° C), TOC (120 ° C) e cromo totale, - fosfato, azoto, (100 ° C) | ^aSpectroquant[®]è un marchio registrato della Ditta MERCK KGaA

TOC HR M. TT

M381

50 - 800 mg/L TOCb)

H₂SO₄ / Persulphate / Indicator

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect, XD 7000, XD 7500	ø 16 mm	610 nm	50 - 800 mg/L TOC ^{b)}
SpectroDirect	ø 16 mm	596 nm	50 - 800 mg/L TOC ^{b)}

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Test TOC in cuvetta Spectroquant 1.14879.0001 d)	25 pz.	420756

Sono necessari inoltre i seguenti accessori.

Accessori	Unità di imballaggio	N. ordine
Termoreattore RD 125	1 pz.	2418940
Tappi a vite TOC	1 set	420757

Campo di applicazione

- · Trattamento acqua potabile
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata

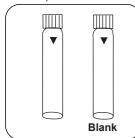
Preparazione

 Prima di eseguire il test, è necessario leggere le istruzioni originali e i consigli di sicurezza forniti con il kit per il test (le MSDS sono disponibili sulla homepage di www.merckmillipore.com).

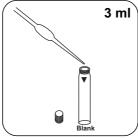
Note

- 1. Questo metodo è adattato da MERCK.
- 2. Spectroquant® è un marchio commerciale registrato dell'azienda MERCK KGaA.
- Durante l'intera procedura devono essere adottate opportune precauzioni di sicurezza e una buona tecnica di laboratorio.
- 4. I volumi di campioni e reagenti devono essere misurati con l'ausilio di un'idonea pipetta graduata (classe A).
- 5. TOC = Carbonio organico totale
- 6. I tappi in alluminio possono essere riutilizzati (vedere Merck).

Esecuzione della rilevazione TOC HR con test in cuvetta MERCK Spectroguant[®], n. 1.14879.0001

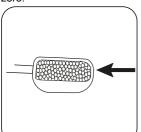

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Con i sequenti dispositivi, per questo metodo non è necessario eseguire una misurazione ZFRO:

Preparare due recipienti in vetro adeguati e puliti. Contrassegnare un recipiente di vetro come campione zero.

- 1. Immettere 10 ml di acqua demineralizzata nel campione zero.
- 2. Immettere 1 ml di campione e 9 ml di acqua demineralizzata nel recipiente del campione e miscelare.
- 3. Aggiungere 2 gocce di reagente TOC-1K e miscelare.
- 4. Il valore di pH del campione deve essere inferiore a 2,5. Se necessario, regolare con acido solforico.
- 5. Agitare per 10 minuti a velocità media. (Agitatore magnetico, barretta di agitazione)

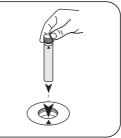

Preparare due cuvette per reagenti. Contrassegnare una cuvetta come cuvetta zero.

Immettere 3 ml del campione zero preparato nella cuvetta zero.

Immettere 3 ml del campione preparato nella cuvetta del campione.

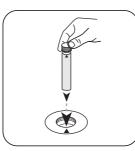
Aggiungere un micro cucchiaio raso di TOC-2K ciascuno.

Chiudere immediatamente la/e cuvetta/e con il tappo di 120 minuti a 120 °C nel alluminio.



Scaldare la cuvetta per termoreattore preriscaldato in posizione capovolta.

Lasciar raffreddare la cuvetta capovolta per 1 ora. zero nel vano di misura-Non raffreddare con acqua! Dopo il raffreddamento capovolgere e misurare nel fotometro entro 10 minuti.


Posizionare la cuvetta zione. Fare attenzione al posizionamento.

Zero

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Posizionare la cuvetta misurazione. Fare attenzione al posizionamento. Sul display compare il risultato in mg/l di TOC.

del campione nel vano di

Test

Premere il tasto TEST (XD: START).

Metodo chimico

H₂SO₄ / Persulphate / Indicator

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm	
а	9.90014 • 10+2	
b	-3.44796 • 10 ⁺²	
С	-2.08152 • 10 ⁺²	
d		
е		
f		

Interferenze

Interferenze	da / [mg/L]
Ca	1000
Mg	1000
NH ₄ -N	1000
TIC (carbonio inorga- nico totale)	250
NaCl	25
NaNO ₃	100
Na ₂ SO ₄	100

Derivato di

EN 1484:1997

Standard Method 5310 C

[∞]/Reattore richiesto per COD (150 ° C), TOC (120 ° C) e cromo totale, - fosfato, azoto, (100 ° C) | [∞]/_{Spectroquante} è un marchio registrato della Ditta MERCK KGaA

Solidi sospesi 50

M383

10 - 750 mg/L TSS

Torbidità / luce trasmessa

Informazioni specifiche dello strumento

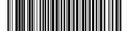
Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD 7500	□ 50 mm	810 nm	10 - 750 mg/L TSS

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal-	N. ordine
	laggio	


Nessun reagente richiesto

Campo di applicazione

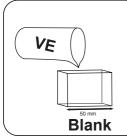
- · Trattamento acqua potabile
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata

Prelievo del campione

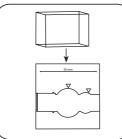
1. Il campione di acqua deve essere misurato al più presto dopo il prelievo. I campioni possono essere conservati fino a 7 giorni a 4 °C in flaconi di plastica o vetro. La misurazione dovrebbe avvenire alla stessa temperatura presente al momento del prelievo del campione. Eventuali differenze di temperatura tra la misurazione e il prelievo del campione possono modificare il risultato della misurazione.

Note

- La determinazione fotometrica dei solidi sospesi è basata su un metodo gravimetrico. In un laboratorio la vaporizzazione del residuo di filtrazione di un campione di acqua filtrato viene solitamente eseguita in un forno a 103-105 °C e il residuo essiccato viene bilanciato.
- Se è richiesta un'accuratezza elevata è necessario eseguire una determinazione gravimetrica di un campione. Questo risultato può essere utilizzato per una regolazione personalizzata del fotometro con lo stesso campione.
- 3. Il limite di rilevabilità stimato per questo metodo è di 20 mg/L di TSS.

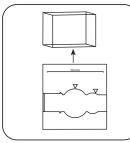


Esecuzione della rilevazione Solidi sospesi


Selezionare il metodo nel dispositivo.

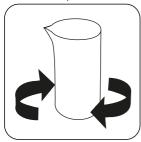
Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Omogeneizzare 500 ml del campione di acqua in un agitatore a velocità elevata per 2 minuti.


Riempire una cuvetta da 50 mm con acqua demineralizzata.

Posizionare la cuvetta zero nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

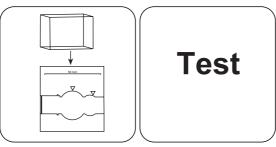


Prelevare la **cuvetta** dal vano di misurazione.

Svuotare la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Miscelare bene il campione di acqua omogeneizzato.



Sciacquare internamente la cuvetta con il campione preparato.

Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di TSS (Totale solidi in sospensione).

Metodo chimico

Torbidità / luce trasmessa

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	□ 50 mm
а	8.02365 • 10 ⁺⁰
b	1.44739 • 10+2
С	7.70483 • 10*1
d	-3.84183 • 10 ⁺¹
е	9.71408 • 10+0
f	

Interferenze

Interferenze escludibili

- Le bolle d'aria provocano interferenze e possono essere rimosse facendo oscillare leggermente la cuvetta.
- Il colore provoca interferenze se la luce viene assorbita a 660 nm.

Validazione metodo

Limite di rilevabilità	0.42 mg/L
Limite di quantificazione	1.27 mg/L
Estremità campo di misura	750 mg/L
Sensibilità	272.94 mg/L / Abs
Intervallo di confidenza	3.96 mg/L
Deviazione standard della procedura	2.06 mg/L
Coefficiente di variazione della procedura	0.54 %

Derivato di

EN 872:2005

Solidi sospesi 24

M384

10 - 750 mg/L TSS

SuS

Torbidità / luce trasmessa

Informazioni specifiche dello strumento

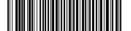
Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	660 nm	10 - 750 mg/L TSS
XD 7000, XD 7500	ø 24 mm	810 nm	10 - 750 mg/L TSS

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
	iaggio	


Nessun reagente richiesto

Campo di applicazione

- Trattamento acqua potabile
- Trattamento acqua di scarico
- · Trattamento acqua non depurata


Prelievo del campione

1. Il campione di acqua deve essere misurato al più presto dopo il prelievo. I campioni possono essere conservati fino a 7 giorni a 4 °C in flaconi di plastica o vetro. La misurazione dovrebbe avvenire alla stessa temperatura presente al momento del prelievo del campione. Eventuali differenze di temperatura tra la misurazione e il prelievo del campione possono modificare il risultato della misurazione.

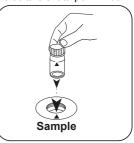
Note

- La determinazione fotometrica dei solidi sospesi è basata su un metodo gravimetrico. In un laboratorio la vaporizzazione del residuo di filtrazione di un campione di acqua filtrato viene solitamente eseguita in un forno a 103-105 °C e il residuo essiccato viene bilanciato.
- Se è richiesta un'accuratezza elevata è necessario eseguire una determinazione gravimetrica di un campione. Questo risultato può essere utilizzato per una regolazione personalizzata del fotometro con lo stesso campione.
- 3. Il limite di rilevabilità stimato per questo metodo è di 20 mg/L di TSS.

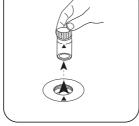
Esecuzione della rilevazione Solidi sospesi

Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

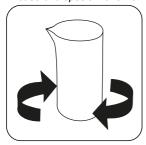

Omogeneizzare ml del campione di acqua in un agitatore a velocità elevata per minuti.

Riempire una cuvetta da 24 mm con 10 ml di acqua demineralizzata.



Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

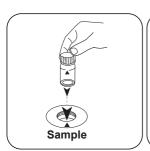


Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Miscelare bene il campione di acqua omogeneizzato.



Sciacquare preventivamente la cuvetta con il campione di acqua.

Riempire una cuvetta da 24 mm con 10 ml del campione preparato.

Test

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di TSS (Totale solidi in sospensione).

Metodo chimico

Torbidità / luce trasmessa

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	5.32451 • 10 ⁺⁰	5.32451 • 10 ⁺⁰
b	4.51473 • 10 ⁺²	9.70666 • 10+2
С	6.79429 • 10 ⁺¹	3.14066 • 10+2
d		
е		
f		

Interferenze

Interferenze permanenti

• Il colore provoca interferenze se la luce viene assorbita a 660 nm.

Interferenze escludibili

 Le bolle d'aria provocano interferenze e possono essere rimosse facendo oscillare leggermente la cuvetta.

Validazione metodo

Limite di rilevabilità	10 mg/L
Limite di quantificazione	30 mg/L
Estremità campo di misura	750 mg/L
Sensibilità	550 mg/L / Abs
Intervallo di confidenza	4.24 mg/L
Deviazione standard della procedura	1.79 mg/L
Coefficiente di variazione della procedura	0.47 %

Derivato di

EN 872:2005

Torbidità 50

M385

5 - 500 FAU

Radiazione di luce trasmessa

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
SpectroDirect, XD 7000, XD	□ 50 mm	860 nm	5 - 500 FAU
7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine

Nessun reagente richiesto

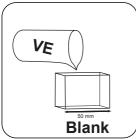
Campo di applicazione

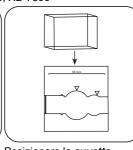
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata

Prelievo del campione

1. Il campione di acqua deve essere misurato al più presto dopo il prelievo. I campioni possono essere conservati fino a 48 h a 4 °C in flaconi di plastica o vetro. La misurazione dovrebbe avvenire alla stessa temperatura presente al momento del prelievo del campione. Eventuali differenze di temperatura tra la misurazione e il prelievo del campione possono modificare la torbidità del campione.

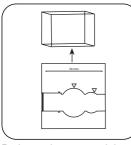
Note


 La misurazione della torbidità è un metodo basato sulla radiazione trasmessa riferito a unità di attenuazione di formazina (FAU). I risultati sono adatti agli esami di routine, ma non possono essere utilizzati per la documentazione di conformità in quanto il metodo con radiazione trasmessa è diverso dal metodo nefelometrico (NTU).


Esecuzione della rilevazione Torbidità

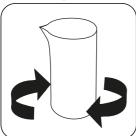
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500


Riempire una cuvetta da 50 mm con acqua demineralizzata.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

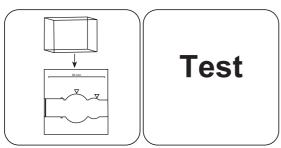


Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta.


In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Miscelare bene il campione Sciacquare internamente di acqua.



la cuvetta con il campione preparato.

Riempire una cuvetta da 50 mm con il campione.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenPremere il tasto **TEST** (XD: **START**).

zione al posizionamento. Sul display compare il risultato come FAU.

Metodo chimico

Radiazione di luce trasmessa

Appendice

Interferenze

Interferenze escludibili

- Le bolle d'aria alterano la misurazione della torbidità. Degasare eventualmente i campioni con un bagno ultrasonico.
- Con una misurazione a 860 nm le interferenze dovute al colore vengono ridotte al minimo. L'assorbimento di luce a 860 nm e le bolle di gas interferiscono con la misurazione.

Validazione metodo

Limite di rilevabilità	0.9 FAU
Limite di quantificazione	2.7 FAU
Estremità campo di misura	500 FAU
Sensibilità	253 FAU / Abs
Intervallo di confidenza	3.42 FAU
Deviazione standard della procedura	1.49 FAU
Coefficiente di variazione della procedura	0.59 %

Riferimenti bibliografici

FWPCA Methods for Chemical Analysis of Water and Wastes, 275 (1969)

Torbidità 24

M386

10 - 1000 FAU

Radiazione di luce trasmessa

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	530 nm	10 - 1000 FAU
XD 7000, XD 7500	ø 24 mm	860 nm	10 - 1000 FAU

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine

Nessun reagente richiesto

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua non depurata

Prelievo del campione

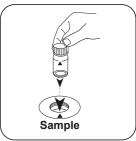
1. Il campione di acqua deve essere misurato al più presto dopo il prelievo. I campioni possono essere conservati fino a 48 h a 4 °C in flaconi di plastica o vetro. La misurazione dovrebbe avvenire alla stessa temperatura presente al momento del prelievo del campione. Eventuali differenze di temperatura tra la misurazione e il prelievo del campione possono modificare la torbidità del campione.

Note

- La misurazione della torbidità è un metodo basato sulla radiazione trasmessa riferito a unità di attenuazione di formazina (FAU). I risultati sono adatti agli esami di routine, ma non possono essere utilizzati per la documentazione di conformità in quanto il metodo con radiazione trasmessa è diverso dal metodo nefelometrico (NTU).
- 2. Il limite di rilevabilità stimato per questo metodo è di 20 FAU.

Esecuzione della rilevazione Torbidità

Selezionare il metodo nel dispositivo.

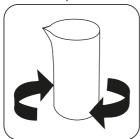

Per questo metodo, non è necessario esequire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con 10 ml di acqua demineralizzata.

Chiudere la/e cuvetta/e.

Posizionare la cuvetta del campione nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.



Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Miscelare bene il campione Sciacquare preventivadi acqua.

mente la cuvetta con il campione di acqua.

Riempire una cuvetta da 24 mm con 10 ml di campione.

Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato come FAU.

Metodo chimico

Radiazione di luce trasmessa

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	8.61245•10+0	8.61245•10 ⁺⁰
b	4.97947•10+2	1.07059•10 ⁺³
С	8.71462•10+1	4.02833•10 ⁺²
d		
е		
f		

Interferenze

Interferenze escludibili

- Le bolle d'aria alterano la misurazione della torbidità. Degasare eventualmente i campioni con un bagno ultrasonico.
- Il colore provoca interferenze se la luce viene assorbita a 530 nm.
 In caso di campioni con una colorazione intensa, utilizzare una parte filtrata del campione invece dell'acqua demineralizzata per la compensazione dello zero.

Validazione metodo

Limite di rilevabilità	1.59 FAU
Limite di quantificazione	4.76 FAU
Estremità campo di misura	1000 FAU
Sensibilità	642 FAU / Abs
Intervallo di confidenza	4.27 FAU
Deviazione standard della procedura	1.85 FAU
Coefficiente di variazione della procedura	0.37 %

Riferimenti bibliografici

FWPCA Methods for Chemical Analysis of Water and Wastes, 275 (1969)

Triazolo PP M388

1 - 16 mg/L Benzotriazole or Tolyltriazole

tri

Digestione UV catalizzata

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

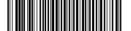
Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, XD 7000,	ø 24 mm	430 nm	1 - 16 mg/L Benzo- triazole or Tolyltria-
XD 7500			zole

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
VARIO Triazole RGT Powder Pack F25	Polvere / 100 pz.	532200
VARIO Rochelle soluzione salina, 30 ml h)	30 mL	530640
Sono necessari inoltre i seguenti accessori.		
Accessori	Unità di imballaggio	N. ordine
Lampada a penna UV, 254 nm	1 pz.	400740

Indicazioni di pericolo


Mentre la lampada UV è in funzione si devono indossare occhiali di protezione contro gli UV.

Campo di applicazione

· Acqua di caldaia

Prelievo del campione

1. Il campione di acqua deve essere misurato al più presto dopo il prelievo.

Preparazione

- 1. Perché i risultati dell'analisi siano accurati è necessario che il campione abbia una temperatura compresa tra 20 °C e 25 °C.
- 2. Le acque contenenti nitrito o borace devono essere portate prima dell'analisi entro un range di pH compreso tra 4 e 6 (con 1N di acido solforico).
- Se il campione ha una durezza di più di 500 mg/L di CaCO₃ si aggiungono 10 gocce di soluzione salina Rochelle.

Note

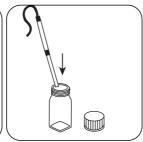
- 1. Polvere in bustine Triazole Reagent e lampada UV disponibile su richiesta.
- 2. Per l'uso della lampada UV fare riferimento al manuale del produttore. Non toccare la superficie della lampada UV. Le impronte digitali corrodono il vetro. Tra una misurazione e l'altra pulire la lampada UV con un panno morbido e pulito.
- 3. Il test non distingue tra tolitriazolo e benzotriazolo.

Esecuzione della rilevazione Benzotriazolo/tolitriazolo con polvere in bustine Vario

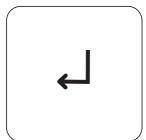
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire un contenitore di decomposizione con 25 ml polvere. di campione.


Aggiungere una bustina di Chiudere la contenitore di

decomposizione.


Far sciogliere la polvere capovolgendo.

Tenere la lampada UV nel campione. Attenzione: indossare occhiali di protezione contro i raggi UV!

Accendere la lampada UV.

Premere il tasto ENTER.

Attendere un tempo di reazione di 5 minuto/i

Spegnere la lampada UV al termine del conto alla rovescia.

Prelevare la lampada UV dal campione.

Chiudere la contenitore di decomposizione.

Miscelare il contenuto capovolgendo.

Riempire una cuvetta da 24 mm con 10 ml di acqua demineralizzata.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Zero

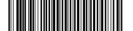
Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

Svuotare la cuvetta.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

Riempire una cuvetta da 24 mm con 10 ml del campione preparato.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Benzotriazolo/tolitriazolo.

Valutazione

La seguente tabella identifica i valori di output che possono essere convertiti in altre forme di citazione.

Unità di misura	Forma di citazione	Fattore di conversione
mg/l	Benzotriazole	1
mg/l	Tolyltriazole	1.1177

Metodo chimico

Digestione UV catalizzata

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-2.31524 • 10 ⁻¹	-2.31524 • 10 ⁻¹
b	1.75481 • 10 ⁺¹	3.77285 • 10+1
С		
d		
е		
f		

Interferenze

Interferenze permanenti

 Se la fotolisi viene eseguita per più o meno di 5 minuti si possono ottenere risultati troppo bassi.

Riferimenti bibliografici

Harp, D., Proceedings 45th International Water Conference, 299 (October 22-24, 1984)

^{h)}Reagente ausiliario, è utilizzato anche per campioni con durezza superiore a 300 mg / I CaCO₃

Tannin L M389

0.5 - 20 mg/L Tannin

Folin Phenol

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640	ø 24 mm	660 nm	0.5 - 20 mg/L Tannin

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Tannin Reagent 1	30 mL	SDT181
Tannin Reagent 2	30 mL	SDT249

Campo di applicazione

· Acqua di caldaia

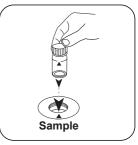
Prelievo del campione

- 1. Se i campioni sono torbidi, filtrare prima del test usando carte da filtro GF/C.
- Per concentrazioni di tannino superiori a 20 mg/L il campione può essere opportunamente diluito con acqua distillata prima dell'analisi. Il risultato deve poi essere moltiplicato per il fattore di diluizione.

Note

 Questo test è molto sensibile al tempo di reazione. Il campione deve essere letto il più vicino possibile ai 5 minuti, a partire dall'aggiunta del Tannin Reagent 2 alla pressione del tasto TEST. Se non si segue scrupolosamente questa procedura, verranno visualizzati risultati errati.

Esecuzione della rilevazione Tannino con reagente liquido


Selezionare il metodo nel dispositivo.

Riempire una cuvetta da 24 mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Zero

Premere il tasto ZERO.

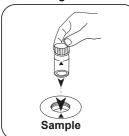
Prelevare la cuvetta dal vano di misurazione.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuyetta.

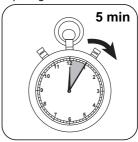
Aggiungere 25 gocce di Tannin Reagent 1.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere 6 gocce di Tannin Reagent 2.

Chiudere la/e cuvetta/e.


Miscelare il contenuto capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST**.

Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di acido tannico.

Folin Phenol

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	3.28646•10+0	3.28646•10+0
b	7.84007•10+0	1.68562•10*1
С		
d		
е		
f		

Validazione metodo

Limite di rilevabilità	0.13 mg/L
Limite di quantificazione	0.26 mg/L
Estremità campo di misura	20 mg/L
Sensibilità	7.72 mg/L / Abs
Intervallo di confidenza	0.93 mg/L
Deviazione standard della procedura	0.38 mg/L
Coefficiente di variazione della procedura	0.65 %

Derivato di

5550 B Standard Method

Urea T M390

0.1 - 2.5 mg/L Urea

Ur1

Indofenolo/ureasi

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	610 nm	0.1 - 2.5 mg/L Urea
SpectroDirect	ø 24 mm	676 nm	0.1 - 2 mg/L Urea
XD 7000, XD 7500	ø 24 mm	676 nm	0.1 - 2.5 mg/L Urea

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Reagente UREA 1	15 mL	459300
Reagente UREA 2	10 mL	459400
Ammonio No. 1	Pastiglia / 100	512580BT
Ammonio No. 1	Pastiglia / 250	512581BT
Ammonio No. 2	Pastiglia / 100	512590BT
Ammonio No. 2	Pastiglia / 250	512591BT
Set Ammonia No. 1/no. 2#	ciascuna 100	517611BT
Set Ammonia No. 1/no. 2#	ciascuna 250	517612BT
Polvere condizionante di ammonio	Polvere / 15 g	460170
Urea Pretreat (compensates for the interference of free Chlorine up to 2 mg/l)	Pastiglia / 100	516110BT
Set di reagenti UREA	1 set	517800BT

Campo di applicazione

Controllo acqua in vasca

Preparazione

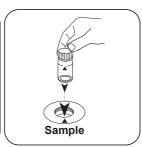
- 1. La temperatura del campione deve essere compresa tra 20 °C e 30 °C.
- 2. Eseguire l'analisi al più tardi un'ora dopo il prelievo del campione.
- Nell'analisi di campioni di acqua di mare, prima di aggiungere la pastiglia AMMONIA No. 1 si deve aggiungere un cucchiaio dosatore di polvere condizionante di ammonio al campione e quindi farla sciogliere con un movimento oscillatorio.

Note

- 1. La pastiglia AMMONIA No. 1 si scioglie completamente soltanto dopo aver aggiunto la pastiglia AMMONIA No. 2.
- 2. L'ammonio e la clorammina vengono rilevati nell'ambito della rilevazione dell'urea.

Esecuzione della rilevazione Urea con pastiglia e reagente liquido

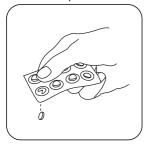
Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

In presenza di cloro libero (HOCI) aggiungere una pastiglia UREA PRETREAT.

Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

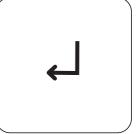
Far sciogliere la/e pastiglia/e agitando.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

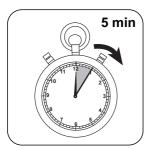
Aggiungere 2 gocce di Urea Reagenz 1.

Chiudere la/e cuvetta/e.

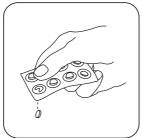
Miscelare il contenuto capovolgendo.


Aggiungere 1 gocce di Urea Reagenz 2.

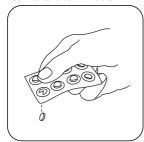
Chiudere la/e cuvetta/e.



Miscelare il contenuto capovolgendo.



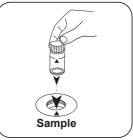
Premere il tasto ENTER.


Attendere un tempo di reazione di 5 minuto/i.

Aggiungere una pastiglia AMMONIA No.1.

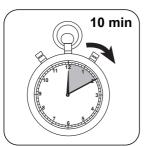
Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia AMMONIA No.2.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 10 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Urea.

Indofenolo/ureasi

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.32974 • 10 ⁻¹	-2.32974 • 10 ⁻¹
b	1.24957 • 10⁺⁰	2.68658 • 10+0
С		
d		
е		
f	·	

Interferenze

Interferenze permanenti

 Le concentrazioni di urea maggiori di 2 mg/L possono dare risultati entro il range di misura. In questo caso il campione di acqua deve essere diluito con acqua priva di urea e la misurazione deve essere ripetuta (test di plausibilità).

Interferenze escludibili

 Una pastiglia di UREA PRETREAT elimina l'interferenza del cloro libero fino a 2 mg/L (due pastiglie fino a 4 mg/L, tre pastiglie fino a 6 mg/L).

Interferenze	da / [mg/L]
Cl ₂	2

Riferimenti bibliografici

R.J. Creno, R.E. Wenk, P. Bohling, Automated Micromeasurement of Urea Using Urease and the Berthelot Reaction, American Journal of Clinical Pathology (1970), 54 (6), pagg. 828-832

^{)#}Bacchetta compresa

Urea T M391

0.2 - 5 mg/L Ureaⁱ⁾

Ur2

Indofenolo/ureasi

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100	ø 24 mm	610 nm	0.2 - 5 mg/L Urea ⁱ⁾

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Reagente UREA 1	15 mL	459300
Reagente UREA 2	10 mL	459400
Ammonio No. 1	Pastiglia / 100	512580BT
Ammonio No. 1	Pastiglia / 250	512581BT
Ammonio No. 2	Pastiglia / 100	512590BT
Ammonio No. 2	Pastiglia / 250	512591BT
Set Ammonia No. 1/no. 2#	ciascuna 100	517611BT
Set Ammonia No. 1/no. 2#	ciascuna 250	517612BT
Polvere condizionante di ammonio	Polvere / 15 g	460170
Urea Pretreat (compensates for the interference of free Chlorine up to 2 mg/l)	Pastiglia / 100	516110BT
Set di reagenti UREA	1 set	517800BT

Campo di applicazione

· Controllo acqua in vasca

Esecuzione della rilevazione Urea con pastiglia e reagente liquido

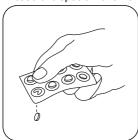
Selezionare il metodo nel dispositivo.

Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Immettere 5 ml di campione e 5 ml di acqua demineralizzata nella cuvetta del campione.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

In presenza di cloro libero (HOCI) aggiungere una pastiglia UREA PRETREAT.

Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

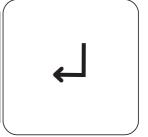
Far sciogliere la/e pastiglia/e agitando.

Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuvetta.

Aggiungere 2 gocce di UREA Reagenz 1.

Chiudere la/e cuvetta/e.

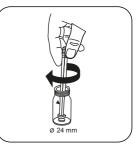
Miscelare il contenuto capovolgendo.

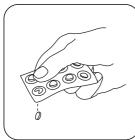

Aggiungere 1 gocce di UREA Reagenz 2.

Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.

Premere il tasto ENTER.

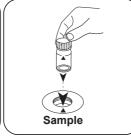



Attendere un tempo di reazione di 5 minuto/i.

Aggiungere una pastiglia AMMONIA No. 1.

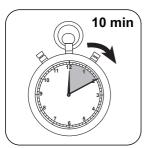
Frantumare la/e pastiglia/e con una leggera rotazione.

Aggiungere una pastiglia AMMONIA No. 2.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.



Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Attendere un tempo di reazione di 10 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione. Sul display compare il risultato in mg/l di Urea.

Indofenolo/ureasi

¹⁾ Elevato intervallo di misurazione grazie alla diluizione | ¹⁾ *Bacchetta compresa

Zinco T M400

0.02 - 1 mg/L Zn

Zincon

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	610 nm	0.02 - 1 mg/L Zn
SpectroDirect	ø 24 mm	616 nm	0.02 - 0.5 mg/L Zn
XD 7000, XD 7500	ø 24 mm	616 nm	0.02 - 1 mg/L Zn

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Rame/zinco LR	Pastiglia / 100	512620BT
Rame/zinco LR	Pastiglia / 250	512621BT
EDTA in presenza di rame	Pastiglia / 100	512390BT
EDTA in presenza di rame	Pastiglia / 250	512391BT
Dechlor in presenza di cloro	Pastiglia / 100	512350BT

Campo di applicazione

- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- · Acqua di raffreddamento
- Galvanizzazione

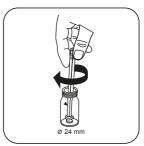
Preparazione

- Se si prevede un elevato tenore di cloro residuo, l'analisi va eseguita dopo la declorazione del campione di acqua. Per declorare il campione si aggiunge una pastiglia DECHLOR nella cuvetta da 24 mm con il campione di acqua. Successivamente si aggiunge la pastiglia Copper/Zinc LR come descritto e si esegue il test.
- 2. Le acque fortemente alcaline o acide dovrebbero essere regolate prima dell'analisi su un pH pari a 7 (con 1 mol/l di acido cloridrico o 1 mol/l di liscivia).

Note

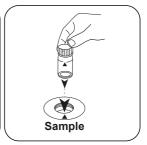
- Se si utilizza la pastiglia Copper/Zink LR, l'indicatore Zincon reagisce sia con lo zinco che con il rame. Il range di misura indicato si riferisce alla concentrazione totale di entrambi gli ioni.
- 2. Aggiungendo la pastiglia EDTA si fa in modo che il rame eventualmente presente non venga rilevato.

Esecuzione della rilevazione Zinco con pastiglia


Selezionare il metodo nel dispositivo.

Riempire una cuvetta da 24 mm con **10 ml di** campione.

Aggiungere una pastiglia COPPER/ ZINK LR.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

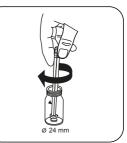
Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

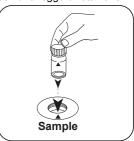
Attendere un tempo di reazione di 5 minuto/i.

Allo scadere del tempo di reazione viene effettuata automaticamente la misurazione.



Prelevare la cuvetta dal vano di misurazione.

Aggiungere **una pastiglia EDTA**.


Frantumare la/e pastiglia/e con una leggera rotazione.

Chiudere la/e cuvetta/e.

Far sciogliere la/e pastiglia/e agitando.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Test

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Zinco.

Zincon

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	1.76244 • 10 ⁻²	1.76244 • 10 ⁻²
b	-1.07009 • 10 ⁺⁰	-2.30069 • 10 ⁺⁰
С	-2.01229 • 10 ⁺⁰	-9.30181 • 10⁺0
d	-2.13062 • 10 ⁺¹	-2.11749 • 10 ⁺²
е	-5.56685 • 10 ⁺¹	-1.1895 • 10 ⁺³
f	-4.52617 • 10 ⁺¹	-2.07933 • 10 ⁺³

Interferenze

Interferenze escludibili

- In presenza di metalli che provocano interferenze si raccomanda un preisolamento dello zinco tramite scambiatore di ioni, precipitazione dei metalli con ammoniaca, preestrazione dello zinco da un mezzo acidificato con l'ausilio di una soluzione di metil-diottilammina o tri-iso-ottilammina in metilisobutilchetone ecc.
- Le concentrazioni maggiori di 1 mg/L possono dare risultati entro il range di misura.
 Si consiglia un test di plausibilità (diluizione del campione).

Interferenze	da / [mg/L]
Cu	2E-3
Со	0,03
Ni	0,02
Al	0,005
Fe	0,01
Cd	0,001
Mn	0,01

Derivato di

Hach Method 8009 US EPA approved for Wastewater

Zinco L M405

0.1 - 2.5 mg/L Zn

Zn

Zincon/EDTA

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 100, MD 110, MD 600, MD 610, MD 640, XD 7000,	ø 24 mm	610 nm	0.1 - 2.5 mg/L Zn
XD 7500			

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
Reagente di zinco 1/Reagente di zinco 2	1 pz.	56R023965
KS 89 - Soppressore cationico	65 mL	56L008965

Campo di applicazione

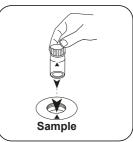
- · Trattamento acqua di scarico
- · Trattamento acqua non depurata
- · Acqua di raffreddamento
- Galvanizzazione

Note

- Per il dosaggio corretto si deve utilizzare il cucchiaio dosatore fornito in dotazione con i reagenti.
- Questo test è indicato per la determinazione dello zinco libero solubile. Lo zinco legato a forti complessanti non viene rilevato.

Esecuzione della rilevazione Zinco con reagente liquido e polvere

Selezionare il metodo nel dispositivo.


Per questo metodo, non è necessario eseguire una misurazione ZERO ogni volta sui seguenti dispositivi: XD 7000, XD 7500

Riempire una cuvetta da 24 mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto ZERO.

Prelevare la cuvetta dal vano di misurazione.

In caso di dispositivi che non richiedono una misurazione ZERO, iniziare da qui.

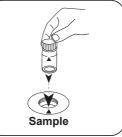
Tenere le boccette contagocce in posizione verticale e introdurre, premendo lentamente, gocce della stessa dimensione nella cuyetta.

Aggiungere 20 gocce di KS243 (Zinc Reagent 1).



Chiudere la/e cuvetta/e.

Miscelare il contenuto capovolgendo.


Aggiungere un cucchiaio dosatore di KP244 (Zinc Reagent 2).

Chiudere la/e cuvetta/e.

Far sciogliere la polvere capovolgendo.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in mg/l di Zinco.

Zincon/EDTA

Appendice

Funzione di calibrazione per fotometri di terze parti

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.34614 • 10 ⁻¹	-2.34614 • 10 ⁻¹
b	2.37378 • 10+0	5.10363 • 10 ⁺⁰
С	-1.49877 • 10 ⁺⁰	-6.92806 • 10 ⁺⁰
d	7.39829 • 10 ⁻¹	7.3527 • 10 ⁺⁰
е		
f		

Interferenze

Interferenze escludibili

 I cationi quali i composti di ammonio quaternario alterano il colore da rosa-rosso a viola, a seconda della concentrazione di rame presente. In questo caso bisogna aggiungere al campione KS89 (cationic surpressor) in gocce finché non sarà visibile una colorazione arancione/blu. Attenzione: dopo l'aggiunta di ogni goccia far oscillare il campione.

Riferimenti bibliografici

Photometrische Analyseverfahren, Schwedt, Wissenschaftliche Verlagsgesellschaft mbH, Stoccarda 1989

S.M. Khopkar, Basic Concepts of Analytical Chemistry (2004), New Age International Ltd. Publishers, New Dheli, pag. 75

PTSA M500

10 - 1000 ppb

Fluorescenza

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 640	ø 24 mm	395 nm	10 - 1000 ppb

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal-	N. ordine
	laggio	

Nessun reagente richiesto

Campo di applicazione

· Acqua di raffreddamento

Preparazione

- 1. Calibrare lo strumento se il risultato della verifica non è 200 ± 20 ppb.
- 2. Per calibrare lo strumento si deve ricorrere al set di taratura sotto menzionato.
- 3. Prima dell'uso, pulire fiale e accessori.
- L'esterno della fiala deve essere pulito e asciutto prima di iniziare l'analisi. Pulire l'esterno delle fiale con un panno. Impronte digitali o altri segni saranno eliminati.
- 5. Il fotometro è già calibrato dal produttore o lo strumento è stato calibrato dall'utente. Si consiglia di verificare la precisione della calibrazione con una misurazione standard di 200 ppb:
- · in caso di dubbio riguardo all'ultima calibrazione o all'accuratezza dei risultati
- una volta al mese
 La misurazione di verifica deve essere eseguita come una misurazione campione e il risultato di uno standard di 200 ppb deve essere di 200 ± 20 ppb.

Note

- 1. Utilizzare solo fiale con coperchi neri per le misurazioni di PTSA.
- Notevoli differenze di temperatura tra lo strumento e l'ambiente possono causare errori. Per risultati ottimali, eseguire test con temperature del campione comprese tra 20 °C (68 °F) e 25 °C (77 °F).
- Fiale e tappi devono essere puliti accuratamente dopo ogni analisi per evitare interferenze.
- 4. Per garantire la massima precisione dei risultati dei test, utilizzare sempre i sistemi di reagenti forniti dal produttore dello strumento.
- 5. Non versare nuovamente gli standard usati nel flacone.
- 6. Procedura spiking possibile (vedere manuale Fotometro).

Esecuzione della rilevazione PTSA

Selezionare il metodo nel dispositivo.

Riempire una cuvetta da PTSA mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in ppb di PTSA.

Fluorescenza

PTSA M501

10 - 400 ppb

Fluorescenza

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 640	ø 24 mm	395 nm	10 - 400 ppb

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal-	N. ordine
	laggio	

Nessun reagente richiesto

Campo di applicazione

· Acqua di raffreddamento

Preparazione

- 1. Prima dell'uso, pulire fiale e accessori.
- L'esterno della fiala deve essere pulito e asciutto prima di iniziare l'analisi. Pulire l'esterno delle fiale con un panno. Impronte digitali o altri segni saranno eliminati.
- Il fotometro è già calibrato dal produttore o lo strumento è stato calibrato dall'utente.
 Si consiglia di verificare la precisione della calibrazione con una misurazione standard:
- · in caso di dubbio riguardo all'ultima calibrazione o all'accuratezza dei risultati
- una volta al mese
 La misurazione di verifica deve essere eseguita come la misurazione di un campione.

Note

- 1. Utilizzare solo fiale con coperchi neri per le misurazioni di PTSA.
- Notevoli differenze di temperatura tra lo strumento e l'ambiente possono causare errori. Per risultati ottimali, eseguire test con temperature del campione comprese tra 20 °C (68 °F) e 25 °C (77 °F).
- Fiale e tappi devono essere puliti accuratamente dopo ogni analisi per evitare interferenze.
- 4. Per garantire la massima precisione dei risultati dei test, utilizzare sempre i sistemi di reagenti forniti dal produttore dello strumento.
- 5. Non versare nuovamente gli standard usati nel flacone.
- 6. Procedura spiking possibile (vedere manuale Fotometro).

Esecuzione della rilevazione PTSA


Selezionare il metodo nel dispositivo.

Riempire una cuvetta da PTSA mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in ppb di PTSA.

Fluorescenza

Fluoresceina

M510

10 - 400 ppb

Fluorescenza

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 640		395 nm	10 - 400 ppb

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal- laggio	N. ordine
----------	---------------------------	-----------

Nessun reagente richiesto

Campo di applicazione

· Acqua di raffreddamento

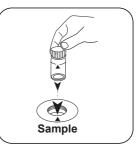
Preparazione

- 1. Calibrare lo strumento se il risultato della verifica non è 75 ± 8 ppb.
- 2. Per calibrare lo strumento si deve ricorrere al set di taratura della fluoresceina.
- 3. Prima dell'uso, pulire fiale e accessori.
- 4. L'esterno della fiala deve essere pulito e asciutto prima di iniziare l'analisi. Pulire l'esterno delle fiale con un panno. Impronte digitali o altri segni saranno eliminati.
- 5. Il fotometro è già calibrato dal produttore o lo strumento è stato calibrato dall'utente. Si consiglia di verificare la precisione della calibrazione con una misurazione standard di 75 ppb:
- in caso di dubbio riguardo all'ultima calibrazione o all'accuratezza dei risultati
- una volta al mese
 La misurazione di verifica deve essere eseguita come una misurazione campione e il risultato di uno standard di 75 ppb deve essere di 75 ± 8 ppb.

Note

- 1. Utilizzare solo fiale con coperchi neri per le misurazioni di fluoresceina.
- Notevoli differenze di temperatura tra lo strumento e l'ambiente possono causare errori. Per risultati ottimali, eseguire test con temperature del campione comprese tra 20 °C (68 °F) e 25 °C (77 °F).
- Fiale e tappi devono essere puliti accuratamente dopo ogni analisi per evitare interferenze.
- 4. Per garantire la massima precisione dei risultati dei test, utilizzare sempre i sistemi di reagenti forniti dal produttore dello strumento.
- 5. Non versare nuovamente gli standard usati nel flacone.
- 6. È possibile implementare una procedura spiking (vedere manuale).

Esecuzione della rilevazione Fluoresceina


Selezionare il metodo nel dispositivo.

Riempire una cuvetta da Fluoresceina mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.



Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in ppb di Fluoresceina.

Fluorescenza

Fluoresceina

M511

10 - 300 ppb

Fluorescenza

Informazioni specifiche dello strumento

Il test può essere eseguito sui seguenti dispositivi. Inoltre, sono indicate la cuvetta richiesta e il range di assorbimento del fotometro.

Dispositivi	Cuvetta	λ	Campo di misura
MD 640		395 nm	10 - 300 ppb

Materiale

Materiale richiesto (in parte facoltativo):

Reagenti	Unità di imbal-	N. ordine
	laggio	

Nessun reagente richiesto

Campo di applicazione

· Acqua di raffreddamento

Preparazione

- 1. Per calibrare lo strumento si deve ricorrere al set di taratura della fluoresceina.
- 2. Prima dell'uso, pulire fiale e accessori.
- L'esterno della fiala deve essere pulito e asciutto prima di iniziare l'analisi. Pulire l'esterno delle fiale con un panno. Impronte digitali o altri segni saranno eliminati.
- 4. Il fotometro è già calibrato dal produttore o lo strumento è stato calibrato dall'utente. Si consiglia di verificare la precisione della calibrazione con una misurazione standard:
- in caso di dubbio riguardo all'ultima calibrazione o all'accuratezza dei risultati
- una volta al mese
 La misurazione di verifica deve essere eseguita come la misurazione di un campione.

Note

- 1. Utilizzare solo fiale con coperchi neri per le misurazioni di fluoresceina.
- Notevoli differenze di temperatura tra lo strumento e l'ambiente possono causare errori. Per risultati ottimali, eseguire test con temperature del campione comprese tra 20 °C (68 °F) e 25 °C (77 °F).
- Fiale e tappi devono essere puliti accuratamente dopo ogni analisi per evitare interferenze.
- 4. Per garantire la massima precisione dei risultati dei test, utilizzare sempre i sistemi di reagenti forniti dal produttore dello strumento.
- 5. Non versare nuovamente gli standard usati nel flacone.
- 6. È possibile implementare una procedura spiking (vedere manuale).

Esecuzione della rilevazione Fluoresceina


Selezionare il metodo nel dispositivo.

Riempire una cuvetta da Fluoresceina mm con **10 ml di campione**.

Chiudere la/e cuvetta/e.

Posizionare la **cuvetta del campione** nel vano di misurazione. Fare attenzione al posizionamento.

Premere il tasto **TEST** (XD: **START**).

Sul display compare il risultato in ppb di Fluoresceina.

Fluorescenza

Tintometer GmbH Lovibond® Water Testing Schleefstraße 8-12 44287 Dortmund Fax: +49 (0)231/94510-30 sales@lovibond.com www.lovibond.com

Tintometer South East Asia

Unit B-3-12, BBT One Boulevard, Lebuh Nilam 2, Bandar Bukit Tinggi, Klang, 41200, Selangor D.E Tel.: +60 (0)3 3325 2285/6 Fax: +60 (0)3 3325 2287

Door No: 7-2-C-14, 2nd, 3rd & 4th Floor Sanathnagar Industrial Estate, Hyderabad, 500018 Tel: +91 (0) 40 23883300 Toll Free: 1 800 599 3891/3892 indiaoffice@lovibond.in www.lovibondwater.in

Tintometer India Pvt. Ltd.

Lovibond House Sun Rise Way Amesbury, SP4 7GR Tel.: +44 (0)1980 664800 Fax: +44 (0)1980 625412 sales@lovibond.uk www.lovibond.com

Tintometer Brazil

Caixa Postal: 271 CEP: 13201-970 Jundiaí – SP Tel.: +55 (11) 3230-6410 www.lovibond.com.br Brazil

Tintometer Spain

08080 Barcelona Tel.: +34 661 606 770 sales@tintometer.es

Tintometer China Room 1001, China Life Tower 16 Chaoyangmenwai Avenue, Beijing, 100<u>020</u> Tel.: +86 10 85251111 App. 330 Fax: +86 10 85251001 chinaoffice@tintometer.com www.lovibond.com

Tintometer Inc.

6456 Parkland Drive Sarasota, FL 34243 Tel: 941.756.6410 Fax: 941.727.9654 sales@lovibond.us

Technical changes without notice

Lovibond® and Tintometer® are Trademarks of the Tintometer Group of Companies