

## Spectrophotomètre



## **PC**SPECTROII



FR Mode d'emploi

## Mesures importantes avant la première mise en service

Exécutez les points suivants de la manière décrite dans le manuel de service et apprenez à connaître votre photomètre:

• Déballage et contrôle du contenu, manuel de service: page 352.

#### INDICATION IMPORTANTE:

Avant d'utiliser le spectrophotomètre SpectroDirect, il est nécessaire d'insérer deux piles. La pile au lithium permet de sauvegarder les données (réglage du photomètre et résultats enregistrés) en cas d'interruption de l'alimentation électrique provenant de l'adaptateur secteur, voir page 296.

- Si le photomètre est raccordé au secteur par un transformateur, il est prêt à être utilisé.
- Avant chaque démarrage, s'assurer que la chambre de mesure est vide et que le couvercle du photomètre est fermé, car le photomètre effectue toujours un test automatique lorsqu'il est mis sous tension.

Effectuer les réglages suivants dans le menu Mode; manuel de service à partir de la page 307 et suivants:

- MODE 10: Sélection de la langueMODE 12: Régler l'heure et la date
- MODE 34: Exécuter la suppression des données
- MODE 69: Exécuter "User m. init"; Initialiser le système de méthodes utilisateur

Le cas échéant, activer ou désactiver des fonctions complémentaires.



### (DE)

#### Wichtige Information

#### Um die Qualität unserer Umwelt zu erhalten, beschützen und zu verbessern Entsorgung von elektronischen Geräten in der Europäischen Union

Aufgrund der Europäischen Verordnung 2012/19/EU darf Ihr elektronisches Gerät nicht mit dem normalen Hausmüll entsorgt werden!

Tintometer GmbH entsorgt ihr elektrisches Gerät auf eine professionelle und für die Umwelt verantwortungsvolle Weise. Dieser Service ist, **die Transportkosten nicht inbegriffen**, kostenlos. Dieser Service gilt ausschließlich für elektrische Geräte die nach dem 13.08.2005 erworben wurden. Senden Sie Ihre zu entsorgenden Tintometer Geräte frei Haus an Ihren Lieferanten.



#### Important Information

#### To Preserve, Protect and Improve the Quality of the Environment Disposal of Electrical Equipment in the European Union

Because of the European Directive 2012/19/EU your electrical instrument must not be disposed of with normal household waste!

Tintometer GmbH will dispose of your electrical instrument in a professional and environmentally responsible manner. This service, **excluding the cost of transportation** is free of charge. This service only applies to electrical instruments purchased after 13th August 2005. Send your electrical Tintometer instruments for disposal freight prepaid to your supplier.



#### Notice importante

#### Conserver, protéger et optimiser la qualité de l'environnement Élimination du matériel électrique dans l'Union Européenne

Conformément à la directive européenne n° 2012/19/UE, vous ne devez plus jeter vos instruments électriques dans les ordures ménagères ordinaires!

La société Tintometer GmbH se charge d'éliminer vos instruments électriques de façon professionnelle et dans le respect de l'environnement. Ce service, qui ne comprend pas les frais de transport, est gratuit. Ce service n'est valable que pour des instruments électriques achetés après le 13 août 2005. Nous vous prions d'envoyer vos instruments électriques Tintometer usés à vos frais à votre fournisseur.



#### Belangrijke informatie

Om de kwaliteit van ons leefmilieu te behouden, te verbeteren en te beschermen is voor landen binnen de Europese Unie de Europese richtlijn 2012/19/EU voor het verwijderen van elektronische apparatuur opgesteld.

Volgens deze richtlijn mag elektronische apparatuur niet met het huishoudelijk afval worden afgevoerd.

Tintometer GmbH verwijdert uw elektronisch apparaat op een professionele en milieubewuste wijze. Deze service is, **exclusief de verzendkosten**, gratis en alleen geldig voor elektrische apparatuur die na 13 augustus 2005 is gekocht. Stuur uw te verwijderen Tintometer apparatuur franco aan uw leverancier.



ES

## Información Importante Para preservar, proteger y mejorar la calidad del medio ambiente Eliminación de equipos eléctricos en la Unión Europea

Con motivo de la Directiva Europea 2012/19/UE, ¡ningún instrumento eléctrico deberá eliminarse junto con los residuos domésticos diarios!

Tintometer GmbH se encargará de dichos instrumentos eléctricos de una manera profesional y sin dañar el medio ambiente. Este servicio, el cual escluye los gastos de transporte, es gratis y se aplicará únicamente a aquellos instrumentos eléctricos adquiridos después del 13 de agosto de 2005. Se ruega enviar aquellos instrumentos

(IT)

#### Informazioni importanti

eléctricos inservibles de Tintometer a carga pagada a su distribuidor.

#### Conservare, proteggere e migliorare la qualità dell'ambiente Smaltimento di apparecchiature elettriche nell'Unione Europea

In base alla Direttiva europea 2012/19/UE, gli apparecchi elettrici non devono essere smaltiti insieme ai normali rifiuti domestici!

Tintometer GmbH provvederà a smaltire i vostri apparecchi elettrici in maniera professionale e responsabile verso l'ambiente. Questo servizio, **escluso il trasporto**, è completamente gratuito. Il servizio si applica agli apparecchi elettrici acquistati successivamente al 13 agosto 2005. Siete pregati di inviare gli apparecchi elettrici Tintometer divenuti inutilizzabili a trasporto pagato al vostro rivenditore.

(PT)

#### Informação Importante Para Preservar, Proteger e Melhorar a Qualidade do Ambiente

Remoção de Equipamento Eléctrico na União Europeia
Devido à Directiva Europeia 2012/19/UE, o seu equipamento eléctrico nao deve ser
removido com o lixo doméstico habitual!

A Tintometer GmbH tratará da remoção do seu equipamento eléctrico de forma profissional e responsável em termos ambientais. Este serviço, **não incluindo** 

os custos de transporte, é gratuito. Este serviço só é aplicável no caso de equipamentos eléctricos comprados depois de 13 de Agosto de 2005. Por favor, envie os seus equipamentos eléctricos Tintometer que devem ser removidos ao seu fornecedor (transporte pago).

(PL)

### Istotna informacja

#### Dla zachowania, ochrony oraz poprawy naszego środowiska Usuwanie urządzeń elektronicznych w Unii Europejskiej

Na podstawie Dyrektywy Parlamentu Europejskiego 2012/19/UE nie jest dozwolone usuwanie zakupionych przez Państwo urządzeń elektronicznych wraz z normalnymi odpadami z gospodarstwa domowego!

Tintometer GmbH usunie urządzenia elektrycznego Państwa w sposób profesjonalny i odpowiedzialny z punktu widzenia środowiska. Serwis ten jest, za wyjątkiem kosztów transportu, bezpłatny. Serwis ten odnosi się wyłącznie do urządzeń elektrycznych zakupionych po 13.08.2005r. Przeznaczone do usunięcia urządzenia firmy Tintometer mogą Państwo przesyłać na koszt własny do swojego dostawcy.



#### Wichtiger Entsorgungshinweis zu Batterien und Akkus

Jeder Verbraucher ist aufgrund der Batterieverordnung (Richtlinie 2006/66/ EG) gesetzlich zur Rückgabe aller ge- und verbrauchten Batterien bzw. Akkus verpflichtet. Die Entsorgung über den Hausmüll ist verboten. Da auch bei Produkten aus unserem Sortiment Batterien und Akkus im Lieferumgang enthalten sind, weisen wir Sie auf folgendes hin:

Verbrauchte Batterien und Akkus gehören nicht in den Hausmüll, sondern können unentgeltlich bei den öffentlichen Sammelstellen Ihrer Gemeinde und überall dort abgegeben werden, wo Batterien und Akkus der betreffenden Art verkauft werden. Weiterhin besteht für den Endverbraucher die Möglichkeit, Batterien und Akkus an den Händler, bei dem sie erworben wurden, zurückzugeben (gesetzliche Rücknahmepflicht).



#### Important disposal instructions for batteries and accumulators

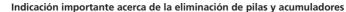
EC Guideline 2006/66/EC requires users to return all used and worn-out batteries and accumulators. They must not be disposed of in normal domestic waste. Because our products include batteries and accumulators in the delivery package our advice is as follows:

Used batteries and accumulators are not items of domestic waste. They must be disposed of in a proper manner. Your local authority may have a disposal facility; alternatively you can hand them in at any shop selling batteries and accumulators. You can also return them to the company which supplied them to you; the company is obliged to accept them.



#### Information importante pour l'élimination des piles et des accumulateurs

En vertu de la Directive européenne 2006/66/CE relative aux piles et accumulateurs, chaque utilisateur est tenu de restituer toutes les piles et tous les accumulateurs utilisés et épuisés. L'élimination avec les déchets ménagers est interdite. Etant donné que l'étendue de livraison des produits de notre gamme contient également des piles et des accumulateurs, nous vous signalons ce qui suit :


les piles et les accumulateurs utilisés ne sont pas des ordures ménagères, ils peuvent être remis sans frais aux points de collecte publics de votre municipalité et partout où sont vendus des piles et accumulateurs du type concerné. Par ailleurs, l'utilisateur final a la possibilité de remettre les piles et les accumulateurs au commerçant auprès duquel ils ont été achetés (obligation de reprise légale).



#### Belangrijke mededeling omtrent afvoer van batterijen en accu's

Ledere verbruiker is op basis van de richtlijn 2006/66/EG verplicht om alle gebruikte batterijen en accu's in te leveren. Het is verboden deze af te voeren via het huisvuil. Aangezien ook onze producten geleverd worden met batterijen en accu's wijzen wij u op het volgende; Lege batterijen en accu's horen niet in het huisvuil thuis. Men kan deze inleveren bij inzamelpunten van uw gemeente of overal daar waar deze verkocht worden. Tevens bestaat de mogelijkheid batterijen en accu's daar in te leveren waar u ze gekocht heeft. (wettelijke terugnameplicht)





Basado en la norma relativa a pilas/ baterías (directiva 2006/66/CE), cada consumidor, está obligado por ley, a la devolución de todas las pilas/ baterías y acumuladores usados y consumidos. Está prohibida la eliminación en la basura doméstica. Ya que en productos de nuestra gama, también se incluyen en el suministro pilas y acumuladores, le sugerimos lo siquiente:

Las pilas y acumuladores usados no pertenecen a la basura doméstica, sino que pueden ser entregados en forma gratuita en cada uno de los puntos de recolección públicos de su comunidad en los cuales se vendan pilas y acumuladores del tipo respectivo. Además, para el consumidor final existe la posibilidad de devolver las pilas y baterías recargables a los distribuidores donde se hayan adquirido (obligación legal de devolución).

#### Indicazioni importanti sullo smaltimento di pile e accumulatori

IT

PL

In base alla normativa concernente le batterie (Direttiva 2006/66/CE) ogni consumatore è tenuto per legge alla restituzione di tutte le batterie o accumulatori usati ed esauriti. È vietato lo smaltimento con i rifiuti domestici. Dato che anche alcuni prodotti del nostro assortimento sono provvisti di pile e accumulatori, vi diamo di seguito delle indicazioni: Pile e accumulatori esauriti non vanno smaltiti insieme ai rifiuti domestici, ma depositati gratuitamente nei punti di raccolta del proprio comune o nei punti vendita di pile e accumulatori dello stesso tipo. Inoltre il consumatore finale può portare batterie e accumulatori al rivenditore presso il quale li ha acquistati (obbligo di raccolta previsto per legge).

#### Instruções importantes para a eliminação residual de pilhas e acumuladores

Os utilizadores finais são legalmente responsáveis, nos termos do Regulamento relativo a pilhas e acumuladores (Directiva 2006/66/CE), pela entrega de todas as pilhas e acumuladores usados e gastos. É proibida a sua eliminação juntamente com o lixo doméstico. Uma vez que determinados produtos da nossa gama contêm pilhas e/ou acumuladores, alertamos para os seguintes aspectos:

As pilhas e acumuladores usados não podem ser eliminados com o lixo doméstico, devendo sim ser entregues, sem encargos, junto dos pontos de recolha públicos do seu município, ou em qualquer ponto de venda de pilhas e acumuladores. O utilizador final dispõe ainda da possibilidade de entregar as pilhas e/ou acumuladores no estabelecimento comerciante onde os adquiriu (dever legal de aceitar a devolução).

#### Istotna wskazówka dotycząca utylizacji baterii i akumulatorów

Każdy użytkownik na mocy rozporządzenia w sprawie baterii (wytyczna 2006/66/WE) jest ustawowo zobowiązany do oddawania wszystkich rozładowanych i zużytych baterii lub akumulatorów. Utylizacja wraz z odpadkami domowymi jest zabroniona. Ponieważ także w produktach z naszego asortymentu zawarte są w zakresie dostawy baterie i akumulatory, zwracamy uwagę na poniższe zasady:

zużyte baterie i akumulatory nie mogą być wyrzucane wraz z odpadkami domowymi, lecz powinny być bezpłatnie przekazywane w publicznych miejscach zbiórki wyznaczonych przez gminę lub oddawane w punktach, gdzie sprzedawane są baterie i akumulatory danego rodzaju. Poza tym użytkownik końcowy ma możliwość zwrócenia baterii i akumulatorów do przedstawiciela handlowego, u którego je nabył (ustawowy obowiązek przyjęcia).



### Consignes de sécurité

### **↑** ATTENTION **↑**

Les réactifs sont exclusivement destinés aux analyses chimiques et doivent être maintenus hors de la portée des enfants. Certains des réactifs utilisés contiennent des substances qui peuvent être nuisibles pour l'environnement.

Veuillez vous renseigner sur les composants des réactifs et procéder à leur élimination en conformité avec les normes.

### **↑** ATTENTION **↑**

Veuillez lire avec attention le mode d'emploi avant la première mise en service. Veuillez lire attentivement avant l'exécution de l'analyse la description de la méthode.

Prenez soin de vous renseigner avant le commencement de l'analyse sur les réactifs utilisés au moyen des fiches techniques de sécurité concernant le matériel. Une négligence pourrait entraîner de graves blessures pour l'utilisateur et des dommages considérables pour l'appareil.

## Fiches techniques de sécurité: www.lovibond.com

SpectroDirect/PC Spectro II\_6d 02/2021

### **Table des matières**

| Première partie Methodes                            | 9  |
|-----------------------------------------------------|----|
| 1.1 Vue d'ensemble des méthodes                     | 10 |
| Alcalinité-m (valeur m, alcalinité totale)          | 16 |
| Alcalinité-m HR (valeur m HR, alcalinité totale HR) | 18 |
| Alcalinité-p (valeur p)                             | 20 |
| Aldéhyde formique, 10 mm                            | 22 |
| Aldéhyde formique, 50 mm                            | 24 |
| Aldéhyde formique, 16 mm                            | 26 |
| Aluminium avec pastilles                            | 28 |
| Aluminium (sachet de poudre)                        | 30 |
| Ammonium avec pastilles                             | 32 |
| Ammonium (sachet de poudre)                         | 34 |
| Ammonium, plage de mesure basse (LR)                | 36 |
| Ammonium, plage de mesure haute (HR)                | 38 |
| Arsenic                                             | 40 |
| Azote, total LR (test en cuvette)                   | 44 |
| Azote, total HR (test en cuvette)                   | 46 |
| Azote, total LR 2 (test en cuvette)                 | 50 |
| Azote, total HR 2 (test en cuvette)                 | 52 |
| Bore                                                | 54 |
| Brome                                               | 56 |
| Brome                                               | 58 |
| Brome                                               | 60 |
| Cadmium                                             | 62 |
| Capacité acide Ks4,3                                | 64 |
| Chlore                                              | 66 |
| Chlore avec pastilles.                              | 68 |
| détermination différenciée (libre, combiné, total)  | 68 |
| chlore libre                                        | 69 |
| chlore total                                        | 70 |
| Chlore avec pastilles.                              | 71 |
| détermination différenciée (libre, combiné, total)  | 71 |
| chlore libre                                        | 72 |
| chlore total                                        | 73 |
| Chlore avec pastilles                               | 74 |
| chlore libre                                        | 74 |
| chlore total                                        | 75 |

| détermination différenciée (libre, combiné, total) | 76  |
|----------------------------------------------------|-----|
| Chlore HR avec pastilles                           | 78  |
| chlore libre                                       | 78  |
| chlore total                                       | 79  |
| détermination différenciée (libre, combiné, total) | 80  |
| Chlore avec réactifs liquides                      | 82  |
| chlore libre                                       | 82  |
| chlore total                                       | 83  |
| détermination différenciée (libre, combiné, total) | 84  |
| Chlore (sachet de poudre)                          | 86  |
| chlore libre                                       | 86  |
| chlore total                                       | 87  |
| détermination différenciée (libre, combiné, total) | 88  |
| Chlore MR (sachet de poudre de VARIO)              | 90  |
| chlore libre                                       | 90  |
| chlore total                                       | 91  |
| détermination différenciée (libre, combiné, total) | 92  |
| Chlore HR (KI)                                     | 94  |
| Chlorure                                           | 96  |
| Chlorure avec réactifs liquides                    | 98  |
| Chrome (sachet de poudre)                          | 100 |
| détermination différenciée                         | 102 |
| chrome (VI)                                        | 104 |
| chrome total (CR(III) + Cr(VI))                    | 105 |
| détermination différenciée                         | 106 |
| chrome (VI)                                        | 108 |
| chrome total (CR(III) + Cr(VI))                    | 109 |
| Coefficient d'absorption spectrale (S Abs)         | 110 |
| COT LR                                             | 112 |
| COT HR                                             | 114 |
| Couleur                                            | 116 |
| Cuivre                                             | 118 |
| détermination différenciée (libre, combiné, total) | 120 |
| cuivre libre                                       | 122 |
| cuivre total                                       | 123 |
| détermination différenciée (libre, combiné, total) | 124 |
| cuivre libre                                       | 126 |
| cuivre total                                       | 127 |
| Cuivre (sachet de poudre)                          | 128 |
| Cvanure                                            | 130 |

| Cyanure                                   | 132   |
|-------------------------------------------|-------|
| CyA-TEST (Acide cyanurique)               | 134   |
| DCO, plage de mesure basse (LR)           | 136   |
| DCO, plage de mesure moyenne (MR)         | 138   |
| DCO, plage de mesure haute (HR)           | 140   |
| DEHA                                      | 142   |
| DEHA (sachet de poudre)                   | 144   |
| Dioxyde de chlore, en absence de chlore   | 146   |
| Dioxyde de chlore                         | 148   |
| en présence de chlore                     | 150   |
| en absence de chlore                      | 153   |
| Dioxyde de silicium                       | 154   |
| Dioxyde de silicium LR (sachet de poudre) | 156   |
| Dioxyde de silicium HR (sachet de poudre) | 158   |
| Dureté totale                             | 160   |
| Dureté totale HR                          | 162   |
| Fer                                       | 164   |
| Fer avec pastille                         | 166   |
| Fer avec pastille                         | 168   |
| Fer avec pastille                         | 170   |
| Fer (sachet de poudre)                    | 172   |
| Fer, total TPTZ (sachet de poudre)        | 174   |
| Fluorure                                  | 176   |
| Hydrazine (poudre)                        | 178   |
| Hydrazine                                 | 180   |
| lode                                      | 182   |
| Manganèse avec pastilles                  | 184   |
| Manganèse LR (sachet de poudre)           | 186   |
| Manganèse HR (sachet de poudre)           | 188   |
| Molybdate avec pastilles                  | 190   |
| Molybdate LR (sachet de poudre)           | 192   |
| Molybdate (sachet de poudre)              | 194   |
| Nickel                                    | 196   |
| Nickel                                    | 198   |
| Nitrate                                   | . 200 |
| Nitrate, LR                               |       |
| Nitrite avec pastille                     | 204   |
| Nitrite LR (sachet de poudre)             |       |
| Nitrite LR                                | . 208 |
| Nitrite HR                                | 210   |

| Oxygène, actif                                       | 212 |
|------------------------------------------------------|-----|
| Ozone                                                | 214 |
| en présence de chlore                                | 216 |
| en absence de chlore                                 | 218 |
| en présence de chlore                                | 220 |
| en absence de chlore                                 | 222 |
| Peroxyde d'hydrogène                                 | 224 |
| Peroxyde d'hydrogène                                 | 226 |
| Phénol                                               | 228 |
| Phosphate                                            | 230 |
| Phosphate, totale (test en cuvette)                  | 232 |
| Phosphate, totale LR (test en cuvette)               | 234 |
| Phosphate, totale HR (test en cuvette)               | 236 |
| Phosphate, ortho LR avec pastilles                   | 238 |
| Phosphate, ortho HR avec pastilles                   | 240 |
| Phosphate, ortho (sachet de poudre)                  | 242 |
| Phosphate, ortho (Vario test en cuvette)             | 244 |
| Phosphate, ortho (test en cuvette)                   | 246 |
| Phosphate, hydrolysable (test en cuvette)            | 248 |
| Phosphonates                                         | 250 |
| Plomb. 10 mm                                         | 254 |
| Plomb, 16 mm                                         | 256 |
| Procédure A                                          | 257 |
| Procédure B                                          | 258 |
| Potassium                                            | 260 |
| Solides en suspension                                | 262 |
| Sulfate (sachet de poudre)                           | 264 |
| Sulfite                                              | 266 |
| Sulfite                                              | 268 |
| Sulfure                                              | 270 |
| Tensio-actifs, dérivé tensioactif (No. 1.14697.0001) | 272 |
| Tensio-actifs, dérivé tensioactif (No. 1.02552.0001) | 274 |
| Tensio-actifs, non ioniques (No. 1.01787.0001)       | 276 |
| Tensio-actifs, cationiques (No. 1.01764.0001)        | 278 |
| Turbidité                                            | 280 |
| Urée                                                 | 282 |
| Valeur pH avec pastille                              | 284 |
| Valeur pH avec réactif liquide                       | 286 |
| 7inc                                                 | 288 |

| 1.2     | Remarques importantes concernant les méthodes        | 290 |
|---------|------------------------------------------------------|-----|
| 1.2.1   | Manipulation conforme des réactifs                   | 290 |
| 1.2.2   | Nettoyage des cuvettes et des instruments d'analyse  | 291 |
| 1.2.3   | Informations sur la technique de travail             | 292 |
| 1.2.4   | Dilution des échantillons d'eau                      | 293 |
| 1.2.5   | Correction d'addition de volume                      | 293 |
| Deuxi   | ième partie Mode d'emploi                            | 295 |
| 2.1     | Utilisation                                          | 296 |
| 2.1.1   | Mise en service                                      | 296 |
| 2.1.2   | Piles (SpectroDirect uniquement)                     | 296 |
| 2.1.3   | Pile au lithium (PC Spectro li uniquement)           | 296 |
| 2.1.4   | Chambre de mesure et cuves                           | 297 |
| 2.2     | Fonctions des touches                                | 298 |
| 2.2.1   | Vue d'ensemble                                       | 298 |
| 2.2.2   | Affichage date et horloge                            | 298 |
| 2.2.3   | Compte à rebours de l'utilisateuer                   | 299 |
| 2.3     | Mode de travail                                      | 300 |
| 2.3.1   | Test automatique                                     | 300 |
| 2.3.2   | Sélection de la méthode                              | 301 |
| 2.3.2.1 | Informations sur les méthodes (F1)                   | 301 |
| 2.3.2.2 | Informations sur les formules (F2)                   | 301 |
| 2.3.3   | Différentiation                                      | 302 |
| 2.3.4   | Calage du zéro                                       | 302 |
| 2.3.5   | Exécution des l'analyse (Test)                       | 303 |
| 2.3.6   | Observation des temps de réaction (compte à rebours) | 303 |
| 2.3.7   | Modification de la formule                           | 304 |
| 2.3.8   | Enregistrement des résultats de test                 | 304 |
| 2.3.9   | Impression des résultats de test                     | 305 |
| 2.3.10  | Exécution d'autres tests                             | 306 |
| 2.3.11  | Sélectionner une nouvelle méthode                    | 306 |
| 2.4     | Réglages: Vue d'ensemble des fonctions MODE          | 307 |
| 2.4.1   | Non rempli pour des raisons techniques               | 308 |
| 2.4.2   | Réglage de base 1 de l'appareil                      | 308 |
| 2.4.3   | Impression des résultats de test memorisés           | 312 |
| 2.4.4   | Appel de tous les résultats de test mémorisés        | 317 |
| 2.4.5   | Calibration                                          | 321 |
| 2.4.6   | Fonctions laboratoire                                | 326 |
|         | Profi-Mode                                           | 326 |
|         | Absorption / Transmission                            | 327 |

|         | Spectre (balayage)                                                       | 328 |
|---------|--------------------------------------------------------------------------|-----|
|         | Cinétique                                                                | 330 |
| 2.4.7   | Fonctions utilisateur                                                    | 334 |
|         | Liste personnalisée des méthodes                                         | 334 |
|         | Méthodes de concentration utilisateur                                    | 336 |
|         | Polynômes utilisateurs                                                   | 338 |
|         | Effacer les méthodes utilisateurs                                        | 341 |
|         | Imprimer les données d'une méthode utilisateur                           | 342 |
|         | Initialiser le système de méthodes utilisateur                           | 343 |
| 2.4.8   | Fonctions spéciales                                                      | 344 |
|         | Indice de saturation de Langelier                                        | 344 |
| 2.4.9   | Réglage de base 2 de l'appareil                                          | 346 |
| 2.4.10  | Fonctions spéciales de l'appareil/service                                | 347 |
| 2.5     | Transfert de données                                                     | 348 |
| 2.5.1   | Raccordement à une imprimante                                            | 349 |
| 2.5.2   | Transfert de données à un ordinateur                                     | 349 |
| 2.5.3   | Téléchargement de mises à jour                                           | 350 |
| Tueleli | Amanautia Amana                                                          | 554 |
|         | ème partie Annexe                                                        |     |
| 3.1     | Déballage                                                                |     |
| 3.2     | Contenu de la livraison                                                  |     |
| 3.3     | Non rempli pour des raisons techniques                                   |     |
| 3.4     | Caractéristiques techniques                                              |     |
| 3.5     | Abréviations                                                             |     |
| 3.6     | Que fait, si                                                             |     |
| 3.6.1   | Consignes pour l'utilisateur concern. l'affichage et les messages d'erre |     |
| 3.6.2   | Recherche détaillée d'erreurs                                            |     |
| 3.6.2   | Service / Maintenance                                                    |     |
| 3.6.3.1 | Manipulation et nettoyage                                                |     |
| 3.6.3.2 | Changement de source lumineuse                                           |     |
| 3.6.3.3 | Changement de la pile au lithium (PC Spectro II uniquement)              |     |
| 3.6.3.4 | Changement des piles (SpectroDirect uniquement)                          |     |
| 3.7     | Déclaration de conformité CE                                             | 361 |

## Première partie

Méthodes

### 1.1 Vue d'ensemble des méthodes

| No. | analyse                   | réactif                 | plage de<br>mesure | symbole                | méthode                                                      | λ<br>[nm] | page      |
|-----|---------------------------|-------------------------|--------------------|------------------------|--------------------------------------------------------------|-----------|-----------|
| 30  | Alcalinité-m T            | Pastille                | 5-200              | mg/l CaCO <sub>3</sub> | acide/indic.1,2,5                                            | 615       | 16        |
| 31  | Alcalinité-m HR T         | Pastille                | 5-500              | mg/l CaCO <sub>3</sub> | acide/indic.1,2,5                                            | 615       | 18        |
| 35  | Alcalinité-p T            | Pastille                | 5-300              | mg/l CaCO <sub>3</sub> | acide/indic.1,2,5                                            | 551       | 20        |
| 175 | Aldéhyde<br>formique      | PP +<br>liquide         | 1-5                | mg/l<br>HCHO           | H <sub>2</sub> O <sub>2</sub> / Acide chromotr. <sup>6</sup> | 585       | 22        |
| 176 | Aldéhyde<br>formique      | PP +<br>liquide         | 0,02-1             | mg/l<br>HCHO           | H <sub>2</sub> O <sub>2</sub> / Acide chromotr. <sup>6</sup> | 585       | 24        |
| 177 | Aldéhyde<br>formique      | Test cuv.               | 0,1-5              | mg/l<br>HCHO           | H <sub>2</sub> O <sub>2</sub> / Acide chromotr. <sup>6</sup> | 575       | 26        |
| 40  | Aluminium T               | Pastille                | 0,01-0,3           | mg/l Al                | ériochrome<br>cyanide R <sup>2</sup>                         | 535       | 28        |
| 50  | Aluminium PP              | PP +<br>liquide         | 0,01-0,25          | mg/l Al                | ériochrome<br>cyanide R <sup>2</sup>                         | 535       | 30        |
| 60  | Ammonium T                | Pastille                | 0,02-1             | mg/l N                 | indophénol 2,3                                               | 676       | 32        |
| 62  | Ammonium PP               | PP                      | 0,01-0,8           | mg/l N                 | salicylate <sup>2</sup>                                      | 655       | 34        |
| 65  | Ammonium LR TT            | Test cuv.               | 0,02-2,5           | mg/l N                 | salicylate <sup>2</sup>                                      | 655       | 36        |
| 66  | Ammonium HR TT            | Test cuv.               | 1-50               | mg/l N                 | salicylate <sup>2</sup>                                      | 655       | 38        |
| 68  | Arsenic                   | regardez<br>instruction | 0,02-0,6           | mg/l As                | (diéthyldithio-<br>carbamato-S, S')<br>argent                | 507       | 40        |
| 280 | Azote, total LR TT        | Test cuv.               | 0,5-25             | mg/l N                 | Méthode de<br>minéralisation au<br>persulfate                | 410       | 44        |
| 281 | Azote, total HR TT        | Test cuv.               | 5-150              | mg/l N                 | Méthode de<br>minéralisation au<br>persulfate                | 410       | 46        |
| 283 | Azote, total<br>LR 2 TT   | Test cuv.               | 0,5-14             | mg/l N                 | Diméthyl-2,6-<br>phénol                                      | 340       | 50        |
| 284 | Azote, total<br>HR 2 TT   | Test cuv.               | 5-140              | mg/l N                 | Diméthyl-2,6-<br>phénol                                      | 340       | 52        |
| 85  | Bore T                    | Pastille                | 0,1-2              | mg/l B                 | Azomethine <sup>3</sup>                                      | 450       | 54        |
| 78  | Brome 10 T                | Pastille                | 0,1-3              | mg/l Br <sub>2</sub>   | DPD⁵                                                         | 510       | 56        |
| 79  | Brome 50 T                | Pastille                | 0,05-1             | mg/l Br <sub>2</sub>   | DPD <sup>5</sup>                                             | 510       | 58        |
| 80  | Brome T                   | Pastille                | 0,05-6,5           | mg/l Br <sub>2</sub>   | DPD⁵                                                         | 510       | 60        |
| 87  | Cadmium TT                | Test cuv.               | 0,025-0,75         | mg/l Cd                | Cadion <sup>6</sup>                                          | 525       | 62        |
| 20  | Capacité acide<br>K s 4,3 | Pastille                | 0,1-4              | mmol/l                 | acide/<br>indicateur 1,2,5                                   | 615       | 64        |
| 98  | Chlore 10 T*              | Pastille                | 0,1-6              | mg/l Cl <sub>2</sub>   | DPD <sup>1,2,3</sup>                                         | 510       | 66,<br>68 |
| 99  | Chlore 50 T*              | Pastille                | 0,02-0,5           | mg/l Cl <sub>2</sub>   | DPD <sup>1,2,3</sup>                                         | 510       | 66,<br>71 |
| 100 | Chlore T*                 | Pastille                | 0,02-3             | mg/l Cl <sub>2</sub>   | DPD <sup>1,2,3</sup>                                         | 510       | 66,<br>74 |

| No. | analyse                           | réactif                  | plage de<br>mesure | symbole              | méthode                                                        | λ<br>[nm] | page        |
|-----|-----------------------------------|--------------------------|--------------------|----------------------|----------------------------------------------------------------|-----------|-------------|
| 104 | Chlore HR 10 T*                   | Pastille                 | 0,1-10             | mg/l Cl <sub>2</sub> | DPD <sup>1,2,3</sup>                                           | 510       | 66,<br>78   |
| 101 | Chlore L*                         | Liquide                  | 0,02-3             | mg/l Cl <sub>2</sub> | DPD <sup>1,2,3</sup>                                           | 510       | 66,<br>82   |
| 110 | Chlore PP*                        | PP                       | 0,01-2             | mg/l Cl <sub>2</sub> | DPD <sup>1,2</sup>                                             | 510       | 66,<br>86   |
| 113 | Chlore MR PP*                     | PP                       | 0,01-3,5           | mg/l Cl <sub>2</sub> | DPD <sup>1,2</sup>                                             | 510       | 66,<br>90   |
| 105 | Chlore HR (KI)                    | Pastille                 | 5-200              | mg/l Cl <sub>2</sub> | DPD <sup>1,2</sup>                                             | 510       | 94          |
| 90  | Chlorure T                        | Pastille                 | 0,5-25             | mg/l Cl <sup>-</sup> | Nitrate d'argent/<br>turbidité                                 | 450       | 96          |
| 91  | Chlorure L                        | Liquide                  | 5-60               | mg/l Cl <sup>-</sup> | Fer(III)-<br>thiocyanate <sup>4</sup>                          | 455       | 98          |
| 124 | Chrome 50 PP                      | PP                       | 0,005-<br>0,5      | mg/l Cr              | 1,5-diphénylcar-<br>bonohydrazide 1,2                          | 542       | 100,<br>102 |
| 125 | Chrome PP                         | PP                       | 0,02-2             | mg/l Cr              | 1,5-diphénylcar-<br>bonohydrazide 1,2                          | 542       | 100,<br>106 |
| 345 | Coeff.d'abs.spec.<br>S Abs 436 nm | mensura-<br>tion directe | 0-50               | m-1                  | EN ISO<br>7887:1994 <sup>1</sup>                               | 436       | 110         |
| 346 | Coeff.d'abs.spec.<br>S Abs 525 nm | mensura-<br>tion directe | 0-50               | m-1                  | EN ISO<br>7887:1994 <sup>1</sup>                               | 525       | 110         |
| 347 | Coeff.d'abs.spec.<br>S Abs 620 nm | mensura-<br>tion directe | 0-50               | m-1                  | EN ISO<br>7887:1994 <sup>1</sup>                               | 620       | 110         |
| 380 | COT LR TT                         | Test cuv.                | 5,0-80,0           | mg/l TOC             | H <sub>2</sub> SO <sub>4</sub> /<br>persulfate /<br>Indicateur | 596       | 112         |
| 381 | COT HR TT                         | Test cuv.                | 50-800             | mg/l TOC             | H <sub>2</sub> SO <sub>4</sub> /<br>persulfate /<br>Indicateur | 596       | 114         |
| 203 | Couleur 50                        | mensura-<br>tion directe | 0-500              | unités<br>Pt-Co      | Pt-Co Scala 1,2<br>(APHA)                                      | 455       | 116         |
| 149 | Cuivre 50 T*                      | Pastille                 | 0,05-1             | mg/l Cu              | Biquinoline <sup>4</sup>                                       | 559       | 118,<br>120 |
| 150 | Cuivre T*                         | Pastille                 | 0,5-5              | mg/l Cu              | Biquinoline <sup>4</sup>                                       | 559       | 118,<br>124 |
| 153 | Cuivre PP                         | PP                       | 0,05-5             | mg/l Cu              | Bicinchoninat                                                  | 560       | 128         |
| 156 | Cyanure 50 L                      | Poudre +<br>liquide      | 0,005-<br>0,2      | mg/l CN              | Pyridine-<br>barbituric acid <sup>1</sup>                      | 585       | 130         |
| 157 | Cyanure L                         | Poudre +<br>liquide      | 0,01-0,5           | mg/l CN              | Pyridine-<br>barbituric acid <sup>1</sup>                      | 585       | 132         |
| 160 | CyA-TEST T                        | Pastille                 | 0-160              | mg/l CyA             | Mélamine                                                       | 530       | 134         |
| 130 | DCO LR TT                         | Test cuv.                | 3-150              | mg/l O <sub>2</sub>  | Dichromate/<br>H <sub>2</sub> SO <sub>4</sub> 1,2              | 420       | 136         |
| 131 | DCO MR TT                         | Test cuv.                | 20-1500            | mg/l O <sub>2</sub>  | Dichromate/<br>H <sub>2</sub> SO <sub>4</sub> <sup>1,2</sup>   | 620       | 138         |
| 132 | DCO HR TT                         | Test cuv.                | 0,2-15             | g/l O <sub>2</sub>   | Dichromate/<br>H <sub>2</sub> SO <sub>4</sub> <sup>1,2</sup>   | 620       | 140         |

| No. | analyse                      | réactif               | plage de<br>mesure | symbole                            | méthode                                     | λ<br>[nm] | page        |
|-----|------------------------------|-----------------------|--------------------|------------------------------------|---------------------------------------------|-----------|-------------|
| 165 | DEHA T                       | Pastille +<br>liquide | 20-500             | μg/l DEHA                          | PPST <sup>3</sup>                           | 562       | 142         |
| 167 | DEHA PP                      | PP +<br>liquide       | 20-500             | μg/l DEHA                          | PPST <sup>3</sup>                           | 562       | 144         |
| 119 | Dioxyde de<br>chlore 50 T    | Pastille              | 0,05-1             | mg/l ClO <sub>2</sub>              | DPD, glycine <sup>1,2</sup>                 | 510       | 146         |
| 120 | Dioxyde de<br>chlore T       | Pastille              | 0,05-2,5           | mg/l ClO <sub>2</sub>              | DPD, glycine 1,2                            | 510       | 148         |
| 350 | Dioxyde de silicium T        | Pastille              | 0,05-3             | mg/ISiO <sub>2</sub>               | Molybdate de<br>silicium <sup>2,3</sup>     | 820       | 154         |
| 351 | Dioxyde de<br>silicium LR PP | PP                    | 0,1-1,6            | mg/l SiO <sub>2</sub>              | Heteropolyblue <sup>2</sup>                 | 815       | 156         |
| 352 | Dioxyde de<br>silicium HR PP | PP                    | 1-100              | mg/l SiO <sub>2</sub>              | Molybdate de<br>silicium                    | 452       | 158         |
| 200 | Dureté totale T              | Pastille              | 2-50               | mg/l<br>CaCO <sub>3</sub>          | Phtaléine<br>métallique³                    | 571       | 160         |
| 201 | Dureté totale<br>HR T        | Pastille              | 20-500             | mg/l<br>CaCO₃                      | Phtaléine<br>métallique³                    | 571       | 162         |
| 218 | Fer 10 T                     | Pastille              | 0,1-1              | mg/l Fe                            | PPST <sup>3</sup>                           | 562       | 164,<br>166 |
| 219 | Fer 50 T                     | Pastille              | 0,01-0,5           | mg/l Fe                            | PPST <sup>3</sup>                           | 562       | 164,<br>168 |
| 220 | Fer LR T                     | Pastille              | 0,1-1              | mg/l Fe                            | PPST <sup>3</sup>                           | 562       | 164,<br>170 |
| 222 | Fer PP                       | PP                    | 0,1-3              | mg/l Fe                            | 1,10-<br>Phénantroline <sup>3</sup>         | 510       | 164,<br>172 |
| 223 | Fer (TPTZ) PP                | PP                    | 0,1-1,8            | mg/l Fe                            | TPTZ                                        | 590       | 164,<br>174 |
| 170 | Fluorure L                   | Liquide               | 0,05-1,5           | mg/l F                             | SPADNS <sup>2</sup>                         | 580       | 176         |
| 205 | Hydrazine P                  | Poudre                | 0,05-0,5           | mg/l N <sub>2</sub> H <sub>4</sub> | Diméthylamino-<br>benzaldéhyde <sup>3</sup> | 455       | 178         |
| 206 | Hydrazine L                  | Liquide               | 0,005-<br>0,6      | mg/l N <sub>2</sub> H <sub>4</sub> | Diméthylamino-<br>benzaldéhyde              | 455       | 180         |
| 215 | lode T                       | Pastille              | 0,05-3,6           | mg/l I                             | DPD <sup>5</sup>                            | 510       | 182         |
| 240 | Manganèse T                  | Pastille              | 0,2-4              | mg/l Mn                            | Formaldoxime                                | 450       | 184         |
| 242 | Manganèse L                  | PP, liquide           | 0,01-0,7           | mg/l Mn                            | PAN                                         | 558       | 186         |
| 243 | Manganèse HR<br>PP           | PP                    | 0,1-18             | mg/l Mn                            | Periodate-<br>oxydation <sup>2</sup>        | 525       | 188         |
| 250 | Molybdate T                  | Pastille              | 1-30               | mg/l MoO <sub>4</sub>              | Thioglycolate <sup>4</sup>                  | 366       | 190         |
| 251 | Molybdate LR PP              | PP                    | 0,05-5             | mg/l MoO <sub>4</sub>              | Complexe ternaire                           | 610       | 192         |
| 252 | Molybdate PP                 | PP                    | 0,5-66             | mg/l MoO <sub>4</sub>              | Acide<br>thiogycolique                      | 420       | 194         |
| 255 | Nickel 50 L                  | PP +<br>liquide       | 0,02-1             | mg/l Ni                            | Butanedione-<br>dioxine <sup>2,3</sup>      | 443       | 196         |

| No. | analyse                      | réactif         | plage de<br>mesure | symbole                                  | méthode                                                      | λ<br>[nm] | page        |
|-----|------------------------------|-----------------|--------------------|------------------------------------------|--------------------------------------------------------------|-----------|-------------|
| 256 | Nickel L                     | PP +<br>liquide | 0,2-7              | mg/l Ni                                  | Butanedione-<br>dioxine <sup>2,3</sup>                       | 443       | 198         |
| 265 | Nitrate TT                   | Test cuv.       | 1-30               | mg/l N                                   | Acide chromotr.                                              | 410       | 200         |
| 267 | Nitrate LR TT                | Test cuv.       | 0,5-14             | mg/l N                                   | Diméthyl-2,6-<br>phénol <sup>2,3</sup>                       | 340       | 202         |
| 270 | Nitrite T                    | Pastille        | 0,01-0,5           | mg/l N                                   | N(1-naphtyéthyl-<br>endiamine <sup>2,3</sup>                 | 545       | 204         |
| 272 | Nitrite PP                   | PP              | 0,01-0,3           | mg/l N                                   | Diazotation                                                  | 507       | 206         |
| 275 | Nitrite LR TT                | Test cuv.       | 0,03-0,6           | mg/l N                                   | Sulfanilique/<br>Naphthylamine <sup>1</sup>                  | 545       | 208         |
| 276 | Nitrite HR TT                | Test cuv.       | 0,3-3              | mg/l N                                   | Sulfanilique/<br>Naphthylamine <sup>1</sup>                  | 545       | 210         |
| 290 | Oxygène actif T              | Pastille        | 0,1-10             | mg/l O <sub>2</sub>                      | DPD                                                          | 510       | 212         |
| 299 | Ozon (DPD) 50                | Pastille        | 0,02-0,5           | mg/l O <sub>3</sub>                      | DPD / Glycine <sup>5</sup>                                   | 510       | 214,<br>216 |
| 300 | Ozon (DPD) T                 | Pastille        | 0,02-1             | mg/l O <sub>3</sub>                      | DPD / Glycine⁵                                               | 510       | 214,<br>220 |
| 209 | Peroxyde<br>d'hydrogène 50 T | Pastille        | 0,01-0,5           | mg/l H <sub>2</sub> O <sub>2</sub>       | Catalyseur <sup>5</sup> /DPD                                 | 510       | 224         |
| 210 | Peroxyde<br>d'hydrogène T    | Pastille        | 0,03-1,5           | mg/l H <sub>2</sub> O <sub>2</sub>       | Catalyseur <sup>5</sup> /DPD                                 | 510       | 226         |
| 315 | Phénol T                     | Pastille        | 0,1-5              | mg/l<br>C <sub>6</sub> H <sub>5</sub> OH | 4-amino-2,3-<br>diméthyl-1-phenyl-<br>3-pyrazoline-5-one     | 507       | 228         |
| 326 | Phosphate, total<br>TT       | Test cuv.       | 0,02-1,1           | mg/l P                                   | Dig. acide<br>persulf. / Acide<br>ascorbic²                  | 890       | 230,<br>232 |
| 317 | Phosphate, total<br>LR TT    | Test cuv.       | 0,07-3             | mg/l P                                   | Phosphore<br>molybdène bleu<br>/ Acide ascorbic <sup>2</sup> | 690       | 230,<br>234 |
| 318 | Phosphate, total<br>HR TT    | Test cuv.       | 1,5-20             | mg/l P                                   | Phosphore<br>molybdène bleu<br>/ Acide ascorbic²             | 690       | 230,<br>236 |
| 320 | Phosphate LR, T ortho        | Pastille        | 0,05-4             | mg/l PO <sub>4</sub>                     | Ammonium-<br>molybdate <sup>2,3</sup>                        | 710       | 230,<br>238 |
| 321 | Phosphate, HR T ortho        | Pastille        | 1-80               | mg/l PO <sub>4</sub>                     | Vanado-<br>molybdate <sup>2</sup>                            | 470       | 230,<br>240 |
| 323 | Phosphate, PP<br>ortho       | PP              | 0,06-2,5           | mg/l PO <sub>4</sub>                     | Molybdate/Acide ascorbic <sup>2</sup>                        | 890       | 230,<br>242 |
| 324 | Phosphate, TT ortho          | Test cuv.       | 0,06-5             | mg/l PO <sub>4</sub>                     | Molybdate/Acide ascorbic <sup>2</sup>                        | 890       | 230,<br>244 |
| 322 | Phosphate, ortho<br>(VM) TT  | Test cuv.       | 3-60               | mg/l PO <sub>4</sub>                     | Vanado-<br>molybdate <sup>2</sup>                            | 438       | 230,<br>246 |
| 325 | Phosphate, hydr.<br>TT       | Test cuv.       | 0,02-1,6           | mg/l P                                   | Digestion acide /<br>Acide ascorbic²                         | 890       | 230,<br>248 |

| No. | analyse                                     | réactif                  | plage de<br>mesure | symbole              | méthode                                      | λ<br>[nm] | page        |
|-----|---------------------------------------------|--------------------------|--------------------|----------------------|----------------------------------------------|-----------|-------------|
| 316 | Phosphonate PP                              | Liquide                  | 0-125              | mg/l                 | Persulfate UV-<br>Oxydation                  | 890       | 250         |
| 232 | Plomb 10                                    | Liquide                  | 0,1-5              | mg/l Pb              | 4-(2-Pyridylazo)-<br>resorcin <sup>6</sup>   | 520       | 254         |
| 234 | Plomb (A) TT                                | Test cuv.                | 0,1-5              | mg/l Pb              | 4-(2-Pyridylazo)-<br>resorcin <sup>6</sup>   | 515       | 256,<br>257 |
| 235 | Plomb (B) TT                                | Test cuv.                | 0,1-5              | mg/l Pb              | 4-(2-Pyridylazo)-<br>resorcin <sup>6</sup>   | 515       | 256,<br>258 |
| 340 | Potassium T                                 | Pastille                 | 1-16               | mg/l K               | Tétraphénylborate-<br>Turbidité <sup>4</sup> | 730       | 260         |
| 383 | Solides en suspension                       | mensura-<br>tion directe | 0-750              | mg/l TSS             | photométrique                                | 810       | 262         |
| 360 | Sulfate PP                                  | PP                       | 2-100              | mg/l SO <sub>4</sub> | Turbidité de<br>sulfate de<br>baryum²        | 450       | 264         |
| 368 | Sulfite 10 T                                | Pastille                 | 0,1-10             | mg/l SO₃             | DTNB                                         | 405       | 266         |
| 370 | Sulfite T                                   | Pastille                 | 0,05-4             | mg/l SO₃             | DTNB                                         | 405       | 268         |
| 365 | Sulfure T                                   | Pastille                 | 0,04-0,5           | mg/l S <sup>-</sup>  | DPD/Catalyst <sup>3,4</sup>                  | 668       | 270         |
| 375 | Tensio-actifs<br>TT (dérivé<br>tensioactif) | Test cuv.                | 0,05-2             | mg/l<br>MBAS         | chlorure de<br>méthylthioninum               | 653       | 272         |
| 376 | Tensio-actifs<br>TT (dérivé<br>tensioactif) | Test cuv.                | 0,05-2             | mg/l SDSA            | bleu de<br>méthylène <sup>6,1</sup>          | 660       | 274         |
| 377 | Tensio-actifs TT (non ioniques)             | Test cuv.                | 0,1-7,5            | mg/l<br>Triton®X-100 | TBPE <sup>6</sup>                            | 610       | 276         |
| 378 | Tensio-actifs TT (cationiques)              | Test cuv.                | 0,05-1,5           | mg/l CTAB            | bleu de<br>disulfine <sup>6,1</sup>          | 610       | 278         |
| 385 | Turbidité 50                                | mensura-<br>tion directe | 5-500              | FAU                  | Attenuated<br>Radiation<br>Method            | 860       | 280         |
| 390 | Urée T                                      | Pastille,<br>liquide     | 0,1-2              | mg/l Urea            | Indophénol /<br>urease                       | 676       | 282         |
| 330 | Valeur pH T                                 | Pastille                 | 6,5-8,4            | _                    | Rouge de<br>phénol <sup>5</sup>              | 558       | 284         |
| 331 | Valeur pH L                                 | Liquide                  | 6,5-8,4            | _                    | Rouge de<br>phénol <sup>5</sup>              | 558       | 286         |
| 400 | Zinc                                        | Pastille                 | 0,02-0,9           | mg/l Zn              | Zincon <sup>3</sup>                          | 616       | 288         |

<sup>\* =</sup> libre, combiné, total; PP = sachet de poudre (powder pack); T = pastille (tablet); L = réactif liquide (liquid); TT = test en cuvette (tube test); LR = plage de mesure basse; MR: plage de mesure moyenne; HR = plage de mesure haute; C = Vacu-vials® est une marque déposée de la société CHEMetrics, Inc. / Calverton, U.S.A.

Les tolérances spécifiques aux méthodes des systèmes de réactifs Lovibond® (les pastilles, les Powder Packs et les tests en cuvettes) sont identiques à celles de la méthode équivalente selon American Standards (AWWA), ISO etc.

Etant donné que ces données sont obtenues par l'utilisation de solutions-étalons, elles ne sont pas pertinentes pour l'analyse effective de l'eau potable, de l'eau d'usage et des eaux résiduaires, car la matrice en ions existante exerce une influence profonde sur la précision de la méthode.

C'est pour cette raison que nous renonçons d'une manière générale à fournir ces données trompeuses.

En raison de la diversité des échantillons respectifs, des tolérances réalistes ne pourront être réalisées que par l'utilisateur selon la méthode dite d'addition standard.

Pour cette analyse, il convient en premier lieu de déterminer la valeur de mesure pour l'échantillon. Pour les autres échantillons (2-4), on ajoutera des quantités de substances croissantes, qui correspondent approximativement à la moitié jusqu'au double de la quantité prévisible sur la base de la valeur de mesure (sans effet de matrice). Des valeurs de mesure obtenues (des échantillons additionnés), on soustrait respectivement la valeur de mesure de l'échantillon initial, de manière à obtenir des valeurs de mesure tenant compte de l'effet de matrice dans l'échantillon analysé. Par comparaison des données de mesure obtenues, il est alors possible d'estimer la teneur effective de l'échantillon initial.

### **Bibliographie**

Les méthodes de détection basées sur les réactifs sont connues au niveau international et sont parfois partie intégrante des normes nationales et internationales.

- 1. Méthode unitaire allemande pour l'analyse de l'eau, des eaux usées et des boues résiduelles.
- 2. Standard Methods for the Examination of Water and Wastewater; 18th Edition, 1992
- 3. Photometrische Analysenverfahren, Schwedt, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1989
- 4. Photometrische Analyse, Lange / Vejdelek, Verlag Chemie 1980
- 5. Colorimetric Chemical Analytical Methods, 9th Edition, London
- 6. adapté par Merck, voir le mode d'emploi fourni avec le test

#### Indications de recherche

Hazen -> Echelles de couleur Acide silicique -> Dioxyde de silicium Alcalinité totale -> Alcalinité-m

Biguanide -> PHMB

Dureté calcique -> Dureté, calcium
Dureté totale -> Dureté, totale
Oxygène actif -> Oxygène, actif
Valeur m -> Alcalinité-m
Valeur p -> Alcalinité-p

->

Indice de saturation de Langelier

**Fonction Mode 70** 





## Alcalinité-m = valeur m = alcalinité totale avec pastilles

5 – 200 mg/l CaCO<sub>3</sub>



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille d'ALKA-M-PHOTOMETER directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique l'alcalinité-m en mg/l.

#### Remarques:

- 1. Les notions d'alcalinité m, valeur m, alcalinité totale et capacité acide Ks4,3 sont identiques.
- 2. L'observation exacte de la quantité de 10 ml d'échantillon est décisive pour l'exactitude du résultat d'analyse.
- 3. Table de conversion:

|                          | capacité acide Ks4.3<br>DIN 38 409 | °dH comme<br>KH* | °eH* | °fH* |
|--------------------------|------------------------------------|------------------|------|------|
| 1 mg/l CaCO <sub>3</sub> | 0,02                               | 0,056            | 0,07 | 0,1  |

4. \*dureté du carbonate (rapport = anions de carbonate) Exemples de calcul:

 $10 \text{ mg/l CaCO}_3 = 10 \text{ mg/l x } 0.056 = 0.56 \text{ °dH}$ 

 $10 \text{ mg/l CaCO}_3^3 = 10 \text{ mg/l x 0,02} = 0.2 \text{ mmol/l Ks4.3}$ 

5. A CaCO<sub>3</sub>

°dH

°eH

°fH

▼ °aH

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| ALKA-M-PHOTOMETER     | Pastille / 100            | 513210BT  |





## Alcalinité-m HR = valeur m HR = alcalinité totale HR avec pastilles

5 – 500 mg/l CaCO<sub>3</sub>



 Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4 Retirer la cuvette de la chambre de mesure
- Ajouter une pastille d'ALKA-M-HR PHOTOMETER directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.

#### Compte à rebours 1:00 départ: ⊿

Appuyer sur la touche [ ].
 Attendre un temps de réaction de 1 minutes.

- 8. Mélanger à nouveau l'échantillon.
- 9. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique l'alcalinitém HR en mg/l.

#### Remarques:

- 1. Pour vérifier le résultat du test, contrôler si une couche mince jaune s'est formée au fond de la cuvette. Dans ce cas, mélanger le contenu de la cuvette en retournant cette dernière. Ceci vous garantit que la réaction est terminée. Recommencer la mesure et lire le résultat du test.
- 2. Table de conversion:

|                          | capacité acide Ks4.3<br>DIN 38 409 | °dH comme<br>KH* | °eH* | °fH* |
|--------------------------|------------------------------------|------------------|------|------|
| 1 mg/l CaCO <sub>3</sub> | 0,02                               | 0,056            | 0,07 | 0,1  |

<sup>\*</sup>dureté du carbonate (rapport = anions de carbonate)

Exemples de calcul:

 $10 \text{ mg/l CaCO}_3 = 10 \text{ mg/l x } 0.056 = 0.56 \text{ °dH}$ 

 $10 \text{ mg/l CaCO}_3^3 = 10 \text{ mg/l x 0,02} = 0.2 \text{ mmol/l Ks4.3}$ 

3. A CaCO<sub>3</sub>

°dH

°eH °fH

▼ °aH

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| ALKA-M-HR PHOTOMETER  | Pastille / 100            | 513240BT  |





## Alcalinité-p = valeur p avec pastilles

5 - 300 mg/l CaCO<sub>3</sub>



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille d'ALKA-P-PHOTOMETER directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Attendre un temps réaction de 5 minutes.

#### Zéro accepté Préparer test Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique l'alcalinité-p en mg/l.

#### Remarques:

- 1. Les notions d'alcalinité-p, valeur p et capacité acide Ks 8.2 sont identiques.
- 2. L'observation exacte de la quantité de 10 ml d'échantillon est décisive pour l'exactitude du résultat d'analyse.
- 3. La présente méthode a été développée selon un procédé de titrimétrie. Pour des raisons marginales non définies, il est possible que les déviations soient plus importantes qu'avec les méthodes standardisées.
- 4 Table de conversion:

|                          | mg/l CaCO₃ | °dH   | °fH  | °eH  |
|--------------------------|------------|-------|------|------|
| 1 mg/l CaCO <sub>3</sub> |            | 0,056 | 0,10 | 0,07 |
| 1 °dH                    | 17,8       |       | 1,78 | 1,25 |
| 1 °fH                    | 10,0       | 0,56  |      | 0,70 |
| 1 °eH                    | 14,3       | 0,80  | 1,43 |      |



- 5. La détermination d'alcalinité p et m permet de classifier cette alcalinité comme hydroxyde, carbonate et carbonate d'hydrogène. La différentiation de cas suivante n'est valable que si:
  - a) aucun autre alcalin n'est présent et que
  - b) les hydroxydes et les hydrocarbonates ne sont pas ensemble dans le même échantillon. Si la condition b) n'est pas remplie, informez-vous en consultant le document «Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, D8».
  - 1. Si l'alcalinité p = 0, alors:

Carbonate hydrogène = m

Carbonate = 0

Hydroxyde = 0

2. Si l'alcalinité p > 0 et l'alcalinité m > 2p, alors:

Carbonate hydrogène = m - 2p

Carbonate = 2 p

Hydroxyde = 0

3. Si l'alcalinité p > 0 et l'alcalinité m < 2p, alors:

Carbonate hydrogène = 0

Carbonate = 2 m - 2 p

Hydroxyde = 2p - m

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| ALKA-P-PHOTOMETER     | Pastille / 100            | 513230BT  |







### Aldéhyde formique avec MERCK Spectroquant® Test, No. 1.14678.0001

1 - 5 ma/l HCHO

Préparer deux cuvettes propres.

Repérer l'une des deux cuvettes comme cuvette de calibrage.

- 1. Pipeter **4,5 ml de réactif HCHO-1** dans chaque tube. (ATTENTION: le réactif contient de l'acide sulfurique concentré! Remarque 4).
- 2. Ajouter 1 micro-cuillère graduée de réactif HCHO-2.
- 3. Bien refermer les cuvettes avec son couvercle et mélanger son contenu en l'agitant jusqu'à ce que le réactif soit complètement dissoute.
- 4. Ajouter 3 ml d'eau déionisée dans un des tubes préparés (ceci constitue le blanc).
- 5. Ajouter au deuxième tube préparé **3 ml d'échantillon** d'eau (ceci constitue la solution à tester).
- 6. Bien refermer les cuyettes avec son couvercle et mélanger son contenu.
- 7. Appuyer sur la touche [4].

Continuer comme suit après l'expiration du temps de réaction:

8. Verser le blanc préparé dans la cuve de 10 mm.

Attendre un temps réaction de 10 minutes.

- 9 Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 10. Appuyer sur la touche **ZÉRO**.
- 11. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuver.
- 12. Verser le solution d'échantillon dans une cuvette de 10 mm
- 13. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 14. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l aldéhyde formique.







Préparer zéro

Presser ZÉRO

Compte à rebours 10:00

10 mm

départ: 🔟

Zéro accepté Préparer test **Presser TEST** 

#### Remarques:

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- 5. La réaction étant sensible à la température, la température de l'échantillon et du tube doit être comprise entre 20 et 25°C.
- 6. Toujours mesurer le volume de l'échantillon à l'aide d'une pipette volumétrique (classe A).

| Réactif / Accessoires            | Forme de réactif/Quantité          | Référence |
|----------------------------------|------------------------------------|-----------|
| MERCK Spectroquant® 1.14678.0001 | Test en cuvette / env. 50-75 Tests | 420751    |







# Aldéhyde formique avec MERCK Spectroquant® Test, Nr. 1.14678.0001

0.02 - 1 mg/l HCHO

Préparer deux cuvettes propres.

Repérer l'une des deux cuvettes comme cuvette de calibrage.

- Pipeter 4,5 ml de réactif HCHO-1 dans chaque tube. (ATTENTION: le réactif contient de l'acide sulfurique concentré! Remarque 4)
- 2. Ajouter 1 micro-cuillère graduée de réactif HCHO-2.
- Bien refermer la cuvette avec son couvercle et mélanger son contenu en l'agitant jusqu'à ce que le réactif soit complètement dissoute.
- Ajouter 3 ml d'eau déionisée dans un des tubes préparés (ceci constitue le blanc).
- 5. Ajouter au deuxième tube préparé **3 ml d'échantillon d'eau (ceci constitue la solution à tester)**.
- Bien refermer la cuvette avec son couvercle et mélanger son contenu.



7. Appuyer sur la touche [4].

Attendre un temps réaction de 10 minutes.

- Continuer comme suit après l'expiration du temps de réaction:
- 8. Verser le blanc préparé dans la cuve de 50 mm.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 10. Appuyer sur la touche **ZÉRO**.
- 11. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- 12. Verser le solution d'échantillon dans une cuvette de 50 mm.
- 13. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 14. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l aldéhyde formique.

#### Préparer zéro Presser ZÉRO

Zéro accepté Préparer test Presser TEST

#### Remarques:

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- 5. La réaction étant sensible à la température, la température de l'échantillon et du tube doit être comprise entre 20 et 25°C.
- 6. Toujours mesurer le volume de l'échantillon à l'aide d'une pipette volumétrique (classe A).

| Réactif / Accessoires            | Forme de réactif/Quantité          | Référence |
|----------------------------------|------------------------------------|-----------|
| MERCK Spectroquant® 1.14678.0001 | Test en cuvette / env. 50-75 Tests | 420751    |







### Aldéhyde formique avec MERCK Spectroquant® test en cuvette, No. 1.14500.0001

0,1 - 5 mg/l HCHO



Préparer deux cuvettes de réaction propres. Une des deux cuvettes sera marquée comme cuvette étalon.

- 1. Ajouter 1 micro-cuillère graduée de réactif HCHO 1K.
- Bien refermer les couvercles respectifs des cuvettes et mélanger son contenu en l'agitant énergiquement jusqu'à ce que le réactif soit complètement dissout.
- 3. Mettre dans la cuvette étalon 2 ml d'eau déminéralisée (ceci est le blanc, rem. 6).
- 4. Ajouter au deuxième tube préparée 2 ml d'échantillon d'eau (ceci constitue la solution à tester, rem. 6).
- 5. Bien refermer les couvercles respectifs des cuvettes.

Tenir le tube uniquement par son bouchon et retourner le tube délicatement plusieurs fois pour mélanger son contenu. (ATTENTION: le tube devient chaud!)

6. Placer ensuite la cuvette de calibrage dans la chambre de mesure. Positionnement  $\frac{1}{\lambda}$ .

#### Préparer zéro Presser ZÉRO

- 7. Appuyer sur la touche **ZÉRO**.
- 8. Retirer la cuvette de calibrage de la chambre de mesure.

Compte à rebours 5:00 départ: ↓

Appuyer sur la touche [4].
 Attendre un temps réaction de 5 minutes.

Continuer comme suit après l'expiration du temps de réaction:

10. Placer ensuite la cuvette d'échantillon dans la chambre de mesure. Positionnement 

↓.

Zéro accepté Préparer test Presser TEST

11. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l aldéhyde formique.

#### Remarques:

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- 5. La réaction étant sensible à la température, la température de l'échantillon et du tube doit être comprise entre 20 et 25°C.
- 6. Toujours mesurer le volume de l'échantillon à l'aide d'une pipette volumétrique (classe A).
- 7. Stocker les réactifs dans des récipients fermés à une température comprise entre + 15°C et + 25°C.
- 8. Le pH de l'échantillon à tester doit être compris entre 0 et 13.

| Réactif / Accessoires            | Forme de réactif/Quantité  | Référence |
|----------------------------------|----------------------------|-----------|
| MERCK Spectroquant® 1.14500.0001 | Test en cuvette / 25 Tests | 420752    |





## Aluminium avec pastilles

0,01 - 0,3 mg/l Al



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette

 Mettre la cuvette dans la chambre de mesure. Positionnement ∑.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4 Retirer la cuvette de la chambre de mesure
- Ajouter une pastille d'ALUMINIUM No. 1 directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Ajouter une pastille d'ALUMINIUM No. 2 directement de l'emballage protecteur dans le même échantillon et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

9. Appuyer sur la touche **TEST**.

#### Compte à rebours 5:00

Attendre un temps de réaction de 5 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique l'aluminium en mg/l.

#### Remarques:

- Rincer les cuvettes et accessoires avant le test avec une solution chlorhydrique (env. à 20%) puis avec de l'eau déminéralisée (dessalée) pour éviter des erreurs dues à des impuretés.
- 2. Maintenir les échantillons à une température entre 20°C et 25 °C afin d'obtenir des résultats de test précis.
- 3. La présence de fluorures et de polyphosphates peut donner des résultats de test trop bas. Cette influence n'est pas d'une grande importance en général à moins que l'eau soit artificiellement fluorée.

Dans ce cas, le tableau suivant sera appliqué:

| Fluorure | Vá   | aleur sur a | afficheur: | aluminiu | m [mg/l <i>A</i> | Al]  |
|----------|------|-------------|------------|----------|------------------|------|
| [mg/l F] | 0,05 | 0,10        | 0,15       | 0,20     | 0,25             | 0,30 |
| 0,2      | 0,05 | 0,11        | 0,16       | 0,21     | 0,27             | 0,32 |
| 0,4      | 0,06 | 0,11        | 0,17       | 0,23     | 0,28             | 0,34 |
| 0,6      | 0,06 | 0,12        | 0,18       | 0,24     | 0,30             | 0,37 |
| 0,8      | 0,06 | 0,13        | 0,20       | 0,26     | 0,32             | 0,40 |
| 1,0      | 0,07 | 0,13        | 0,21       | 0,28     | 0,36             | 0,45 |
| 1,5      | 0,09 | 0,20        | 0,29       | 0,37     | 0,48             |      |

Exemple: une concentration d'aluminium mesurée de 0,15 mg/l Al et une concentratio de fluorure connue de 0,40 mg/l F donne une concentration réelle d'aluminium de 0,17 mg/l Al.

4. Les interférences provoquées par la présence de fer et de manganèse peuvent être supprimées en utilisant une substance spéciale de pastille.



Al,O,

| Réactif / Accessoires          | Forme de réactif/Quantité              | Référence |
|--------------------------------|----------------------------------------|-----------|
| Set<br>ALUMINIUM No. 1 / No. 2 | Pastille / par 100<br>Agitateur inclus | 517601BT  |
| ALUMINIUM No. 1                | Pastille / 100                         | 515460BT  |
| ALUMINIUM No. 2                | Pastille / 100                         | 515470BT  |





### Aluminium avec réactif en sachet de poudre (PP)

0.01 - 0.25 mg/l Al



Préparer deux cuvettes propres de 24 mm. Une des deux cuvettes sera marquée comme cuvette étalon.

- 1. Verser **20 ml d'échantillon** dans un verre gradué.
- Ajouter le contenu d'un sachet de poudre Vario Aluminium ECR F20 directement de l'emballage protecteur dans l'échantillon de 20 ml.
- 3. Dissoudre la poudre en remuant à l'aide d'un agitateur propre.

Compte à rebours 1 0:30 départ: 🚽

4. Appuyer sur la touche [4].

Attendre un temps de réaction de 30 secondes.

Après écoulement du temps de réaction, procéder comme suit:



- Ajouter le contenu d'un sachet de poudre de Vario Hexamine F20 directement de l'emballage protecteur dans l'échantillon
- 6. Dissoudre la poudre en remuant à l'aide d'un agitateur propre.
- Mettre dans la cuvette étalon 1 goutte de «Vario Aluminium ECR Masking Reagent».
- 8. Ajouter 10 ml de l'échantillon préparé dans la cuvette étalon avec le réactif séquestrant.
- 9. Ajouter dans la deuxième cuvette les 10 ml restant de l'échantillon préparé (cuvette échantillon).
- 10. Fermer les cuvettes avec leur couvercle respectif.

Compte à rebours 2 5:00 départ: 🚚

11. Appuyer sur la touche [4].

Attendre un temps de réaction de 5 minutes.

Après écoulement du temps de réaction, procéder comme suit:

12. Placer la cuvette étalon dans la chambre de mesure. Positionnement  $\chi$ .

Préparer zéro Presser ZÉRO

- 13. Appuyer sur la touche **ZÉRO**.
- 14 Retirer la cuvette de la chambre de mesure
- 15. Placer la cuvette échantillon dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

16. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche en mg/l aluminium.

#### Remarques:

- Rincer les cuvettes et accessoires avant le test avec une solution chlorhydrique (env. à 20%) puis avec de l'eau déminéralisée (dessalée) pour éviter des erreurs dues à des impuretés.
- 2. Maintenir les échantillons à une température entre 20°C et 25 °C afin d'obtenir des résultats de test précis.
- 3. La présence de fluorures et de polyphosphates peut donner des résultats de test trop bas. Cette influence n'est pas d'une grande importance en général à moins que l'eau soit artificiellement fluorée.

Dans ce cas, le tableau suivant sera appliqué:

| Fluorure | Vá   | aleur sur a | afficheur: | aluminiu | m [mg/l A | AI]  |
|----------|------|-------------|------------|----------|-----------|------|
| [mg/l F] | 0,05 | 0,10        | 0,15       | 0,20     | 0,25      | 0,30 |
| 0,2      | 0,05 | 0,11        | 0,16       | 0,21     | 0,27      | 0,32 |
| 0,4      | 0,06 | 0,11        | 0,17       | 0,23     | 0,28      | 0,34 |
| 0,6      | 0,06 | 0,12        | 0,18       | 0,24     | 0,30      | 0,37 |
| 0,8      | 0,06 | 0,13        | 0,20       | 0,26     | 0,32      | 0,40 |
| 1,0      | 0,07 | 0,13        | 0,21       | 0,28     | 0,36      | 0,45 |
| 1,5      | 0,09 | 0,20        | 0,29       | 0,37     | 0,48      |      |

Exemple: une concentration d'aluminium mesurée de 0,15 mg/l Al et une concentration de fluorure connue de 0,40 mg/l F donne une concentration réelle d'aluminium de 0,17 mg/l Al.



AL AL<sub>2</sub>O<sub>3</sub>

| Réactif / Accessoires               | Forme de réactif/Quantité | Référence |
|-------------------------------------|---------------------------|-----------|
| Set                                 |                           | 535000    |
| VARIO Aluminium ECR F20             | Sachet de poudre / 100    |           |
| VARIO Aluminium Hexamine F 20       | Sachet de poudre / 100    |           |
| VARIO Aluminium ECR Masking Reagent | Réactif liquide / 25 ml   |           |





# Ammonium avec pastilles

0.02 - 1 mg/l N



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- 4 Retirer la cuvette de la chambre de mesure
- Ajouter une pastille d'AMMONIA No. 1 directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- 6. Ajouter **une pastille d'AMMONIA No. 2** directement de l'emballage protecteur dans le même échantillon et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

#### Compte à rebours 10:00

9. Appuyer sur la touche **TEST**.

Attendre un temps de réaction de 10 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique l'ammonium en mg/l.

#### Remarques:

- 1. Il convient de suivre scrupuleusement l'ordre d'apport des pastilles.
- La pastille d'AMMONIA No. 1 ne se dissout complètement qu'après l'apport de la pastille d'AMMONIA No. 2.
- 3. La température joue un rôle important dans le développement de la coloration. Le temps d'attente est de 15 min lorsque la température est inférieure à 20°C.
- 4. Echantillons d'eau de mer:

Un réactif de traitement de l'ammoniac est nécessaire pour analyser des échantillons d'eau de mer ou d'eau saumâtre afin d'empêcher la précipitation des sels. Remplir le tube à essai d'échantillon jusqu'au repère des 10 ml et ajouter une cuillérée rase de poudre de traitement. Mélanger pour dissoudre, puis continuer comme décrit dans les instructions du test.

5. Conversion: mg/l NH<sub>4</sub> = mg/l N x 1,29 mg/l NH<sub>3</sub> = mg/l N x 1,22

6. ▲ N

NH<sub>4</sub>

NH<sub>3</sub>

| Réactif / Accessoires                                    | Forme de réactif/Quantité              | Référence |
|----------------------------------------------------------|----------------------------------------|-----------|
| Set<br>AMMONIA No. 1 / No. 2                             | Pastille / par 100<br>Agitateur inclus | 517611BT  |
| AMMONIA No. 1                                            | Pastille / 100                         | 512580BT  |
| AMMONIA No. 2                                            | Pastille / 100                         | 512590BT  |
| Ammonia conditioning reagent (Echantillons d'eau de mer) | (pour 50 tests)<br>poudre / 15 g       | 460170    |





### Ammonium avec réactifs en sachet de poudre (PP)

0.01 - 0.8 mg/l N



Ø 24 mm



Compte à rebours 1 3:00 départ: 🔟

Préparer deux cuvettes propres de 24 mm. Repérer l'une des deux cuvettes comme cuvette de calibrage.

- Verser 10 ml d'eau déminéralisée dans une cuvette propre de 24 mm (cuvette de calibrage).
- 2. Verser **10 ml d'échantillon** dans une deuxième cuvette propre de 24 mm (cuvette d'échantillon).
- Ajouter dans chaque cuvette le contenu d'un sachet de poudre Vario Ammonium Salicylate F10 directement à partir de la pellicule.
- 4. Refermer les couvercles respectifs des cuvettes et mélanger le contenu en agitant les cuvettes.
- Appuyer sur la touche TEST.
   Attendre un temps de réaction de 3 minutes.

Continuer comme suit après l'expiration du temps de réaction:

- Ajouter dans chaque cuvette le contenu d'un sachet de poudre Vario Ammonium Cyanurate F10 directement à partir de la pellicule.
- Bien refermer les couvercles respectifs des cuvettes et mélanger son contenu en l'agitant jusqu'à ce que le réactif soit complètement dissous.
- Appuyer sur la touche TEST.
   Attendre un temps de réaction de 15 minutes.

Continuer comme suit après l'expiration du temps de réaction:

- 9. Placer ensuite la cuvette de calibrage dans la chambre de mesure. Positionnement  $\overline{\chi}$  .
- 10. Appuyer sur la touche **ZÉRO**.

13. Appuyer sur la touche **TEST**.

- 11 Retirer la cuvette de la chambre de mesure
- 12. Placer ensuite la cuvette d'échantillon dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
  - Le résultat de la mesure s'affiche et indique l'ammonium en mg/l.

#### Compte à rebours 2 15:00 départ: 🔟

Préparer zéro Presser ZÉRO

Zéro accepté Préparer test Presser TEST

- 1. Ajuster les échantillons d'eau très basiques ou acides à pH 7 avec de l'acide sulfurique 0,5 mol/l (1 N) ou avec une solution d'hydroxyde de sodium 1 mol/l (1 N).
- 2. Interférences:

| Substance interférente                       | Niveaux d'interférence et traitements                                                                                                                                                                                                                                                                    |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calcium                                      | supérieur à 1000 mg/l CaCO <sub>3</sub>                                                                                                                                                                                                                                                                  |
| Fer                                          | Interfère à tous les niveaux. Corriger de la façon suivante:  a) déterminer la concentration de fer présent dans l'échantillon en effectuant un dosage du fer total. b) ajouter à l'eau déionisée la même concentration en fer que celle déterminée (étape 1). L'interférence sera éliminée avec succès. |
| Magnésium                                    | supérieur à 6000 mg/l CaCO <sub>3</sub>                                                                                                                                                                                                                                                                  |
| Nitrate                                      | supérieur à 100 mg/l NO <sub>3</sub> -N                                                                                                                                                                                                                                                                  |
| Nitrite                                      | supérieur à 12 mg/l NO <sub>2</sub> -N                                                                                                                                                                                                                                                                   |
| Phosphate                                    | supérieur à 100 mg/l PO <sub>4</sub> -P                                                                                                                                                                                                                                                                  |
| Sulfate                                      | supérieur à 300 mg/l SO <sub>4</sub>                                                                                                                                                                                                                                                                     |
| Sulfure                                      | intensifie la couleur                                                                                                                                                                                                                                                                                    |
| Glycine, Hydrazine,<br>Couleur,<br>Turbidité | Les interférences moins courantes telles que l'Hydrazine et la Glycine provoquent une intensification des couleurs dans l'échantillon préparé. La turbidité et la couleur donnent des valeurs élevées erronées. Les échantillons présentant des interférences importantes nécessitent une distillation.  |



| Réactif / Accessoires                                        | Forme de réactif/Quantité     | Référence |
|--------------------------------------------------------------|-------------------------------|-----------|
| Set VARIO Ammonia Salicylate F10 VARIO Ammonia Cyanurate F10 | Sachet de poudre / par 100 PP | 535500    |





# Ammonium LR (plage de mesure basse) avec test en cuvette

0.02 - 2.5 mg/l N



- Ouvrir une cuvette de réactif à couvercle blanc et la remplir de 2 ml d'eau déminéralisée (cuvette étalon).
- 2. Ouvrir une autre cuvette à couvercle blanc et la remplir de **2 ml d'échantillon** (cuvette échantillon).
- Verser dans chaque cuvette le contenu d'un sachet de poudre Vario AMMONIA Salicylate F5 directement de l'emballage protecteur.
- Verser dans chaque cuvette le contenu d'un sachet de poudre Vario AMMONIA Cyanurate F5 directement de l'emballage protecteur.
- Bien refermer les couvercles respectifs des cuvettes et mélanger son contenu en l'agitant jusqu'à ce que le réactif soit complètement dissous.
- 6. Appuyer sur la touche [ع]. Attendre **20 minutes de temps de réaction**.

Après écoulement du temps de réaction, procéder de la manière suivante:

7. Placer la cuvette étalon dans la chambre de mesure Positionnement  $\lambda$ .




- 8. Appuyer sur la touche **ZERO**.
- 9. Retirer la cuvette de la chambre de mesure.
- 10. Placer la cuvette échantillon dans la chambre de mesure. Positionnement  $\underline{\Lambda}$ .

Zéro accepté Préparer test Presser TEST

11. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique l'ammonium en mg/l.





- 1. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à 7 environ (au moyen d' 1 mol/d'acide chlorhydrique ou 1 mol/l de lessive de soude).
- 2. Le fer perturbe la détermination et peut être neutralisé comme suit: évaluer la concentration de l'ensemble du fer et utiliser, pour la préparation de la cuvette étalon, un standard de fer de la concentration évaluée au lieu de l'eau déminéralisée.
- 3. Conversion: mg/l NH<sub>4</sub> = mg/l N x 1,29 mg/l NH<sub>3</sub> = mg/l N x 1,22
- 4. ▲ N
  NH<sub>4</sub>
  NH<sub>3</sub>

| Réactif / Accessoires       | Forme de réactif/Quantité | Référence |
|-----------------------------|---------------------------|-----------|
| Set                         | Set                       | 535600    |
| VARIO Ammonia Salicylate F5 | Sachet de poudre / 50     |           |
| VARIO Ammonia Cyanurate F5  | Sachet de poudre / 50     |           |
| VARIO Am Diluent Reagent LR | Cuvette de réactif / 50   |           |
| VARIO d'eau déminéralisée   | 100 ml                    |           |





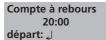
### Ammonium HR (plage de mesure haute) avec test en cuvette

1 - 50 mg/l N



- Ouvrir une cuvette de réactif à couvercle blanc et la remplir de 0,1 ml d'eau déminéralisée (cuvette étalon).
- Ouvrir une autre cuvette à couvercle blanc et la remplir de 0,1 ml d'échantillon (cuvette échantillon).






- Bien refermer les couvercles respectifs des cuvettes et mélanger son contenu en l'agitant jusqu'à ce que le réactif soit complètement dissous.
- 6. Appuyer sur la touche [ع].

Attendre 20 minutes de temps de réaction.

Après écoulement du temps de réaction, procéder de la manière suivante:

 Placer la cuvette étalon dans la chambre de mesure. Positionnement √.



Préparer zéro Presser ZÉRO

- 8. Appuyer sur la touche **ZÉRO**.
- 9. Retirer la cuvette de la chambre de mesure.
- 10. Placer la cuvette échantillon dans la chambre de mesure. Positionnement √.

Zéro accepté Préparer test Presser TEST

11. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique l'ammonium en mg/l.

#### Remarques:

- 1. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à 7 environ (au moyen d' 1 mol/l d'acide chlorhydrique ou 1 mol/l de lessive de soude).
- 2. En cas de présence de chlore, l'échantillon doit être traité avec du thiosulfate de sodium. On ajoute une goutte d'une solution de thiosulfate de sodium de 0,1 mol/l à 0,3 mg/l Cl, dans un litre d'échantillon d'eau.
- 3. Le fer perturbe la détermination et peut être neutralisé comme suit: évaluer la concentration du fer total, pour la préparation de la cuvette étalon, un standard de fer de la concentration évaluée au lieu de l'eau déminéralisée.
- 4. Conversion: mg/l NH<sub>4</sub> = mg/l N x 1,29 mg/l NH<sub>3</sub> = mg/l N x 1,22 5. N

5. ▲ N NH<sub>4</sub> NH<sub>3</sub>

| Réactif / Accessoires                                      | Forme de réactif/Quantité                       | Référence |
|------------------------------------------------------------|-------------------------------------------------|-----------|
| Set VARIO Ammonia Salicylate F5 VARIO Ammonia Cyanurate F5 | Set Sachet de poudre / 50 Sachet de poudre / 50 | 535650    |
| VARIO Am Diluent Reagent HR<br>VARIO d'eau déminéralisée   | Cuvette de réactif / 50<br>100 ml               |           |





#### **Arsenic**

0,02 - 0,6 mg/l As

#### Réactifs (remarque 2):

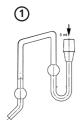
- Acide sulfurique 40% (H<sub>2</sub>SO<sub>4</sub>) p.a.
- Dissoudre 8,33 g d'iodure de potassium (KI) p.a. dans 50 ml d'eau déionisée.
  - Remarque: utilisable pendant 1 semaine si conservé dans une bouteille ambrée
- Dissoudre 4,0 g de chlorure d'étain (II) dihydraté (SnCl<sub>2</sub> • 2H<sub>2</sub>O) p.a. dans 10 ml d'acide chlorhydrique (HCl) à 25% p.a
- 2,0 g de poudre de zinc grossière (Zn; taille de particule d'environ 0,3 1,5 mm) p.a.
- Solution d'absorption:
   Dissoudre 0,25 g de diéthyldithiocarbamate d'argent (C<sub>5</sub>H<sub>10</sub>AgNS<sub>2</sub>) p.a. et
   0,02 g de Brucine (C<sub>23</sub>H<sub>26</sub>N<sub>2</sub>O<sub>4</sub>) p.a. dans
   100 ml de méthyl-1 pyrrolidone-2 extra pure (C<sub>5</sub>H<sub>9</sub>NO) et conserver dans une bouteille ambrée.
   Si la dissolution complète est impossible, mélanger pendant au moins 1 heure et filtrer pour obtenir une

#### **Remarques:**

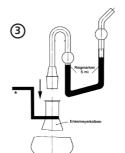
solution transparente.

- Utiliser uniquement des récipients en verre secs.
- Conservée dans une bouteille de verre ambré à 20°C maxi., la solution d'absorption peut être utilisée pendant environ 1 semaine.
- Stocker le diéthyldithiocarbamate d'argent à 4°C

Liste des pièces pour appareil en verre:


• Erlenmeyer de 100 ml (NS29/32)

• Bouchon en verre (NS 29/32)


• Tube d'absorption (NS29,2/32)

Référence: 37 05 01 Référence: 37 05 02 Référence: 37 05 03

#### Assemblage de l'appareil:









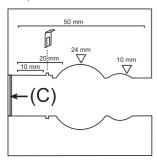
\* Durch geeignete Befestigung vor Umkippen sichen

### Préparation de l'échantillon: respecter scrupuleusement les temps de réaction!

- Préparer l'appareil de réaction sec (remarque 4) et l'installer sous une hotte aspirante (vapeurs toxiques!).
- 2. Pipeter **50 ml d'échantillon d'eau** dans un Erlenmeyer de 100 ml (NS 29/32).
- Ajouter
   30 ml d'acide sulfurique,
   2,0 ml de solution d'iodure de potassium et
   0,3 ml de chlorure d'étain (II) à l'échantillon d'eau.
- Fermer le tube et secouer, attendre pendant 15 minutes.
- 5. Préparer 2,0 g de zinc.
- Remplir le tube d'absorption avec exactement 5,0 ml de solution d'absorption (voir figures 1) et 2); utiliser une pipette).
- Lorsque les 15 minutes de réaction se sont écoulées, ajouter les 2 g de zinc dans l'Erlenmeyer et assembler immédiatement l'appareil avec le tube d'absorption préparé (voir figure 3).
- 8. La réaction démarre (hotte!). Respecter un temps de réaction de 60 minutes.



#### Préparer zéro Presser ZÉRO


#### Procédure du test:

- Remplir une cuve de 20 mm propre (remarque 1) d'eau déionisée.
- 10. Placer la cuve dans la chambre de mesure en s'assurant qu'elle est dans la position correcte.
- 11. Appuyer sur la touche **ZÉRO**.
- 12. Après avoir fait le zéro, retirer la cuve de la chambre. Vider la cuve et bien la sécher
- 13. Remplir la cuve de la solution d'absorption colorée (voir figure 4).
- 14. Placer la cuve dans la chambre de mesure en s'assurant que les repères sont bien alignés.
- Appuyer sur la touche **TEST**.
   Le résultat s'affiche à l'écran en mg/l d'arsenic.

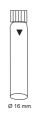
Zéro accepté Préparer test Presser TEST

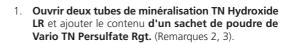
#### Remarques:

- 1. Appliquer des mesures de sécurité appropriées et de bonnes techniques de laboratoire pendant toute la procédure.
- 2. Les réactifs sont disponibles dans le commerce et doivent être commandés sur place. FDS: merci de se référer à son distributeur de réactifs local. Assurer l'élimination correcte de la solution de réactif.
- 3. Utiliser une cuve présentant un trajet optique de 20 mm. Référence 60 10 50. Positionnement: insérer la cuve sur le côté gauche dans la chambre de mesure (c = pince).



 D'après la littérature (G. Ackermann, J. Köthe: Fresenius Z. Anal. Chem. 323 (1986), 135), Sb, Se et Te interfèrent du fait de la même réaction; le thiosulfate interfère différemment






### Azote, total LR (gamme basse) avec test en cuvette

0.5 - 25 mg/l N









- Ajouter 2 ml d'échantillon d'eau à l'autre tube préparé (ceci est l'échantillon).
- 4. Fermer les capuchons des tubes et secouer pour mélanger le contenu (au moins 30 secondes, Remarque 6).
- Chauffer les tubes pendant 30 minutes dans le réacteur préchauffé à une température de 100°C (Remarque 7).
- Après 30 minutes, retirer les tubes du réacteur. (ATTENTION: les tubes sont chauds!)
   Laisser les tubes refroidir jusqu'à la température ambiante.
- Ouvrir les tubes de minéralisation refroidis et ajouter le contenu d'un sachet de poudre de Vario TN Reagent A à chaque tube (Remarque 2).
- Fermer les tubes avec les capuchons et secouer pour mélanger le contenu (au moins 15 secondes).

Compte à rebours 1 3:00 départ: 🚽

Appuyer sur la touche [₄].
 Respecter un temps de réaction de 3 minutes.

Lorsque le temps de réaction s'est écoulé, procéder comme suit:

 Ouvrir les tubes de minéralisation et ajouter le contenu d'un sachet de poudre de Vario TN Reagent B à chaque tube (Remarque 2).

11. Fermer les tubes avec les capuchons et secouer pour mélanger le contenu (au moins 15 secondes, Remarque 8).

#### Compte à rebours 2 2:00 départ: 🔟

Appuyer sur la touche [ ].
 Respecter un temps de réaction de 2 minutes.

Lorsque le temps de réaction s'est écoulé, procéder comme suit:

- Ouvrir deux tubes TN Acid LR/HR, réactif C et ajouter 2 ml de blanc digéré, traité à un des tubes (ceci est le blanc).
- 14. Ajouter **2 ml d'échantillon d'eau digéré, traité** à l'autre tube TN Acid LR/HR (ceci est l'échantillon).
- 15. Fermer les tubes avec les capuchons et les agiter doucement plusieurs fois pour mélanger le contenu (10 x, Remarque 9).

(ATTENTION: les tubes s'échauffent).

 Placer le tube (le blanc) dans la chambre de mesure en s'assurant que les repères ∆ sont alignés.

#### Préparer zéro Presser ZÉRO

Compte à rebours 5:00  Appuyer sur la touche ZÉRO. Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement lorsque le temps de réaction s'est écoulé.

- 18. Retirer le tube de la chambre de mesure
- 19. Placer le tube (l'échantillon, Remarque 10) dans la chambre de mesure en s'assurant que les repères ∆ sont alignés.

Zéro accepté Préparer test Presser TEST

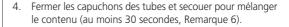
20. Appuyer sur la touche **TEST**. Le résultat s'affiche en mg/l d'azote.

Remarques et Réactif: Voir à la prochaine page 48








### Azote, total HR (gamme haute) avec test en cuvette

5 - 150 mg/l N



- Ouvrir deux tubes de minéralisation TN Hydroxide HR et ajouter le contenu d'un sachet de poudre de Vario TN Persulfate Rgt. (Remarques 2, 3).
- 2. Ajouter **0,5 ml d'eau déionisée** à un tube préparé (ceci constitue le blanc, Remarques 4, 5).





- Chauffer les tubes pendant 30 minutes dans le réacteur préchauffé à une température de 100°C (Remarque 7).
- Après 30 minutes, retirer les tubes du réacteur. (ATTENTION: les tubes sont chauds!)
   Laisser les tubes refroidir jusqu'à la température ambiante.
- Ouvrir les tubes de minéralisation refroidis et ajouter le contenu d'un sachet de poudre de Vario TN Reagent A (réactif A) à chaque tube (Remarque 2).
- 8. Fermer les tubes avec les capuchons et secouer pour mélanger le contenu (au moins 15 secondes).

- Appuyer sur la touche [4].
   Respecter un temps de réaction de 3 minutes.
   Lorsque le temps de réaction s'est écoulé, procéder comme suit:
- Ouvrir les tubes de minéralisation et ajouter le contenu d'un sachet de poudre de Vario TN Reagent B à chaque tube (Remarque 2).

11. Fermer les tubes avec les capuchons et secouer pour mélanger le contenu (au moins 15 secondes, Remarque 8).

#### Compte à rebours 2 2:00 départ: 🗐

- 12. Appuyer sur la touche [4].

  Respecter un **temps de réaction de 2 minutes**.

  Lorsque le temps de réaction s'est écoulé, procéder comme suit:
- Ouvrir deux tubes TN Acid LR/HR (réactif C) et ajouter 2 ml de blanc digéré, traité à un des tubes (ceci est le blanc).
- 14. Ajouter **2 ml d'échantillon d'eau digéré**, traité à l'autre tube TN Acid LR/HR (azote total acide GB/GH) (ceci est l'échantillon).
- 15. Fermer les tubes avec les capuchons et les agiter doucement plusieurs fois pour mélanger le contenu (10 x, Remargue 9). (ATTENTION: les tubes s'échauffent).
- 16. Placer le tube (le blanc) dans la chambre de mesure en s'assurant que les repères √ sont alignés.

#### Préparer zéro Presser ZÉRO

### Compte à rebours 5:00

- 17. Appuyer sur la touche **ZÉRO**.

  Respecter un **temps de réaction de 5 minutes**.

  La mesure démarre automatiquement lorsque le temps de réaction s'est écoulé
- 18. Retirer le tube de la chambre de mesure.
- 19. Placer le tube (l'échantillon, Remarque 10) dans la chambre de mesure en s'assurant que les repères ∆ sont alignés.

#### Zéro accepté Préparer test Presser TEST

Appuyer sur la touche **TEST**.
 Le résultat s'affiche en mg/l d'azote.

Remarques et Réactif: Voir à la prochaine page 48

#### Remarques:

- Respecter les règles de sécurité appropriées et suivre de bonnes pratiques de laboratoire pendant toute la procédure.
- 2. Utiliser un entonnoir pour ajouter le réactif.
- 3. Essuyer toute trace éventuelle de réactif au persulfate sur les capuchons ou les filetages des tubes.
- 4. Azote, total LR:

Toujours mesurer les volumes pour les échantillons et le blanc à l'aide de pipettes volumétriques de 2 ml (classe A).

Azote, total HR:

Toujours mesurer les volumes pour les échantillons et le blanc à l'aide de pipettes appropriées (classe A).

- 5. Un blanc est suffisant pour chaque série d'échantillon.
- 6. Le réactif peut ne pas se dissoudre complètement.
- 7. Il est très important de retirer les tubes du réacteur après exactement 30 minutes.
- 8. Le réactif ne se dissout pas complètement.
- 9. Tenir le tube en position verticale avec le capuchon vers le haut. Retourner le tube capuchon vers le bas. Attendre que toute la solution coule vers le capuchon. Retourner le tube à l'endroit. Attendre que la solution s'écoule vers le bas du tube. Ce processus représente un retournement; 10 retournements = environ 30 secondes.
- 10. La cuvette zéro peut être utilisée pendant 7 jours (stockée dans l'obscurité), si les échantillons mesurés ont été préparées avec le même lot des réactifs.
- 11. De grandes quantités de composés organiques sans azote contenus dans certains échantillons d'eau peuvent diminuer l'efficacité de la minéralisation en réagissant avec le réactif au persulfate. Les échantillons bien connus pour contenir de grandes quantités de composés organiques doivent être dilués et la minéralisation et la mesure répétées pour vérifier l'efficacité de la minéralisation.
- 12. Application: pour eau, eaux usées et eau de mer
- 13. Interférences:

Substances interférentes entraînant une différence de concentration de 10%. Les bromures à plus de 60 mg/l et les chlorures à plus de 1000 mg/l produisent des interférences positives.

TN = azote total

14.

N NH,

▼ NH<sub>3</sub>

### Azote, total LR (gamme haute) avec test en cuvette

| Réactif / Accessoires     | Forme de réactif/Quantité    | Référence |
|---------------------------|------------------------------|-----------|
| Set                       | Set                          | 535550    |
| VARIO TN HYDROX LR Tube   | Tubes de minéralisation / 50 |           |
| VARIO PERSULFATE Reagent  | Sachet de poudre / 50        |           |
| VARIO TN Reagent A        | Sachet de poudre / 50        |           |
| VARIO TN Reagent B        | Sachet de poudre / 50        |           |
| VARIO TN ACID LR/HR Tube  | Cuvette de réactif / 50      |           |
| VARIO d'eau déminéralisée | 100 ml                       |           |

### Azote, total HR (gamme haute) avec test en cuvette

| Réactif / Accessoires     | Forme de réactif/Quantité    | Référence |
|---------------------------|------------------------------|-----------|
| Set                       | Set                          | 535560    |
| VARIO TN HYDROX HR Tube   | Tubes de minéralisation / 50 |           |
| VARIO PERSULFATE Reagent  | Sachet de poudre / 50        |           |
| VARIO TN Reagent A        | Sachet de poudre / 50        |           |
| VARIO TN Reagent B        | Sachet de poudre / 50        |           |
| VARIO TN ACID LR/HR Tube  | Cuvette de réactif / 50      |           |
| VARIO d'eau déminéralisée | 100 ml                       |           |







### Azote, total LR 2 (gamme basse) avec test en cuvette

0,5 - 14 mg/l N



#### Dissolution:

- Remplir un des tubes de minéralisation fourni avec 5 ml d'échantillon d'eau.
- Ajouter une cuillère gradué no. 8 (noir) remplie à ras bord de Digestion Reagent.
- Refermer la cuvette avec le couvercle et mélanger le contenu.
- Chauffer les tubes pendant 60 minutes dans le réacteur préchauffé à une température de 100°C.
- Après 60 minutes, retirer les tubes du réacteur. (Attention: la cuvette est brûlante!). Mélanger les tubes et laisser refroidir jusqu'à la température ambiante.
- 6. Ajouter une cuillère gradué no. 4 (blanc) remplie à ras bord de Compensation Reagent.
- Refermer la cuvette avec le couvercle et mélanger le contenu.
- 8. Utiliser cet échantillon pré-traité pour la procédure de test suivante

#### Procédé:

- 9. Placer la cuvette à valeur zéro (portant l'étiquette rouge) livrée dans la chambre de mesure. Positionnement  $\lambda$
- 10. Appuyer sur la touche **ZÉRO**.
- 11 Retirer la cuvette de la chambre de mesure
- 12. Ouvrir un tube de réactif et ajouter 0,5 ml de l'échantillon pré-traité (étape 8).
- Fermer correctement le tube avec le bouchon et retourner plusieurs fois le tube pour mélanger son contenu.
   (Attention: le tube devient chaud!)

#### Préparer zéro Presser ZÉRO

- 14. Ajouter **0,2 ml de Nitrate-111**.
- Refermer la cuvette avec son couvercle et mélanger le contenu.
- 16. Mettre la cuvette dans la chambre de mesure. Positionnement  $\lambda$ .

Zéro accepté Préparer test Presser TEST

17. Appuyer sur la touche **TEST**.

Attendre un temps réaction de 15 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l azote.

### Compte à rebours 15:00

- 1. Ce test détermine les composés inorganiques ammonium, nitrate et nitrite, ainsi que les composés organiques comme les acides aminés, l'urée, les agents complexants, etc.
- 2. Les composés azotés difficiles à oxyder, comme ceux trouvés dans les rejets industriels, ne sont pas digérés ou seulement partiellement.
- 3. ▲ N NH₄
  - ▼ NH<sub>3</sub>

| Réactif / Accessoires                                   | Forme de réactif/Quantité                            | Référence |
|---------------------------------------------------------|------------------------------------------------------|-----------|
| SET: Digestion reagent Compensation reagent Nitrate-111 | Test en cuvette (poudre, réactif liquide) / 24 Tests | 2420703   |







### Azote, total HR 2 (gamme haute) avec test en cuvette

5 - 140 mg/l N



#### Dissolution:

- Remplir un des tubes de minéralisation fourni avec 0,5 ml d'échantillon d'eau et 4,5 ml d'eau déminéralisée.
- 2. Ajouter une cuillère gradué no. 8 (noir) remplie à ras bord de Digestion Reagent.
- Refermer la cuvette avec le couvercle et mélanger le contenu.
- Chauffer les tubes pendant 60 minutes dans le réacteur préchauffé à une température de 100°C.
- Après 60 minutes, retirer les tubes du réacteur. (Attention: la cuvette est brûlante!). Mélanger les tubes et laisser refroidir jusqu'à la température ambiante.
- Ajouter une cuillère gradué no. 4 (blanc) remplie à ras bord de Compensation Reagent.
- Refermer la cuvette avec le couvercle et mélanger le contenu.
- 8. Utiliser cet échantillon pré-traité pour la procédure de test suivante

#### Procédé:

#### Procede.

- Placer la cuvette à valeur zéro (portant l'étiquette rouge) livrée dans la chambre de mesure. Positionnement √.
- 10. Appuyer sur la touche **ZÉRO**.
- 11. Retirer la cuvette de la chambre de mesure.
- 12. Ouvrir un tube de réactif et ajouter 0,5 ml de l'échantillon pré-traité (étape 8).
- Fermer correctement le tube avec le bouchon et retourner plusieurs fois le tube pour mélanger son contenu. (Attention: le tube devient chaud!)

#### Préparer zéro Presser ZÉRO

- 14. Ajouter **0,2 ml de Nitrate-111**.
- 15. Refermer la cuvette avec son couvercle et mélanger le contenu
- 16. Mettre la cuvette dans la chambre de mesure. Positionnement  $\lambda$

Zéro accepté Préparer test Presser TEST

Compte à rebours 15:00 17. Appuyer sur la touche **TEST**.

Attendre un temps réaction de 15 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l azote.

- 1. Ce test détermine les composés inorganiques ammonium, nitrate et nitrite, ainsi que les composés organiques comme les acides aminés, l'urée, les agents complexants, etc.
- 2. Les composés azotés difficiles à oxyder, comme ceux trouvés dans les rejets industriels, ne sont pas digérés ou seulement partiellement.
- 3. ▲ N ▼ NH<sub>4</sub> NH<sub>3</sub>

| Réactif / Accessoires                                   | Forme de réactif/Quantité                            | Référence |
|---------------------------------------------------------|------------------------------------------------------|-----------|
| SET: Digestion reagent Compensation reagent Nitrate-111 | Test en cuvette (poudre, réactif liquide) / 24 Tests | 2420703   |





# Bore avec pastilles

0,1 - 2 mg/l B



- Verser 10 ml d'échantillon dans une cuvette de 24 mm propre et fermer cette dernière avec le couvercle de la cuvette.
- 2. Placer ensuite la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer alors sur la touche **ZÉRO**.
- 4. Sortir la cuvette de la chambre de mesure.
- Dans l'échantillon de 10 ml, ajouter une pastille de BORON No. 1 directement à partir de la pellicule, écraser et dissoudre cette dernière à l'aide d'un agitateur propre.
- Ajouter au même échantillon une pastille de BORON No. 2 directement à partir de la pellicule et l'écraser à l'aide d'un agitateur propre.
- Fermer la cuvette avec son couvercle et mélanger le contenu en agitant la cuvette jusqu'à ce que les pastilles se soient dissoutes.
- 8. Placer ensuite la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

9. Appuyer alors sur la touche **TEST**.

Compte à rebours 20:00 Attendre un temps de réaction de 20 minutes.

La mesure s'effectue automatiquement après l'expiration du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l bore.

- 1. Il importe de respecter impérativement l'ordre d'ajout des pastilles.
- 2. La solution d'essai aqueuse devrait avoir une valeur pH comprise entre pH 6 et pH 7.
- 3. Les perturbations sont éliminées par le composant de la pastille (EDTA).
- 4. Le développement de la couleur est dépendant fonction de la température. La température de l'échantillon doit impérativement être 20 °C  $\pm$  1 °C.

| Réactif / Accessoires   | Forme de réactif/Quantité              | Référence |
|-------------------------|----------------------------------------|-----------|
| Set<br>Bor No. 1/ No. 2 | Pastille / par 100<br>Agitateur inclus | 517681BT  |
| BORON No. 1             | Pastille / 100                         | 515790    |
| BORON No. 2             | Pastille / 100                         | 515800BT  |





# Brome avec pastilles

0,01 - 3 mg/l Br<sub>2</sub>



- Remplir une cuvette propre de 10 mm avec l'échantillon.
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille.
- 8. Remplir la cuvette de 10 mm avec la solution.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le brome en mg/l.

- 1. Nettoyage des cuvettes
  - Beaucoup de produits de nettoyage domestiques (par exemple les produits à laver la vaisselle) comportent des agents réducteurs, il est possible que lors de la détermination du brome les résultats soient de moindre précision. Pour éviter ces erreurs de mesure, il est conseillé d'employer des récipients et instruments en verre insensible aux effets du chlore. Pour ce faire, il convient de laisser les récipients et instruments en verre pour une durée d'une heure dans une solution d'hypochlorite de natrium (0,1g/l) et de bien les rincer à l'eau déminéralisée.
- 2. Lors de la préparation de l'échantillon, éviter les émanations de brome, par exemple par la pipette ou l'agitation. L'analyse doit avoir lieu aussitôt après le prélèvement de l'échantillon.
- 3. La coloration due au DPD survient lorsque la valeur pH est comprise entre 6,2 et 6,5. Le réactif comporte à cet effet un tampon permettant un ajustement de la valeur pH. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à une plage entre 6 et 7 (au moyen de 0,5 mo/l d'acide sulfurique ou 1 mol/l de lessive de soude).
- 4. Les concentrations de brome supérieures à 22 mg/l peuvent provoquer des résultats allant jusqu'à 0 mg/l. Dans ce cas, il convient de diluer l'échantillon d'eau avec de l'eau libre de brome. Ajouter 10 ml de l'échantillon dilué au réactif et recommencer la mesure (test de plausibilité).
- 5. Tous les agents d'oxydation contenus dans les échantillons réagissent comme le brome ce qui entraîne des résultats trop élevés.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| DPD No. 1             | Pastille / 100            | 511050BT  |





### Brome avec pastilles

 $0.05 - 1 \text{ mg/l Br}_{2}$ 



- Remplir une cuvette propre de 50 mm avec l'échantillon
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille.
- 8. Remplir la cuvette de 50 mm avec la solution.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le brome en mg/l.

- 1. Nettoyage des cuvettes
  - Beaucoup de produits de nettoyage domestiques (par exemple les produits à laver la vaisselle) comportent des agents réducteurs, il est possible que lors de la détermination du brome les résultats soient de moindre précision. Pour éviter ces erreurs de mesure, il est conseillé d'employer des récipients et instruments en verre insensible aux effets du chlore. Pour ce faire, il convient de laisser les récipients et instruments en verre pour une durée d'une heure dans une solution d'hypochlorite de natrium (0,1g/l) et de bien les rincer à l'eau déminéralisée.
- 2. Lors de la préparation de l'échantillon, éviter les émanations de brome, par exemple par la pipette ou l'agitation. L'analyse doit avoir lieu aussitôt après le prélèvement de l'échantillon.
- 3. La coloration due au DPD survient lorsque la valeur pH est comprise entre 6,2 et 6,5. Le réactif comporte à cet effet un tampon permettant un ajustement de la valeur pH. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à une plage entre 6 et 7 (au moyen de 0,5 mo/l d'acide sulfurique ou 1 mol/l de lessive de soude).
- 4. Les concentrations de brome supérieures à 22 mg/l peuvent provoquer des résultats allant jusqu'à 0 mg/l. Dans ce cas, il convient de diluer l'échantillon d'eau avec de l'eau libre de brome. Ajouter 10 ml de l'échantillon dilué au réactif et recommencer la mesure (test de plausibilité).
- 5. Tous les agents d'oxydation contenus dans les échantillons réagissent comme le brome ce qui entraîne des résultats trop élevés.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| DPD No. 1             | Pastille / 100            | 511050BT  |





# Brome avec pastilles

0.05 - 6.5 mg/l Br



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- Retirer la cuvette de la chambre de mesure et la vider en y laissant quelques gouttes.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

9. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le brome en mg/l.

- 1. Nettoyage des cuvettes
  - Beaucoup de produits de nettoyage domestiques (par exemple les produits à laver la vaisselle) comportent des agents réducteurs, il est possible que lors de la détermination du brome les résultats soient de moindre précision. Pour éviter ces erreurs de mesure, il est conseillé d'employer des récipients et instruments en verre insensible aux effets du chlore. Pour ce faire, il convient de laisser les récipients et instruments en verre pour une durée d'une heure dans une solution d'hypochlorite de natrium (0,1g/l) et de bien les rincer à l'eau déminéralisée.
- 2. Lors de la préparation de l'échantillon, éviter les émanations de brome, par exemple par la pipette ou l'agitation. L'analyse doit avoir lieu aussitôt après le prélèvement de l'échantillon
- 3. La coloration due au DPD survient lorsque la valeur pH est comprise entre 6,2 et 6,5. Le réactif comporte à cet effet un tampon permettant un ajustement de la valeur pH. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à une plage entre 6 et 7 (au moyen de 0,5 mo/l d'acide sulfurique ou 1 mol/l de lessive de soude).
- 4. Les concentrations de brome supérieures à 22 mg/l peuvent provoquer des résultats allant jusqu'à 0 mg/l. Dans ce cas, il convient de diluer l'échantillon d'eau avec de l'eau libre de brome. Ajouter 10 ml de l'échantillon dilué au réactif et recommencer la mesure (test de plausibilité).
- 5. Tous les agents d'oxydation contenus dans les échantillons réagissent comme le brome ce qui entraîne des résultats trop élevés.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| DPD No. 1             | Pastille / 100            | 511050BT  |





# Cadmium avec MERCK Spectroquant® test en cuvette, No. 1.14834.0001

 $0,025 - 0,75 \text{ mg/l Cd} / 25 - 750 \mu\text{g/l Cd}$ 



Préparer deux cuvettes de réaction propres. Une des deux cuvettes sera marquée comme cuvette étalon.

- Mettre dans la cuvette étalon 5 ml d'eau déminéralisée (ceci est le blanc, rem. 6).
- Ajouter au deuxième tube préparée 5 ml d'échantillon d'eau (ceci constitue la solution à tester, rem. 6).
- 3. Bien refermer les couvercles respectifs des cuvettes et mélanger le contenu.
- In beide Küvetten 0,2 ml Reagenz Cd-1K pipettieren. (Anm. 6)
- 5. Bien refermer les couvercles respectifs des cuvettes et mélanger le contenu.
- 6. Ajouter 1 micro-cuillère graduée de réactif Cd 2K.
- Bien refermer les couvercles respectifs des cuvettes et mélanger son contenu en l'agitant énergiquement jusqu'à ce que le réactif soit complètement dissout.
- 8. Placer ensuite la cuvette de calibrage dans la chambre de mesure. Positionnement \( \frac{1}{3} \).

#### Préparer zéro Presser ZÉRO

- 9. Appuyer sur la touche **ZÉRO**.
- 10. Retirer la cuvette de calibrage de la chambre de mesure.

11. Placer ensuite la cuvette d'échantillon dans la chambre de mesure. Positionnement  $\frac{1}{\Delta}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00

12. Appuyer sur la touche **TEST**.

Attendre un temps réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l cadmium.

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- 5. La réaction étant dépendante de la température, la température de l'échantillon doit être comprise entre 10 et 40°C.
- 6. Toujours mesurer le volume de l'échantillon avec une pipette volumétrique (classe A).
- Ce test dose uniquement les ions Cd<sup>2+</sup>. Les échantillons doivent être prétraités ou décomposés par minéralisation avant de pouvoir mesurer le cadmium non dissous et lié au complexe.
- 8. Stocker les réactifs dans des récipients fermés à une température comprise entre + 15°C et + 25°C.
- 9. Le pH de l'échantillon à tester doit être compris entre 3 et 11.
- 10. mg/l ug/l

| Réactif / Accessoires            | Forme de réactif/Quantité  | Référence |
|----------------------------------|----------------------------|-----------|
| MERCK Spectroquant® 1.14834.0001 | Test en cuvette / 25 Tests | 420750    |





# Capacité acide Ks4.3 avec pastilles

0.1 - 4 mmol/l



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille d'ALKA-M-PHOTOMETER dans l'échantillon de 10 ml, directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique la capacité acide Ks4.3 en mmol/l.

### Remarques:

- 1. Les notions d'alcalinité m, valeur m et capacité acide K<sub>s4.3</sub> sont identiques.
- 2. L'observation exacte de la quantité de 10 ml d'échantillon est décisive pour l'exactitude du résultat d'analyse.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| ALKA-M-PHOTOMETER     | Pastille / 100            | 513210BT  |



pour la détermination du chlore libre

pour la détermination du chlore total

Sélectionner la détermination souhaitée au moyen des touches fléchées  $[\blacktriangle]$  et  $[\blacktriangledown]$  puis confirmer avec  $[\rrbracket]$ .

Chlore

>>

>>

>>

>>

libre

total

#### Remarques:

1. Nettoyage des cuvettes

Beaucoup de produits de nettoyage domestiques (par exemple les produits à laver la vaisselle) comportent des agents réducteurs, il est possible que lors de la détermination du chlore les résultats soient de moindre précision. Pour éviter ces erreurs de mesure, il est conseillé d'employer des récipients et instruments en verre insensible aux effets du chlore. Pour ce faire, il convient de laisser les récipients et instruments en verre pour une durée d'une heure dans une solution d'hypochlorite de natrium (0,1g/l) et de bien les rincer à l'eau déminéralisée.

- 2. Pour la détermination individuelle du chlore libre et du chlore total, il est conseillé d'employer un jeu séparé pour chaque analyse (cf. EN ISO 7393-2, paragraphe 5.3).
- 3. Lors de la préparation de l'échantillon, éviter les émanations de chlore, par exemple par la pipette ou l'agitation. L'analyse doit avoir lieu aussitôt après le prélèvement de l'échantillon.
- 4. La coloration due au DPD survient lorsque la valeur pH est comprise entre 6,2 et 6,5. Le réactif comporte à cet effet un tampon permettant un ajustement de la valeur pH. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à une plage entre 6 et 7 (au moyen de 0,5 mo/l d'acide sulfurique ou 1 mol/l de lessive de soude).

Les concentrations supérieures à

- 10 mg/l de chlore en cas d'utilisation des pastilles (Méthodes 98, 99, 100)
- 4 mg/l de chlore en cas d'utilisation des réactifs liquides (Méthodes 101)
- 2 mg/l de chlore en cas d'utilisation des sachets de poudre (Méthodes 110)
- 2 mg/l de chlore en cas d'utilisation des sachets de poudre (Méthodes 113)

peuvent provoquer des résultats allant jusqu'à 0 mg/l. Dans ce cas, il convient de diluer l'échantillon d'eau avec de l'eau libre de chlore. Ajouter 10 ml de l'échantillon dilué au réactif et recommencer la mesure (test de plausibilité).

- 5. Turbidités (elles sont la cause d'erreurs de mesure):
  - Les échantillons (méthode 98, 99, 100) comportant un taux élevé de calcium\* et/ou une haute conductivité\* peuvent sous l'action de pastilles de réactif devenir troubles et provoquer ainsi des erreurs de mesure. Dans ce cas, il convient d'utiliser comme alternative les pastilles réactif de DPD No. 1 High Calcium et de DPD No. 3 High Calcium. \* il est impossible d'indiquer des valeurs exactes car l'apparition de turbidité dépend du mode et de la composition de l'eau d'échantillon.
- 6. Si lors de résultats différenciés de tests s'affiche ??? cf. page 356.
- 7. Tous les agents d'oxydation contenus dans les échantillons réagissent comme le chlore ce qui entraîne des résultats trop élevés.





# Chlore, détermination différenciée avec pastilles

0,1 - 6 mg/l Cl<sub>2</sub>



10 mm

#### Préparer zéro Presser ZÉRO

Zéro accepté Préparer T 1

**Presser TEST** 

T 1 accepté

Préparer T 2

Presser TEST

Compte à rebours 2:00

- Remplir une cuvette propre de 10 mm avec l'échantillon.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter 10 ml d'échantillon et dissoudre la pastille.
- 8. Verser la solution d'échantillon dans la cuvette de 10 mm.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 10. Appuyer sur la touche **TEST**.
- Retirer la cuvette de la chambre de mesure et reverser la solution intégrale de la cuvette dans le récipient d'échantillon.
- 12. Ajouter **une pastille de DPD No. 3** directement de l'emballage protecteur dans le même échantillon et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.
- 13. Verser la solution d'échantillon dans la cuvette de 10 mm.
- 14. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 15. Appuyer sur la touche **TEST**.

Attendre un temps réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en:

\*,\*\* mg/l Cl libre \*,\*\* mg/l Cl combiné \*,\*\* mg/l Cl total

mg/l chlore libre mg/l chlore combine mg/l chlore total





# Chlore, libre avec pastilles

0,1 - 6 mg/l Cl<sub>2</sub>



10 mm

- Remplir une cuvette propre de 10 mm avec l'échantillon.
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille.
- 8. Verser la solution d'échantillon dans la cuvette de 10 mm.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l chlore libre.

#### Remarques:





# Chlore, total avec pastilles

0,1 - 6 mg/l Cl<sub>2</sub>



- Remplir une cuvette propre de 10 mm avec l'échantillon.
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 et une pastille de DPD No. 3 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter 10 ml d'échantillon et dissoudre la pastille.
- 8. Verser la solution d'échantillon dans la cuvette de 10 mm.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00 Appuyer sur la touche TEST.
 Attendre un temps réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l chlore total.

#### Remarques:





# Chlore, détermination différenciée avec pastilles

 $0.02 - 0.5 \text{ mg/l Cl}_{2}$ 



Préparer zéro Presser ZÉRO

- Remplir une cuvette propre de 50 mm avec l'échantillon.
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille.
- 8. Remplir la cuvette de 50 mm avec la solution.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 10. Appuyer sur la touche **TEST**.
- Retirer la cuvette de la chambre de mesure et reverser la solution intégrale de la cuvette dans le récipient d'échantillon.
- 12. Ajouter **une pastille de DPD No. 3** directement de l'emballage protecteur dans le même échantillon et l'écraser à l'aide d'un agitateur propre.
- 13. Verser la solution d'échantillon dans la cuvette de 50 mm.
- 14. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 15. Appuyer sur la touche **TEST**.

Attendre un temps réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en:

mg/l chlore libre mg/l chlore combiné mg/l chlore total

# Zéro accepté

Préparer T 1 Presser TEST

T 1 accepté Préparer T 2 Presser TEST

Compte à rebours 2:00

\*,\*\* mg/l Cl libre

\*,\*\* mg/l Cl combiné

\*,\*\* mg/l Cl total





# Chlore, libre avec pastilles

0,02 - 0,5 mg/l Cl<sub>2</sub>



- Remplir une cuvette propre de 50 mm avec l'échantillon
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille.
- 8. Verser la solution d'échantillon dans la cuvette de 50 mm.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l chlore libre.

#### Remarques:





# Chlore, total avec pastilles

 $0.02 - 0.5 \text{ mg/l Cl}_{2}$ 



- Remplir une cuvette propre de 50 mm avec l'échantillon
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 et une pastille de DPD No. 3 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille.
- 8 Verser la solution d'échantillon dans la cuyette de 50 mm
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00 10. Appuyer sur la touche **TEST**.

Attendre un temps réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l chlore total.

#### Remarques:







# Chlore, libre avec pastilles

0,02 - 3 mg/l Cl<sub>2</sub>



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure et la vider en y laissant quelques gouttes.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Zéro accepté Préparer test Presser TEST

9. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le chlore libre en mg/l.

#### Remarques:







# Chlore, total avec pastilles

 $0.02 - 3 \text{ mg/l Cl}_3$ 



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- Mettre la cuvette dans la chambre de mesure. Positionnement √X.

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- Retirer la cuvette de la chambre de mesure et la vider en y laissant guelques gouttes.
- Ajouter une pastille de DPD No. 1 et une pastille de DPD No. 3 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 6. Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00 9. Appuyer sur la touche **TEST**.

Attendre 2 min de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le chlore total en mg/l.

#### Remarques:







# Chlore, détermination différenciée avec pastilles

0,02 - 3 mg/l Cl<sub>2</sub>



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- Retirer la cuvette de la chambre de mesure et la vider en y laissant quelques gouttes.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

### Zéro accepté Préparer T 1 Presser TEST

- 9. Appuyer sur la touche **TEST**.
- 10. Retirer la cuvette de la chambre de mesure.
- 11. Ajouter **une pastille de DPD No. 3** directement de l'emballage protecteur dans le même échantillon et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.

T 1 accepté Préparer T 2 Presser TEST

Compte à rebours 2:00

13. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

14. Appuyer sur la touche **TEST**.

Attendre un temps de réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche comme suit:

mg/l chlore libre mg/l chlore combiné mg/l chlore total

\*,\*\* mg/l Cl libre \*,\*\* mg/l Cl combiné \*,\*\* mg/l Cl total

Remarques: cf. page 67

| Réactif / Accessoires                               | Forme de réactif/Quantité              | Référence |
|-----------------------------------------------------|----------------------------------------|-----------|
| Set<br>DPD No. 1 / No. 3                            | Pastille / par 100<br>Agitateur inclus | 517711BT  |
| DPD No. 1                                           | Pastille / 100                         | 511050BT  |
| DPD No. 3                                           | Pastille / 100                         | 511080BT  |
| Set DPD No. 1 HIGH CALCIUM / DPD No. 3 HIGH CALCIUM | Pastille / par 100<br>Agitateur inclus | 517781BT  |
| DPD No. 1 HIGH CALCIUM                              | Pastille / 100                         | 515740BT  |
| DPD No. 3 HIGH CALCIUM                              | Pastille / 100                         | 515730BT  |







# Chlore HR, libre avec pastilles

0,1 - 10 mg/l Cl<sub>2</sub>



10 mm

- Remplir une cuvette propre de 10 mm avec l'échantillon
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 HR directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille.
- 8. Verser la solution d'échantillon dans la cuvette de 10 mm.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l chlore libre.

#### Remarques:







# Chlore HR, total avec pastilles

0,1 - 10 mg/l Cl<sub>2</sub>



10 mm

- Remplir une cuvette propre de 10 mm avec l'échantillon
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 HR et une pastille de DPD No. 3 HR directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille.
- 8. Verser la solution d'échantillon dans la cuvette de 10 mm.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00

Appuyer sur la touche TEST.
 Attendre un temps réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l chlore total.

#### Remarques:







# Chlore HR détermination différenciée avec pastilles

0,1 - 10 mg/l Cl<sub>2</sub>



- Remplir une cuvette propre de 10 mm avec l'échantillon.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 HR directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter 10 ml d'échantillon et dissoudre la pastille.
- 8. Verser la solution d'échantillon dans la cuvette de 10 mm.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Zéro accepté Préparer T 1 Presser TEST

- 10. Appuyer sur la touche **TEST**.
- 11. Retirer la cuvette de la chambre de mesure et reverser la solution intégrale de la cuvette dans le récipient d'échantillon.

- 12. Ajouter **une pastille de DPD No. 3 HR** directement de l'emballage protecteur dans le même échantillon et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.
- 13. Verser la solution d'échantillon dans la cuvette de 10 mm.
- 14. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

T 1 accepté Préparer T 2 Presser TEST

Compte à rebours 2:00

\_...

\*,\*\* mg/l Cl libre \*,\*\* mg/l Cl combiné \*,\*\* mg/l Cl total 15. Appuyer sur la touche **TEST**.

Attendre un temps réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en:

mg/l chlore libre mg/l chlore combine mg/l chlore total1.1 Méthodes

Remarques: cf. page 67

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| DPD No. 1 HR          | Pastille / 100            | 511500BT  |
| DPD No. 3 HR          | Pastille / 100            | 511590BT  |







# Chlore, libre avec réactifs liquides

0,02 - 3 mg/l Cl<sub>2</sub>



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la **cuvette** de la chambre de mesure et **la vider.**
- Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans la cuvette:

6 gouttes de solution tampon DPD 1 2 gouttes de solution de réaction DPD 1

- 6. Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- 7. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Appuyer sur la touche **TEST**.
 Le résultat de la mesure s'affiche et indique le chlore en mg/l.

#### Remarques (chlore libre et total):

- Après utilisation, refermer aussitôt les flacons compte-gouttes avec le bouchon à vis de même couleur.
- 2. Stocker le jeu de réactifs en lieu frais à une température entre +6°C et 10°C.
- 3. cf. également la page 67 et 85.







# Chlore, total avec réactifs liquides

0,02 - 3 mg/l Cl<sub>2</sub>



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- Mettre la cuvette dans la chambre de mesure. Positionnement ∑.

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure et la vider.
- Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans la cuvette:

6 gouttes de solution tampon DPD 1 2 gouttes de solution de réaction DPD 1 3 gouttes de solution DPD 3

- Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer le test Presser TEST

Compte à rebours 2:00 9. Appuyer sur la touche **TEST**.

Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le chlore total en mg/l.







# Chlore, détermination différenciée avec réactifs liquides

 $0.02 - 3 \text{ mg/l Cl}_{3}$ 



- 1. Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- 4. Retirer la cuvette de la chambre de mesure et la vider
- 5. Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans la cuvette:
  - 6 gouttes de solution tampon DPD 1
  - 2 gouttes de solution de réaction DPD 1
- 6. Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- 7. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

Zéro accepté Préparer T 1 **Presser TEST** 

9. Appuyer sur la touche **TEST**.

- 10 Retirer la cuvette de la chambre de mesure
- Ajouter 3 gouttes de solution de DPD 3 au même échantillon.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant.
- 13. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

T 1 accepté Préparer T 2 Presser TEST

Compte à rebours 2:00 14. Appuyer sur la touche **TEST**.

Attendre un temps de réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche comme suit:

\*,\*\* mg/l Cl libre \*,\*\* mg/l Cl combiné \*,\*\* mg/l Cl total

mg/l chlore libre mg/l chlore combiné mg/l chlore total

#### Remarques:

- Après utilisation, refermer aussitôt les flacons compte-gouttes avec le bouchon à vis de même couleur.
- 2. Stocker le jeu de réactifs en lieu frais à une température entre +6°C et 10°C.
- 3. cf. également la page 67
- 4. Les échantillons comportant un taux élevé de calcium\* et/ou une haute conductivité\* peuvent devenir troubles et provoquer ainsi des erreurs de mesure. Dans ce cas, il convient d'utiliser comme alternative les pastilles réactif de DPD No. 1 High Calcium et de DPD No. 3 High Calcium. (Référence: cf. Réactif "Chlore avec pastilles").
  - \* il est impossible d'indiquer des valeurs exactes car l'apparition de turbidité dépend du mode et de la composition de l'eau d'échantillon.

| Réactif / Accessoires                                                           | Forme de réactif/Quantité                                                                            | Référence |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------|
| Set DPD No. 1 solution tampon DPD No. 1 solution de réaction DPD No. 3 solution | (pour 300 tests) 3 x Réactif liquide / 15 ml 1 x Réactif liquide / 15 ml 2 x Réactif liquide / 15 ml | 471056    |
| DPD No. 1 buffer solution                                                       | Réactif liquide / 15 ml                                                                              | 471010    |
| DPD No. 1 reagent solution                                                      | Réactif liquide / 15 ml                                                                              | 471020    |
| DPD No. 3 solution                                                              | Réactif liquide / 15 ml                                                                              | 471030    |







# Chlore, libre avec réactifs en sachet de poudre (PP)

0,02 - 2 mg/l Cl<sub>2</sub>



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Préparer zéro Presser ZÉRO

3. Appuyer sur la touche **ZÉRO**.

4. Retirer la cuvette de la chambre de mesure.



- Ajouter le contenu d'un sachet de poudre de Chlorine FREE-DPD/F10 directement dans l'échantillon de 10 ml.
- 6. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant (20 sec.).
- Placer la cuvette dans la chambre de mesure. Positionnement √X.

#### Zéro accepté Préparer T 1 Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le chlore libre en mg/l.

#### Remarques:







# Chlore, total avec réactifs en sachet de poudre (PP)

 $0.01 - 2 \text{ mg/l Cl}_{3}$ 



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO





- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter le contenu d'un sachet de poudre de Chlorine TOTAL-DPD/F10 directement dans l'échantillon de 10 ml.
- 6. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant (20 sec.).
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 3:00

8. Appuyer sur la touche **TEST**.

Attendre 3 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le chlore total en mg/l.

#### Remarques:







# Chlore, détermination différenciée avec réactifs en sachet de poudre (PP)

 $0.01 - 2 \text{ mg/l Cl}_{2}$ 



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

3. Appuyer sur la touche **ZÉRO**.



- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter le contenu d'un sachet de poudre de Chlorine FREE-DPD/F10 directement de l'emballage protecteur dans l'échantillon de 10 ml.
- 6. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant (20 sec.).
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Zéro accepté Préparer T 1 Presser TEST

- 8. Appuyer sur la touche **TEST**.
- Retirer la cuvette de la chambre de mesure, la rincer soigneusement ainsi que le couvercle et la remplir avec l'échantillon de 10 ml.
- Ajouter directement de l'emballage protecteur le contenu d'un sachet de poudre de Chlorine TOTAL-DPD/ F10.
- 11. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant (20 sec.).

T1 accepté Préparer T2 Presser TEST

Compte à rebours 3:00

12. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

13. Appuyer sur la touche **TEST**.

Attendre un temps de réaction de 3 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche en:

\*,\*\* mg/l Cl libre \*,\*\* mg/l Cl combiné \*,\*\* mg/l Cl total mg/l chlore libre mg/l chlore combiné mg/l chlore total

Remarques: cf. page 67

| Réactif / Accessoires  | Forme de réactif/Quantité | Référence |
|------------------------|---------------------------|-----------|
| Clorine Free-DPD/F10   | Sachet de poudre / 100    | 530100    |
| Chlorine Total-DPD/F10 | Sachet de poudre / 100    | 530120    |







# Chlore MR, libre avec réactifs en sachet de poudre (PP)

0,02 - 3,5 mg/l Cl<sub>2</sub>



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

3. Appuyer sur la touche **ZÉRO**.

4. Retirer la cuvette de la chambre de mesure.



- Ajouter le contenu d'un sachet de poudre de VARIO Chlorine FREE-DPD/F10 (couleur bleue marquage ---) directement dans l'échantillon de 10 ml.
- 6. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant (20 sec.).
- Placer la cuvette dans la chambre de mesure. Positionnement √X.

#### Zéro accepté Préparer T 1 Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le chlore libre en mg/l.

#### Remarques:







# Chlore MR, total avec réactifs en sachet de poudre (PP)

0,01 - 3,5 mg/l Cl<sub>2</sub>



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO





- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter le contenu d'un sachet de poudre de VARIO Chlorine TOTAL-DPD/F10 (couleur bleue marquage
   ) directement dans l'échantillon de 10 ml.
- 6. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant (20 sec.).
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 3:00

8. Appuyer sur la touche **TEST**.

Attendre 3 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le chlore total en mg/l.

#### Remarques:







# Chlore MR, détermination différenciée avec réactifs en sachet de poudre (PP)

 $0.01 - 3.5 \text{ mg/l Cl}_{2}$ 



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

3. Appuyer sur la touche **ZÉRO**.

4. Retirer la **cuvette** de la chambre de mesure.



- Ajouter le contenu d'un sachet de poudre de VARIO Chlorine FREE-DPD/F10 (couleur bleue marquage ---) directement de l'emballage protecteur dans l'échantillon de 10 ml.
- 6. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant (20 sec.).
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer T 1 Presser TEST

- 8. Appuyer sur la touche **TEST**.
- Retirer la cuvette de la chambre de mesure, la rincer soigneusement ainsi que le couvercle et la remplir avec l'échantillon de 10 ml.
- Ajouter directement de l'emballage protecteur le contenu d'un sachet de poudre de VARIO Chlorine TOTAL-DPD/F10.
- 11. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant (20 sec.).

T1 accepté Préparer T2 Presser TEST

Compte à rebours 3:00

\*,\*\* mg/l Cl libre \*,\*\* mg/l Cl combiné \*,\*\* mg/l Cl total

- 12. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .
- 13. Appuyer sur la touche **TEST**.

Attendre un temps de réaction de 3 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche en:

mg/l chlore libre mg/l chlore combiné mg/l chlore total

Remarques: cf. page 67

| Réactif / Accessoires                                 | Forme de réactif/Quantité | Référence |
|-------------------------------------------------------|---------------------------|-----------|
| VARIO Clorine Free-DPD/F10 (couleur bleue marquage)   | Sachet de poudre / 100    | 530180    |
| VARIO Chlorine Total-DPD/F10 (couleur bleue marquage) | Sachet de poudre / 100    | 530190    |







# Chlore HR (KI) avec pastilles

5 - 200 mg/l Cl<sub>2</sub>



1. Verser **8 ml d'échantillon** dans une cuvette propre de 16 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\underline{\lambda}$ .

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4 Retirer la **cuvette** de la chambre de mesure
- Ajouter dans l'échantillon de 8 ml une pastille de CHLORINE HR (KI) directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 6. Ajouter au même échantillon **une pastille d'ACIDI-FYING GP** directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- Placer la cuvette dans la chambre de mesure. Positionnement √I.

Zéro accepté Préparer test Presser TEST

9. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le chlore en mg/l.

# Remarques:

1. Tous les agents oxydants contenus dans les échantillons réagissent comme le chlore, ce qui entraîne des résultats trop élevés.

| Réactif / Accessoires                  | Forme de réactif/Quantité              | Référence |
|----------------------------------------|----------------------------------------|-----------|
| Set ACIDIFYING GP/<br>CHLORINE HR (KI) | Pastille / par 100<br>Agitateur inclus | 517721BT  |
| CHLORINE HR (KI)                       | Pastille / 100                         | 513000BT  |
| ACIDIFYING GP                          | Pastille / 100                         | 515480BT  |





# Chlorure avec pastilles

 $0.5 - 25 \text{ mg/l Cl}^{-1}$ 



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4 Retirer la cuvette de la chambre de mesure
- Ajouter une pastille de CHLORIDE T1 directement de l'emballage dans l'échantillon d'eau, écraser la pastille avec un agitateur propre et dissoudre la pastille.
- Ajouter une pastille de CHLORIDE T2 directement de l'emballage dans le même échantillon d'eau et écraser la pastille avec un agitateur propre.
- Fermer soigneusement le couvercle de la cuvette et agiter doucement la cuvette plusieurs fois jusqu'à dissolution complète de la pastille (remarque 1).
- 8. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

#### Compte à rebours 2:00

9. Appuyer sur la touche **TEST**.

Attendre un temps réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l chlorure.

#### Remarques:

- 1. Vérifier que toutes les particules de la pastille sont entièrement dissoutes Les chlorures entraînent une turbidité très finement distribuée d'apparence laiteuse.
  - Une agitation énergique entraîne la formation de particules plus grandes pouvant fausser les mesures.
- 2. Les concentrations élevées d'électrolytes et de composés organiques ont des effets différents sur la réaction de précipitation.
- 3. Les ions formant également des dépôts avec le nitrate d'argent en milieu acide, comme les bromures, les iodures et les thiocyanates, interfèrent avec le dosage.
- 4. Si nécessaire, neutraliser une eau fortement alcaline à l'aide d'acide nitrique avant de l'analyser.
- 5. Conversion: mg/l NaCl = mg/l Cl<sup>-</sup> x 1,65
- 6. ♠ CI<sup>-</sup> NaCl

| Réactif / Accessoires   | Forme de réactif/Quantité              | Référence |
|-------------------------|----------------------------------------|-----------|
| Set<br>CHLORIDE T1 / T2 | Pastille / par 100<br>Agitateur inclus | 517741BT  |
| CHLORIDE T1             | Pastille / 100                         | 515910BT  |
| CHLORIDE T2             | Pastille / 100                         | 515920BT  |





# Chlorure avec test en cuvette

 $5 - 60 \text{ mg/l Cl}^{-}$ 



Ø 24 mm

Préparer deux cuvettes propres de 24 mm. Repérer l'une des deux cuvettes comme cuvette de calibrage.

- Verser 10 ml d'eau déminéralisée dans une cuvette propre de 24 mm (cuvette de calibrage).
- Verser 1 ml d'échantillon et 9 ml d'eau déminéralisée dans une deuxième cuvette propre de 24 mm (cuvette d'échantillon).
- 3. Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans chaque cuvette:

### 3 gouttes de Chloride-51

- 4. Refermer les cuvettes avec leur couvercle respectif et mélanger le contenu en l'agitant avec précaution.
- Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans chaque cuvette:

#### 3 gouttes de Chloride-52

- Refermer les cuvettes avec leur couvercle respectif et mélanger le contenu en l'agitant avec précaution.
- Appuyer sur la touche [4].
   Attendre un temps réaction de 3 minutes.
- Placer ensuite la cuvette de calibrage. Positionnement √x.
- 9. Appuyer sur la touche **ZÉRO**.
- 10. Retirer la cuvette de la chambre de mesure.
- 11. Mettre la cuvette dans la chambre de mesure. Positionnement  $\chi$ .
- 12. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l chlorure.

Compte à rebours 3:00 départ: 🔟

Préparer zéro Presser ZÉRO

Zéro accepté Préparer test Presser TEST

#### Remarques:

- 1. L'échantillon à tester et les réactifs doivent être à température ambiante pour assurer les performances du test.
- 2. Le pH de l'échantillon à tester doit être compris entre 3 et 9.
- 3. Conserver les bouteilles de réactif dans un endroit sec et frais, idéalement entre  $4^{\circ}\text{C}$  et  $8^{\circ}\text{C}$ .
- 4. Interférences: thiocyanate, sulfite, thiosulfate, bromure et iodure interfèrent car ils réagissent comme le chlorure.
- 5. Conversion:  $mg/l NaCl = mg/l Cl^{-} x 1,65$
- 6. CI NaCI

| Réactif / Accessoires              | Forme de réactif/Quantité                               | Référence |
|------------------------------------|---------------------------------------------------------|-----------|
| SET:<br>CHLORIDE-51<br>CHLORIDE-52 | Test en cuvette (réactif liquide) /<br>env. 50-75 Tests | 2419031   |



# Chrome avec réactif en sachet de poudre (PP)

 $0,005 - 0,5 \text{ mg/l Cr}/5 - 500 \mu\text{g/l Cr}$ 

1 2 (

# Chrome avec réactif en sachet de poudre (PP)

0,02 - 2 mg/l Cr

Chrome

>> diff Cr (IV) Cr (III + VI)

La sélection suivante s'affiche:

>> diff

pour la détermination différenciée du Chrome (VI), Chrome (III) et Chrome total

>> Cr (VI)

pour la détermination du Chrome (VI)

>> Cr (III + VI)

pour la détermination du Chrome total (somme Cr (III) + Cr (VI))

Sélectionner la détermination souhaitée au moyen des touches fléchées [A] et [V] puis confirmer avec [J].







# Chrome, détermination différenciée avec réactifs en sachet de poudre (PP)

 $0.005 - 0.5 \text{ mg/l Cr} / 5 - 500 \mu\text{g/l Cr}$ 



### Minéralisation:

- Remplir 10 ml d'échantillon dans une cuvette propre de 16 mm.
- Ajouter le contenu d'un sachet de poudre PERSULF. RGT FOR CR directement à partir de la pellicule.
- 3. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- Exposer pendant 120 minutes les cuvettes à une température de 100°C dans le réacteur thermique préchauffé
- Retirer le tube du thermoréacteur.
   (ATTENTION: les tubes sont chauds!)
   Retourner le tube et le laisser refroidir jusqu'à la température ambiante.

# 50 mm

### Procédure du test:

- Remplir la cuvette propre de 50 mm avec de l'eau déminéralisée.
- 7. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 8. Appuyer sur la touche **ZÉRO**.
- Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Ajouter le contenu d'un sachet de poudre CHRO-MIUM HEXAVALENT directement du sachet dans le tube préparé à l'avance (voir étape 5).
- 11. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 12. Verser cette solution d'échantillon dans la cuvette de 50 mm.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 14. Appuyer sur la touche TEST.

Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement après écoulement du temps de réaction.

### Préparer zéro Presser ZÉRO

Zéro accepté Préparer T 1 Presser TEST

Compte à rebours 5:00



 Verser 10 ml d'échantillon dans une deuxième cuvette propre de 16 mm.

- Ajouter le contenu d'un sachet de poudre CHRO-MIUM HEXAVALENT directement à partir de la pellicule.
- 17. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 18. Verser cette solution d'échantillon dans la cuvette de 50 mm.
- 19. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 20. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en:

mg/l Cr (VI) mg/l Cr (III) mg/l Cr total

T 1 accepté Préparer T 2 Presser TEST

Compte à rebours 5:00

\*,\*\* mg/l Cr (VI)
\*,\*\* mg/l Cr (III)
\*,\*\* mg/l Cr total

- Les étapes 1 14 déterminent la concentration de chrome total et les étapes 15 20 déterminent la concentration du chrome VI. La concentration du chrome III est le résultat de leur différence.
- 2. La valeur du pH de l'échantillon d'eau doit être comprise entre 3 et 9.
- 3. Pour obtenir des informations sur les interférences, particulièrement dans les eaux usées et les eaux usées chimiques, par les métaux et les agents réducteurs ou oxydants, se reporter à DIN 38 405 D 24 et Standard Methods of Water and Wastewater, 20° édition, 1998.
- 4. **φ** mg/l μg/l

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| PERSULF.RGT FOR CR    | Sachet de poudre / 100    | 537300    |
| CHROMIUM HEXAVALENT   | Sachet de poudre / 100    | 537310    |







# Chrome (VI) avec réactifs en sachet de poudre (PP)

 $0,005 - 0,5 \text{ mg/l Cr} / 5 - 500 \mu\text{g/l Cr}$ 



- Remplir une cuvette propre de 50 mm avec l'échantillon
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Préparer zéro Presser ZÉRO



Ø 16 mm

- 3. Appuyer sur la touche **ZÉRO**.
- Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Remplir 10 ml d'échantillon dans une cuvette propre de 16 mm.
- 6. Ajouter le contenu **d'un sachet de poudre CHROMIUM HEXAVALENT** directement à partir de la pellicule.
- 7. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 8. Verser cette solution d'échantillon dans la cuvette de 50 mm.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 10. Appuyer sur la touche **TEST**.

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00

Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement après écoulement du temps de réaction.

Le résultat s'affiche en mg/l de Chrom(VI).

Remarques: cf. page devant

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| PERSULF.RGT FOR CR    | Sachet de poudre / 100    | 537300    |
| CHROMIUM HEXAVALENT   | Sachet de poudre / 100    | 537310    |







# Chrome, total (Cr(III) + Cr(VI)) avec réactifs en sachet de poudre (PP)

 $0.005 - 0.5 \text{ mg/l Cr} / 5 - 500 \mu\text{g/l Cr}$ 



### Minéralisation:

- Remplir 10 ml d'échantillon dans une cuvette propre de 16 mm.
- Ajouter le contenu d'un sachet de poudre PERSULF. RGT FOR CR directement à partir de la pellicule.
- 3. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- Exposer pendant 120 minutes les cuvettes à une température de 100°C dans le réacteur thermique préchauffé.
- Retirer le tube du thermoréacteur.
   (ATTENTION: les tubes sont chauds!)
   Retourner le tube et le laisser refroidir jusqu'à la température ambiante.



### Préparer zéro Presser ZÉRO

### Procédure du test:

- Remplir la cuvette propre de 50 mm avec de l'eau déminéralisée.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 8. Appuver sur la touche **ZÉRO**.
- 9. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Ajouter le contenu d'un sachet de poudre CHRO-MIUM HEXAVALENT directement du sachet dans le tube préparé à l'avance (voir étape 5).
- 11. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 12. Verser cette solution d'échantillon dans la cuvette de 50 mm.
- 13. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 14. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement après écoulement du temps de réaction.

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00







# Chrome, détermination différenciée avec réactifs en sachet de poudre (PP)

0,02 - 2 mg/l Cr



### Minéralisation:

- Remplir 10 ml d'échantillon dans une cuvette propre de 16 mm.
- Ajouter le contenu d'un sachet de poudre PERSULF. RGT FOR CR directement à partir de la pellicule.
- 3. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- Exposer pendant 120 minutes les cuvettes à une température de 100°C dans le réacteur thermique préchauffé.
- Retirer le tube du thermoréacteur.
   (ATTENTION: les tubes sont chauds!)
   Retourner le tube et le laisser refroidir jusqu'à la température ambiante.

### Procédure du test:

6. Mettre la cuvette prétraité dans la chambre de mesure. Positionnement  $\frac{1}{\Lambda}$ 

### Préparer zéro Presser ZÉRO

- 7. Appuyer sur la touche **ZÉRO**.
- 8 Retirer la cuvette de la chambre de mesure
- Ajouter le contenu d'un sachet de poudre CHRO-MIUM HEXAVALENT directement du sachet dans le tube préparé à l'avance (voir étape 5).
- 10. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.

11. Mettre la cuvette dans la chambre de mesure. Positionnement  $\underline{\lambda}$ 

Zéro accepté Préparer T 1 Presser TEST

12. Appuyer sur la touche TEST.

### Compte à rebours 5:00

La mesure démarre automatiquement après écoulement du temps de réaction.

Respecter un temps de réaction de 5 minutes.



 Verser 10 ml d'échantillon dans une deuxième cuvette propre de 16 mm.

- Ajouter le contenu d'un sachet de poudre CHROMIUM HEXAVALENT directement à partir de la pellicule.
- 15. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 16. Mettre la cuvette dans la chambre de mesure. Positionnement  $\lambda$
- 17. Appuyer sur la touche **TEST**.

7. Appayer sar la touche 1231.

La mesure démarre automatiquement après écoulement du temps de réaction.

Respecter un temps de réaction de 5 minutes.

Le résultat s'affiche en mg/l de:



mg/l Cr (Vl) mg/l Cr (III) mg/l Cr total

### Remarques:

T 1 accepté Préparer T 2

**Presser TEST** 

Compte à rebours 5:00

- Les étapes 1 12 déterminent la concentration de chrome total et les étapes 13 17 déterminent la concentration du chrome VI. La concentration du chrome III est le résultat de leur différence.
- 2. La valeur du pH de l'échantillon d'eau doit être comprise entre 3 et 9.
- 3. Pour obtenir des informations sur les interférences, particulièrement dans les eaux usées et les eaux usées chimiques, par les métaux et les agents réducteurs ou oxydants, se reporter à DIN 38 405 D 24 et Standard Methods of Water and Wastewater, 20e édition, 1998.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| PERSULF.RGT FOR CR    | Sachet de poudre / 100    | 537300    |
| CHROMIUM HEXAVALENT   | Sachet de poudre / 100    | 537310    |







# Chrome (VI) avec réactifs en sachet de poudre (PP)

0,02 – 2 mg/l Cr



 Remplir 10 ml d'échantillon dans une cuvette propre de 16 mm.

- Préparer zéro Presser ZÉRO
- 3. Appuyer sur la touche ZÉRO.
- 4 Retirer la cuvette de la chambre de mesure
- Ajouter le contenu d'un sachet de poudre CHRO-MIUM HEXAVALENT directement à partir de la pellicule.
- 6. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- Mettre la cuvette dans la chambre de mesure. Positionnement ↓

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00 8. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement après écoulement du temps de réaction.

Le résultat s'affiche en mg/l de Chrome (VI).

### Remarques: cf. page devant

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| PERSULF.RGT FOR CR    | Sachet de poudre / 100    | 537300    |
| CHROMIUM HEXAVALENT   | Sachet de poudre / 100    | 537310    |








# Chrome, total (Cr(III) + Cr(VI)) avec réactifs en sachet de poudre (PP)

0.02 - 2 mg/l Cr



### Minéralisation:

- Remplir 10 ml d'échantillon dans une cuvette propre de 16 mm.
- Ajouter le contenu d'un sachet de poudre PERSULF. RGT FOR CR directement à partir de la pellicule.
- 3. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- Exposer pendant 120 minutes les cuvettes à une température de 100°C dans le réacteur thermique préchauffé.
- Retirer le tube du thermoréacteur.
   (ATTENTION: les tubes sont chauds!)
   Retourner le tube et le laisser refroidir jusqu'à la température ambiante.

### Procédure du test:

- 6. Mettre la cuvette prétraité dans la chambre de mesure. Positionnement  $\Lambda$
- 7. Appuyer sur la touche **ZÉRO**.
- Ajouter le contenu d'un sachet de poudre CHRO-MIUM HEXAVALENT directement du sachet dans le tube préparé à l'avance (voir étape 5).
- 10. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 11. Mettre la cuvette dans la chambre de mesure. Positionnement  $\Lambda$ .

8. Retirer la cuvette de la chambre de mesure.

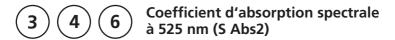
12. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement après écoulement du temps de réaction.

Le résultat s'affiche en mg/l de Chrome total.

### Préparer zéro Presser ZÉRO


Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00

# Coefficient d'absorption spectrale (S Abs) Coloration

 $0 - 50 \text{ m}^{-1}$ 





# (3) (4) (7) Coefficient d'absorption spectrale à 620 nm (S Abs3)

Les méthodes 345, 346 et 347 sont appelées une après l'autre et l'échantillon d'eau est analysé à l'aide des tests comme décrit ci-dessous:

### Préparation de l'échantillon:

 Filtrer l'échantillon d'eau à travers un filtre à membrane d'une porosité de 0,45 µm (filtrer au moins 100 ml d'échantillon d'eau.)

### Procédé:

- Remplir la cuvette propre de 50 mm avec de l'eau déminéralisée.
- 3. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- 4. Appuyer alors sur la touche **ZÉRO**.
- Retirer la cuvette de la chambre de mesure, la vider complètement.
- 6. Utiliser un peu d'échantillon d'eau filtré pour rincer la cuve, puis verser l'échantillon dans la cuve.
- 7. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- Appuyer alors sur la touche TEST.
   Le résultat s'affiche dans l'affichage en (m-1).



Préparer zéro Presser ZÉRO

Zéro accepté Préparer test Presser TEST

- 1. Filtrer l'eau déionisée pour étalonner le zéro à travers un filtre à membrane d'une porosité de 0,45 µm.
- 2. Le test est conforme aux normes EN ISO 7887:1994, section principale 3.
- 3. Les colorations dépendant du pH et de la température, ces paramètres doivent être déterminés par mesure optique et précisés avec les résultats.
- 4. Le coefficient d'absorption spectrale est une variable utilisée pour décrire la coloration réelle d'un échantillon d'eau. La "coloration réelle" d'un échantillon d'eau est la coloration due uniquement aux substances dissoutes dans l'échantillon. C'est pourquoi l'échantillon d'eau doit être filtré avant la mesure.
  La mesure à une longueur d'onde de 436 nm est obligatoire et convient aux eaux naturelles et aux rejets des stations d'épuration municipales. Les eaux usées industrielles ne montrant souvent pas de maxima d'extinction prononcé, des mesures supplémentaires sont nécessaires aux longueurs d'onde 525 nm et 620 nm. En cas de doute, balayer un spectre de longueur d'onde de 330 à 780 nm à l'aide de la fonction spectre (mode 53).







# COT LR avec MERCK Spectroquant® test en cuvette, No. 1.14878.0001

5,0 - 80,0 mg/l COT

Préparer deux récipients propres en verre de 24 mm. Marquer un des deux récipient comme récipient le zéro.

- Verser 25 ml d'eau déionisée dans un récipients en verre (ceci constitue le zéro).
- Verser 25 ml d'échantillon dans un deuxième récipients propre (ceci est l'échantillon).
- 3. Ajouter à chaque récipient de verre des gouttes de la même taille en tenant la bouteille verticalement et en la pressant lentement:
  - 3 gouttes de réactif TOC-1K et mélanger.
- 4. La valeur pH de la solution doit être inférieure à 2,5.Si nécessaire, ajuster le pH avec l'acide sulfurique.
- 5. Mélanger pendant **10 minutes** à vitesse moyenne (agitateur magnétique, tige d'agitation).



### Minéralisation:

Préparer deux tubes propres réactionnel de 16 mm. Marquer un des deux tubes comme tube zéro.

- 6. Pipeter **3 ml d'échantillon zéro pré-préparé** dans un tube de réaction (cuvette zéro).
- 7. Pipeter **3 ml d'échantillon pré-préparé** dans un tube de réaction (cuvette échantillon).
- Ajouter à chaque tube 1 micro-cuillère rase de réactif TOC-2K.
- Fermer immédiatement les tubes correctement avec un bouchon en aluminium.

- Chauffer les tubes, en les faisant reposer sur la tête, à 120°C dans le réacteur préchauffé pendant 120 minutes.
- 11. Attendre 1 heure avant de continuer.

Ne pas refroidir à l'eau! Après refroidissement, retourner les tubes et mesurer les dans le photomètre pendant 10 minutes.

### Procédure du test:

Mettre en place l'adaptateur pour les cuvettes circulaires de diamètre 16 mm.

12. Placer le tube zéro refroidi dans la chambre de mesure en s'assurant que les repères √sont alignés.

### Préparer zéro Presser ZÉRO

- 13. Appuyer sur la touche **ZÉRO**.
- 14. Retirer le tube de la chambre de mesure.
- Placer le tube refroidi dans la chambre de mesure en s'assurant que les repères ∑sont alignés.

### Zéro accepté Préparer test Presser TEST

Appuyer sur la touche **TEST**.
 Le résultat s'affiche en mg/l COT.

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- 5. Toujours mesurer le volume de l'échantillon à l'aide d'une pipette volumétrique (classe A).
- 6. COT = **C**arbone **O**rganique **T**otal.

| Réactif / Accessoires |              | Forme de réactif / Quantité | Référence |
|-----------------------|--------------|-----------------------------|-----------|
| MERCK Spectroquant®   | 1.14878.0001 | Test en cuvette / 25 tests  | 420756    |
| Bouchons filetés      | 1.73500.0001 | 6 pièces                    | 420757    |







# COT HR avec MERCK Spectroquant® test en cuvette, No. 1.14879.0001

50 - 800 mg/l COT

Préparer deux récipients propres en verre de 24 mm. Marquer un des deux récipient comme récipient le zéro.

- 1. Verser **10 ml d'eau déionisée** dans un récipients en verre (ceci constitue le zéro).
- Verser 1 ml d'échantillon dans un deuxième récipients propre. Ajouter 9 ml d'eau déionisée et mélanger. (ceci est l'échantillon).
- Ajouter à chaque récipient de verre des gouttes de la même taille en tenant la bouteille verticalement et en la pressant lentement:
  - 2 gouttes de réactif TOC-1K et mélanger.
- 4. La valeur pH de la solution doit être inférieure à 2,5.Si nécessaire, ajuster le pH avec l'acide sulfurique.
- 5. Mélanger pendant **10 minutes** à vitesse moyenne (agitateur magnétique, tige d'agitation).



### Minéralisation:

Préparer deux tubes propres réactionnel de 16 mm. Marquer un des deux tubes comme tube zéro.

- 6. Pipeter **3 ml d'échantillon zéro pré-préparé** dans un tube de réaction (cuvette zéro).
- 7. Pipeter **3 ml d'échantillon pré-préparé** dans un tube de réaction (cuvette échantillon).
- Ajouter à chaque tube 1 micro-cuillère rase de réactif TOC-2K.
- Fermer immédiatement les tubes correctement avec un bouchon en aluminium.

- Chauffer les tubes, en les faisant reposer sur la tête, à 120°C dans le réacteur préchauffé pendant 120 minutes.
- 11. Attendre 1 heure avant de continuer.

Ne pas refroidir à l'eau! Après refroidissement, retourner les tubes et mesurer les dans le photomètre pendant 10 minutes.

### Procédure du test:

Mettre en place l'adaptateur pour les cuvettes circulaires de diamètre 16 mm.

12. Placer le tube zéro refroidi dans la chambre de mesure en s'assurant que les repères ∑sont alignés.

### Préparer zéro Presser ZÉRO

- 13. Appuyer sur la touche **ZÉRO**.
- 14. Retirer le tube de la chambre de mesure.
- Placer le tube refroidi dans la chambre de mesure en s'assurant que les repères ∑sont alignés.

### Zéro accepté Préparer test Presser TEST

Appuyer sur la touche **TEST**.
 Le résultat s'affiche en mg/l COT.

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- 5. Toujours mesurer le volume de l'échantillon à l'aide d'une pipette volumétrique (classe A).
- 6. COT = **C**arbone **O**rganique **T**otal.

| Réactif / Accessoires |              | Forme de réactif / Quantité | Référence |
|-----------------------|--------------|-----------------------------|-----------|
| MERCK Spectroquant®   | 1.14879.0001 | Test en cuvette / 25 tests  | 420756    |
| Bouchons filetés      | 1.73500.0001 | 6 pièces                    | 420757    |







### Couleur, vraie et apparente (méthode standard au platine-cobalt selon l'échelle ALPHA)

0 – 500 unités Pt-Co

### Préparation de l'échantillon (rem. 4):

### Point A



Filtrer environ **50 ml d'eau déminéralisée** à travers un filtre à membrane d'un diamètre de pore de 0,45  $\mu$ m. Rejeter le filtrat et filtrer une nouvelle fois une quantité supplémentaire de **50 ml d'eau déminéralisée** environ. Conserver ce filtrat pour la compensation à zéro.

### Point B

Faire passer **50 ml environ de l'échantillon d'eau** à travers le même filtre. Conserver ce filtrat pour la mesure d'essai.

- Remplir la cuvette propre de 50 mm avec de l'eau déminéralisée (du point A).
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Préparer zéro Presser ZÉRO

- 3. Appuyer alors sur la touche **ZÉRO**.
- Retirer la cuvette de la chambre de mesure et la vider complètement.
- Effectuer le pré-rinçage de la cuvette contenant l'échantillon d'eau filtré (du point B), puis le remplir avec cet échantillon.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

7. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique en unités Pt-Co.

- 1. Cette échelle de couleurs a été développée à l'origine par A. Hazen sous forme d'échelle de comparaison visuelle. Il est par conséquent nécessaire de s'assurer que l'extinction maximum de l'échantillon d'eau est bien dans la plage de 420 à 470 nm, car cette méthode convient uniquement aux échantillons d'eau présentant une coloration jaune à jaune-brun. Lorsque le cas se présente, prendre une décision en se basant sur l'aspect visuel de l'échantillon d'eau.
- Cette méthode est étalonnée sur la base des étalons spécifiées dans "Standard Methods for the Examination of Water and Wastewater" (voir également EN ISO 7887 : 1994).
   1 unité de couleur Pt-Co 

  1 mg/l de platine sous forme d'ion chloroplatinate
- 3. La limite de détection estimative est de 10 mg/l Pt pour cette méthode.
- 4. Le terme couleur peut être exprimé comme une couleur "vraie" et "apparente". Par couleur apparente, on entend la couleur d'une solution qui n'est pas provoquée par des substances dissoutes dans l'échantillon, mais aussi par des matières en suspension. Le mode d'emploi décrit la détermination de la couleur vraie par filtration de l'échantillon d'eau. Pour déterminer la couleur apparente, on utilise aussi bien de l'eau entièrement déminéralisée non-filtrée qu'un échantillon d'eau non-filtré.
- 5. Prélèvement, conservation et stockage d'échantillon:

  Verser l'échantillon d'eau dans des récipients propres en verre ou en plastique et
  l'analyser dès que possible après prélèvement. Si cela n'est pas possible, remplir le
  récipient jusqu'au bord et le sceller correctement. Ne pas agiter l'échantillon; éviter tout
  contact prolongé avec l'air.

  Stocker l'échantillon dans un endroit sombre à une température de 4°C pendant
  - Stocker l'échantillon dans un endroit sombre à une température de 4°C pendant 24 heures. Avant d'effectuer des mesures, amener l'échantillon d'eau à température ambiante





### Cuivre avec pastille

0,05 - 1 mg/l Cu



1



### Cuivre avec pastille

0,5 - 5 mg/l Cu



Cuivre

>> diff libre total

La sélection suivante s'affiche:

>> diff

pour la détermination différenciée du cuivre libre, combiné et total

>> libre

pour la détermination du cuivre libre

>> total

pour la détermination du cuivre total

Sélectionner la détermination souhaitée au moyen des touches fléchées  $[\![\Delta]\!]$  et  $[\![\nabla]\!]$  puis confirmer avec  $[\![\omega]\!]$ .

### Remarques:

1. Si lors de résultats différenciés de tests s'affiche ??? cf. page 356.

| Réactif / Accessoires       | Forme de réactif/Quantité              | Référence |
|-----------------------------|----------------------------------------|-----------|
| Set<br>COPPER No. 1 / No. 2 | Pastille / par 100<br>Agitateur inclus | 517691BT  |
| COPPER No. 1                | Pastille / 100                         | 513550BT  |
| COPPER No. 2                | Pastille / 100                         | 513560BT  |







# Cuivre, détermination différenciée avec pastilles

0,05 - 1 mg/l Cu



- Remplir une cuvette propre de 50 mm avec l'échantillon.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Remplir un récipient d'analyse approprié avec 10 ml d'échantillon.
- Ajouter une pastille de COPPER No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.
- 7. Remplir la cuvette de 50 mm avec la solution.
- 8. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Zéro accepté Préparer T 1 Presser TEST

- 9. Appuyer sur la touche **TEST**.
- Retirer la cuvette de la chambre de mesure et reverser la solution intégrale de la cuvette dans le récipient d'échantillon.
- 11. Ajouter **une pastille de COPPER No. 2** directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.

- 12. Verser cette solution d'échantillon dans la cuvette de 50 mm.
- 13. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

T 1 accepté Préparer T 2 Presser TEST

14. Appuyer sur la touche **TEST**.

\*,\*\* mg/l Cu libre \*,\*\* mg/l Cu combiné \*,\*\* mg/l Cu total Le résultat de la mesure s'affiche comme suit:

mg/l cuivre libre mg/l cuivre combiné mg/l cuivre total







# Cuivre, libre avec pastilles

0,05 - 1 mg/l Cu



- Remplir une cuvette propre de 50 mm avec l'échantillon.
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Remplir un récipient d'analyse approprié avec 10 ml d'échantillon.
- Ajouter une pastille de COPPER No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.
- 7. Remplir la cuvette de 50 mm avec la solution.
- 8. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Zéro accepté Préparer test Presser TEST

9. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le cuivre libre en mg/l.







# Cuivre, total avec pastilles

0,05 - 1 mg/l Cu



- Remplir une cuvette propre de 50 mm avec l'échantillon.
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Remplir un récipient d'analyse approprié avec 10 ml d'échantillon.
- 6. Ajouter une pastille de COPPER No. 1 et une pastille de COPPER No. 2 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.
- 7. Remplir la cuvette de 50 mm avec la solution.
- 8. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

9. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le cuivre total en mg/l.







# Cuivre, détermination différenciée avec pastilles

0.5 - 5 mg/l Cu



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille de COPPER No. 1 directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec son couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 7. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Zéro accepté Préparer T 1 Presser TEST

- 8. Appuyer sur la touche **TEST**.
- 9 Retirer la cuvette de la chambre de mesure
- Ajouter une pastille de COPPER No. 2 directement de l'emballage protecteur dans le même échantillon et l'écraser à l'aide d'un agitateur propre
- Refermer la cuvette avec son couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.

12. Mettre la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

T 1 accepté Préparer T 2 Presser TEST

13. Appuyer sur la touche **TEST**.

\*,\*\* mg/l Cu libre \*,\*\* mg/l Cu combiné \*,\*\* mg/l Cu total Le résultat de la mesure s'affiche comme suit:

mg/l cuivre libre mg/l cuivre combiné mg/l cuivre total







# Cuivre, libre avec pastilles

0,5 - 5 mg/l Cu



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- Mettre la cuvette dans la chambre de mesure. Positionnement √x.

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille de COPPER No. 1 directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec son couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 7. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Zéro accepté Préparer test Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le cuivre libre en mg/l.







# Cuivre, total avec pastilles

0,5 - 5 mg/l Cu



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- Mettre la cuvette dans la chambre de mesure. Positionnement √x.

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille de COPPER No. 1 et une pastille de COPPER No. 2 directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec son couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- Mettre la cuvette dans la chambre de mesure. Positionnement √X.

### Zéro accepté Préparer test Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le cuivre total en mg/l.







# Cuivre, libre (rem. 1) avec réactifs en sachet de poudre (PP)

0,05 - 5 mg/l Cu



- 1. Verser **10 ml d'échantillon** dans une cuvette de 24 mm propre et fermer cette dernière avec son couvercle.
- 2. Placer ensuite la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Préparer zéro Presser ZÉRO

- 3. Appuyer alors sur la touche **ZÉRO**.
- 4 Sortir la cuvette de la chambre de mesure



- Dans l'échantillon de 10 ml, ajouter le contenu d'un sachet de poudre VARIO Cu 1 F10 directement à partir de la pellicule.
- 6. Refermer le couvercle de la cuvette et mélanger le contenu en agitant la cuvette (rem. 3).
- 7. Placer ensuite la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00

8. Appuyer alors sur la touche **TEST**.

Attendre un temps de réaction de 2 minutes.

La mesure s'effectue automatiquement après l'expiration du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l de cuivre.

- 1. La dissolution sera nécessaire pour la détermination de la teneur totale en cuivre.
- 2. Avant l'analyse, les eaux fortement acides (pH 2 ou plus faible) doivent être ramenées à une valeur pH comprise dans une plage de 4 à 6 (avec 8 mol/l d'une solution d'hydroxyde de potassium KOH).
  - Attention: Le cuivre s'annuler faire défaillance pour les valeurs de pH supérieures à 6.
- 3. L'exactitude n'est pas influencée par une poudre non dissoute.
- 4. Perturbations:

| Cyanure, CN | Le cyanure empêche un développement chromogène total de la colour. Mélanger 10 ml d'échantillon et 0,2 ml d'aldéhyde formique et laisser agir pendant 4 minutes (le cyanure est masqué). Ensuite, exécuter le test de la manière décrite précédemment. Multiplier le résultat par 1,02 afin de tenir compte de la dilution de l'échantillon par l'aldéhyde formique. |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Argent, Ag+ | L'existence d'une turbidité se colorant en noir peut être provoquée par de l'argent. Mélanger 75 ml d'échantillon avec 10 d'une solution de chlorure de potassium et ensuite filtrer la solution à l'aide d'un filtre fin. Utiliser alors 10 ml de la solution filtrée pour l'exécution du test.                                                                     |

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| VARIO Cu 1 F10        | Sachet de poudre / 100    | 530300    |







## Cyanure avec test en cuvette

 $0.005 - 0.2 \text{ mg/l CN} / 5 - 200 \mu\text{g/l CN}$ 



- Remplir une cuvette propre de 50 mm avec l'échantillon
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Préparer zéro Presser ZÉRO

- 3. Appuyer alors sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- 5. Verser dans un bécher 2 ml d'échantillon d'eau et 8 ml d'eau déionisée
- Ajouter 2 cuillères rases de Cyanide-11 (blanc) n°4 à l'échantillon d'eau préparé. Dissoudre le réactif.
- Ajouter 2 cuillères rases de Cyanide-12 (blanc) n°4 à l'échantillon d'eau préparé. Dissoudre le réactif.
- 8. Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans l'échantillon et mélanger la solution:

### 3 gouttes de Cyanide-13

- 9. Remplir la cuvette de 50 mm avec la solution.
- 10. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

Compte à rebours 10:00 11. Appuyer alors sur la touche **TEST**.

Attendre un temps de réaction de 10 minutes.

La mesure s'effectue automatiquement après l'expiration du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l de cyanure.

- 1. La détermination ne concerne que le cyanure libre et les cyanures qui sont décomposables par le chlore.
- 2. En cas de présence de thiocyanates, de complexes de métaux lourds, de sulfure, de colorants ou encore d'amines aromatiques, il faudra impérativement isoler le cyanure par distillation avant la détermination.
- 3. Stocker les réactifs dans un endroit clos et à une température de +15°C à +25°C.
- 4. **φ** mg/l μg/l

| Réactif / Accessoires                       | Forme de réactif/Quantité                             | Référence |
|---------------------------------------------|-------------------------------------------------------|-----------|
| SET:<br>Cyanid-11<br>Cyanid-12<br>Cyanid-13 | Test en cuvette (Poudre, Réactif liquide) / 200 tests | 2418875   |







## Cyanure avec test en cuvette

0.01 - 0.5 mg/l CN



- Verser 2 ml d'échantillon dans une cuvette de 24 mm propre, ajouter 8 ml d'eau entièrement déminéralisée. Fermer cette dernière avec son couvercle.
- 2. Placer ensuite la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- Préparer zéro Presser ZÉRO
- 3. Appuyer alors sur la touche **ZÉRO**.
- 4. Sortir la cuvette de la chambre de mesure.
- Dans l'échantillon préparé, ajouter deux cuillères graduées no 4 (blanc) remplies à ras bord de Cyanide-11, fermer avec le couvercle de la cuvette et mélanger le contenu en agitant.
- Ajouter deux cuillères graduées no 4 (blanc) remplies à ras bord de Cyanide-12, fermer avec le couvercle de la cuvette et mélanger le contenu en agitant.
- 7. Tenir la bouteille à compte-gouttes dans une position verticale et, en pressant doucement, verser des gouttes de même grosseur dans la cuvette:

### 3 gouttes de Cyanide-13.

- 8. Refermer le couvercle de la cuvette et mélanger le contenu en la retournant.
- 9. Placer ensuite la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- 10. Appuyer alors sur la touche **TEST**.

Zéro accepté Préparer test Presser TEST

Compte à rebours 10:00

Attendre un temps de réaction de 10 minutes.

La mesure s'effectue automatiquement après l'expiration du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l de cyanure.

- 1. La détermination ne concerne que le cyanure libre et les cyanures qui sont décomposables par le chlore.
- 2. En cas de présence de thiocyanates, de complexes de métaux lourds, de sulfure, de colorants ou encore d'amines aromatiques, il faudra impérativement isoler le cyanure par distillation avant la détermination.
- 3. Stocker les réactifs dans un endroit clos et à une température de +15°C à +25°C.
- 4. **Φ** mg/l μg/l

| Réactif / Accessoires                       | Forme de réactif/Quantité                             | Référence |
|---------------------------------------------|-------------------------------------------------------|-----------|
| SET:<br>Cyanid-11<br>Cyanid-12<br>Cyanid-13 | Test en cuvette (Poudre, Réactif liquide) / 200 tests | 2418875   |







# CyA-TEST (Acide cyanurique) avec pastilles

0 - 160 mg/l CyA



 Verser 5 ml d'échantillon et 5 ml d'eau déminéralisée (remarque 1) dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

Ø 24 mm

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Préparer zéro Presser ZERO

- 3. Appuyer sur la touche **ZERO**.
- 4. Retirer la **cuvette** de la chambre de mesure.
- Ajouter dans l'échantillon préparé une pastille de CyA-TEST directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille (remarque 2,3).
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

### Zéro accepté Préparer test Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique l'acide cyanurique en mg/l.

- 1. Eau déminéralisée ou eau du robinet libre de cyanure.
- 2. L'acide cyanurique entraîne une turbidité finement répartie et d'aspect laiteux. La présence d'acide cyanurique trouble la solution. Les particules les plus petites ne sont pas dues à l'acide cyanurique
- 3. Dissoudre entièrement la pastille (agiter pour cela le tube pendant environ 1 minute). Les particules de pastille non dissoutes peuvent provoquer des résultats trop élevés.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| CyA-TEST              | Pastille / 100            | 511370BT  |







## DCO LR (plage de mesure basse) avec test en cuvette

3 - 150 mg/l O<sub>2</sub>



- Ouvrir une cuvette de réaction à couvercle blanc à visser et y verser 2 ml d'eau déminéralisée (cuvette étalon (remarque 1)).
- Ouvrir une deuxième cuvette de réaction à couvercle blanc à visser et y verser 2 ml d'échantillon (cuvette échantillon).
- 3. Bien refermer les cuvettes avec leur couvercle respectif. Mélanger le contenu en l'agitant avec précaution. (ATTENTION: dégagement de chaleur).
- Exposer pendant 2 heures les cuvettes à une température de 150°C dans le réacteur thermique préchauffé.
- 5. (Attention: les cuvettes sont brûlantes). Retirer les cuvettes du bloc chauffant et laisser refroidir jusqu'à une température de 60°C ou moins. Bien mélanger le contenu en retournant les cuvettes lorsqu'elles sont encore chaudes. Puis laisser refroidir les cuvettes à température ambiante et procéder à la mesure seulement après (remarque 2).
- 6. Placer la cuvette étalon (remarques 3 et 4) dans la chambre de mesure. Positionnement  $\frac{1}{4}$ .

### Préparer zéro Presser ZÉRO

- 7. Appuyer sur la touche **ZÉRO**.
- 8. Retirer la cuvette de la chambre de mesure.
- Placer la cuvette échantillon (remarques 3 et 4) dans la chambre de mesure. Positionnement √I.

### Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le DCO en mg/l.

- Marquer la cuvette étalon d'un signe d'identification.
   La cuvette étalon est stable lorsqu'elle est conservée dans un endroit sombre et peut être utilisée pour des mesures avec des cuvettes du même bain.
- 2. Ne pas placer les cuvettes brûlantes dans la chambre de mesure. Les valeurs les plus stables sont obtenues lorsque les cuvettes ont reposé durant la nuit.
- 3. Les produits en suspension dans les cuvettes entraînent des erreurs de mesure. C'est pourquoi il est important de placer les cuvettes avec précaution dans la chambre de mesure, car de par la nature de la méthode, un dépôt se forme au fond des cuvettes.
- 4. Les parois extérieures de la cuvette doivent être propres et sèches avant de commencer l'analyse. Les traces de doigt ou des gouttes d'eau sur la cuvette entraînent des erreurs de mesure.
- 5. Il est possible de mesurer des échantillons dont la teneur en chlorure n'excède pas 1000 mg/l.
- 6. Dans certains cas d'exception, des substances pour lesquelles la capacité d'oxydation ne suffit pas, peuvent provoquer des résultats trop bas par rapport à la méthode de référence.

| Réactif / Accessoires |              | Forme de réactif/Quantité | Référence |
|-----------------------|--------------|---------------------------|-----------|
| CSB VARIO LR          | 0 - 150 mg/l | 1 Set (25 tests)          | 2420720   |







## DCO MR (plage de mesure moyenne) avec test en cuvette

20 - 1500 mg/l O<sub>2</sub>



- Ouvrir une cuvette de réaction à couvercle blanc à visser et y verser 2 ml d'eau déminéralisée (cuvette étalon (remarque 1)).
- Ouvrir une deuxième cuvette de réaction à couvercle blanc à visser et y verser 2 ml d'échantillon (cuvette échantillon).
- 3. Bien refermer les cuvettes avec leur couvercle respectif. Mélanger le contenu en l'agitant avec précaution. (ATTENTION: dégagement de chaleur).
- Exposer pendant 2 heures les cuvettes à une température de 150°C dans le réacteur thermique préchauffé.
- 5. (Attention: les cuvettes sont brûlantes). Retirer les cuvettes du bloc chauffant et laisser refroidir jusqu'à une température de 60°C ou moins. Bien mélanger le contenu en retournant les cuvettes lorsqu'elles sont encore chaudes. Puis laisser refroidir les cuvettes à température ambiante et procéder à la mesure seulement après (remarque 2).
- 6. Placer la cuvette étalon (remarques 3 et 4) dans la chambre de mesure. Positionnement  $\lambda$ .

## Préparer zéro Presser ZÉRO

- 7. Appuyer sur la touche **ZÉRO**.
- 8. Retirer la cuvette de la chambre de mesure.
- 9. Placer la cuvette échantillon (remarques 3 et 4) dans la chambre de mesure. Positionnement  $\lambda$ .

## Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le DCO en mg/l.

- Marquer la cuvette étalon d'un signe d'identification.
   La cuvette étalon est stable lorsqu'elle est conservée dans un endroit sombre et peut être utilisée pour des mesures avec des cuvettes du même bain.
- 2. Ne pas placer les cuvettes brûlantes dans la chambre de mesure. Les valeurs les plus stables sont obtenues lorsque les cuvettes ont reposé durant la nuit.
- 3. Les produits en suspension dans les cuvettes entraînent des erreurs de mesure. C'est pourquoi il est important de placer les cuvettes avec précaution dans la chambre de mesure, car de par la nature de la méthode, un dépôt se forme au fond des cuvettes.
- 4. Les parois extérieures de la cuvette doivent être propres et sèches avant de commencer l'analyse. Les traces de doigt ou des gouttes d'eau sur la cuvette entraînent des erreurs de mesure.
- 5. Il est possible de mesurer des échantillons dont la teneur en chlorure n'excède pas 1000 mg/l.
- 6. Dans certains cas d'exception, des substances pour lesquelles la capacité d'oxydation ne suffit pas, peuvent provoquer des résultats trop bas par rapport à la méthode de référence.
- 7. Si des échantillons ont un DCO inférieur à 100 mg/l et qu'une plus grande précision est requise, il est conseillé d'utiliser le jeu de test en cuvette DCO LR.

| Réactif / Accessoires      | Forme de réactif/Quantité | Référence |
|----------------------------|---------------------------|-----------|
| CSB VARIO MR 0 - 1500 mg/l | 1 Set (25 tests)          | 2420721   |







## DCO HR (plage de mesure haute) avec test en cuvette

0,2 – 15 g/l  $O_2$  ( $\triangleq$  200 – 15000 mg/l  $O_2$ )



- Ouvrir une cuvette de réaction à couvercle blanc à visser et y verser 0,2 ml d'eau déminéralisée (cuvette étalon (remarque 1)).
- Ouvrir une deuxième cuvette de réaction à couvercle blanc à visser et y verser 0,2 ml d'échantillon (cuvette échantillon).
- 3. Bien refermer les cuvettes avec leur couvercle respectif. Mélanger le contenu en l'agitant avec précaution. (ATTENTION: dégagement de chaleur).
- Exposer pendant 2 heures les cuvettes à une température de 150°C dans le réacteur thermique préchauffé.
- 5. (Attention: les cuvettes sont brûlantes). Retirer les cuvettes du bloc chauffant et laisser refroidir jusqu'à une température de 60°C ou moins. Bien mélanger le contenu en retournant les cuvettes lorsqu'elles sont encore chaudes. Puis laisser refroidir les cuvettes à température ambiante et procéder à la mesure seulement après (remarque 2).
- 6. Placer la cuvette étalon (remarques 3 et 4) dans la chambre de mesure. Positionnement  $\lambda$ .

## Préparer zéro Presser ZÉRO

- 7. Appuyer sur la touche **ZÉRO**.
- 8. Retirer la cuvette de la chambre de mesure.
- Placer la cuvette échantillon (remarques 3 et 4) dans la chambre de mesure. Positionnement √I.

Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le DCO en  $\mathbf{g/l}$ .

- Marquer la cuvette étalon d'un signe d'identification.
   La cuvette étalon est stable lorsqu'elle est conservée dans un endroit sombre et peut être utilisée pour des mesures avec des cuvettes du même bain.
- 2. Ne pas placer les cuvettes brûlantes dans la chambre de mesure. Les valeurs les plus stables sont obtenues lorsque les cuvettes ont reposé durant la nuit.
- 3. Les produits en suspension dans les cuvettes entraînent des erreurs de mesure. C'est pourquoi il est important de placer les cuvettes avec précaution dans la chambre de mesure, car de par la nature de la méthode, un dépôt se forme au fond des cuvettes.
- 4. Les parois extérieures de la cuvette doivent être propres et sèches avant de commencer l'analyse. Les traces de doigt ou de gouttes d'eau sur la cuvette entraînent des erreurs de mesure.
- 5. Il est possible de mesurer des échantillons dont la teneur en chlorure n'excède pas 10.000 mg/l.
- 6. Dans certains cas d'exception, des substances pour lesquelles la capacité d'oxydation ne suffit pas, peuvent provoquer des résultats trop bas par rapport à la méthode de référence.
- 7. Si des échantillons ont une DCO inférieur à 1 g/l et qu'une plus grande précision est requise, il est conseillé d'utiliser le jeu de test en cuvette DCO MR. Si la DCO est inférieur à 0,1 g/l, utiliser un jeu de test en cuvette DCO LR.

| Réactif / Accessoires         | Forme de réactif/Quantité | Référence |
|-------------------------------|---------------------------|-----------|
| CSB VARIO HR 200 - 15000 mg/l | 1 Set (25 tests)          | 2420722   |







## DEHA (hydroxylamine de N,Ndiéthyle) avec pastille et réactif liquide

 $0.02 - 0.5 \text{ mg/l DEHA} / 20 - 500 \mu\text{g/l DEHA}$ 



1. Verser 10 ml d'échantillon dans une cuvette de 24 mm propre et fermer cette dernière avec son couvercle (rem. 2).

2. Placer ensuite la cuvette dans la chambre de mesure. Positionnement  $\nabla$ .

### Préparer zéro Presser ZÉRO

- 3. Appuyer alors sur la touche **ZÉRO**.
- 4. Sortir la cuvette de la chambre de mesure.
- 5. Tenir la bouteille à compte-gouttes dans une position verticale et, en pressant doucement, verser des gouttes de même grosseur dans la cuvette:

6 gouttes (0,25 ml) d'une solution de DEHA.

- 6. Refermer le couvercle de la cuvette et mélanger le contenu en la retournant
- 7. Ajouter au même échantillon une pastille de DEHA directement à partir de la pellicule et l'écraser à l'aide d'un bâtonnet à mélanger propre.
- 8. Fermer la cuvette en utilisant son couvercle et mélanger le contenu en basculant la cuvette jusqu'à ce que la pastille se soit dissoute.
- 9. Placer ensuite la cuvette dans la chambre de mesure (rem. 4). Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test **Presser TEST** 

Compte à rebours 10:00

10. Appuyer alors sur la touche **TEST.** 

Attendre un temps de réaction de 10 minutes.

La mesure s'effectue automatiquement après l'expiration du temps de réaction.

Le résultat s'affiche sur l'écran, en ug/l de DEHA.

#### Remarques:

- Domaine d'utilisation: détermination de la teneur en dépôts d'agents inhibiteurs de corrosion (liant d'oxygène) dans l'eau d'alimentation des chaudières ou dans l'eau de condensation.
- 2. Pour éviter les erreurs dûes aux dépôts ferrugineux, rincer les appareils en verre avant l'analyse en utilisant une solution d'acide chlorhydrique (de concentration 20 % env.) et de l'eau entièrement déminéralisée.
- 3. Etant donné que la réaction est dépandante de la température, tâchez de respecter une température de  $20^{\circ}$ C  $\pm$   $2^{\circ}$ C.
- 4. Pendant le temps de développement de la couleur, placer la cuvette d'échantillon dans la chambre de mesure ou dans l'obscurité. (Si la solution de réactif est exposée à un rayonnement UV (lumière solaire), cela entraînera à des valeurs excessives.)
- 5 Perturbations:
  - Le fer (II) est un facteur perturbateur en toutes quantités
    Pour déterminer la concentration en fer (II), on répétera le test sans addition de
    la solution DEHA. Si la concentration est supérieure à 20 µg/l, la valeur affichée
    sera soustraite du résultat de la détermination du DEHA.
  - Les substances réductrices de fer (III) provoquent des interférences. Les substances qui complexent fortement le fer sont susceptibles de provoquer des interférences.
  - Substances susceptibles de provoquer des interférences à partir de la concentration indiquée:

| Borate (comme Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> ) | 500 mg/l   |
|---------------------------------------------------------------|------------|
| Cobalt                                                        | 0,025 mg/l |
| Cuivre                                                        | 8,0 mg/l   |
| Dureté (comme CaCO <sub>3</sub> )                             | 1000 mg/l  |
| Lignosulfonates                                               | 0,05 mg/l  |
| Manganèse                                                     | 0,8 mg/l   |
| Molybdène                                                     | 80 mg/l    |
| Nickel                                                        | 0,8 mg/l   |
| Phosphate                                                     | 10 mg/l    |
| Phosphonates                                                  | 10 mg/l    |
| Sulfate                                                       | 1000 mg/l  |
| Zinc                                                          | 50 mg/l    |

Il existe une option pour faire passer l'unité de mg/l à μg/l.
 L'unité mg/l est arrondie, par ex. 25 μg/l = 0,025 mg/l → affichage 0,03 mg/l.



| Réactif / Accessoires        | Forme de réactif/Quantité | Référence |
|------------------------------|---------------------------|-----------|
| DEHA solution env. 60 tests  | Réactif liquide / 15 ml   | 461185    |
| DEHA solution env. 400 tests | Réactif liquide / 100 ml  | 461181    |
| DEHA                         | Pastille / 100            | 513220BT  |







# DEHA (hydroxylamine de N,N-diéthyle) avec réactifs en sachet de poudre (PP) et réactif liquide

 $0.02 - 0.5 \text{ mg/l DEHA} / 20 - 500 \mu\text{g/l DEHA}$ 



Préparer deux cuvettes propres de 24 mm (rem. 2). Repérer l'une des deux cuvettes comme cuvette de calibrage.


- Verser 10 ml d'eau entièrement déminéralisée dans une cuvette propre de 24 mm (cuvette de calibrage).
- 2. Verser **10 ml d'échantillon** dans une deuxième cuvette propre de 24 mm (cuvette d'échantillon).
- Ajouter dans chaque cuvette le contenu d'un sachet de poudre Vario OXYSCAV 1 Rgt, directement à partir de la pellicule.
- 4. Refermer les couvercles respectifs des cuvettes et mélanger le contenu en retournant les cuvettes.
- Ajouter dans chaque cuvette 0,20 ml de solution VARIO DEHA 2 Rgt (rem. 4).
- 6. Refermer les couvercles respectifs des cuvettes et mélanger le contenu en retournant les cuvettes.
- 7. Appuyer sur la touche [4].

Attendre pendant un temps de réaction de 10 minutes (rem. 5).

Continuer comme suit après l'expiration du temps de réaction.

- 8. Placer ensuite la cuvette de calibrage dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- 9. Appuyer alors sur la touche **ZÉRO**.
- 10. Sortir la cuvette de la chambre de mesure
- 11. Placer ensuite la cuvette d'échantillon dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- 12. Appuyer alors sur la touche **TEST**.

Le résultat s'affiche sur l'écran, en µg/l de DEHA.



## Compte à rebours 10:00 départ: 🔟

Préparer zéro Presser ZÉRO

Zéro accepté Préparer test Presser TEST

#### Remarques:

- Domaine d'utilisation: détermination de la teneur en dépôts d'agents inhibiteurs de corrosion (liant d'oxygène) dans l'eau d'alimentation des chaudières ou dans l'eau de condensation.
- 2. Pour éviter les erreurs dûes aux dépôts ferrugineux, rincer les appareils en verre avant l'analyse en utilisant une solution d'acide chlorhydrique (de concentration 20 % env.) et de l'eau entièrement déminéralisée.
- 3. Etant donné que la réaction est dépandante de la température, tâchez de respecter une température de  $25^{\circ}$ C  $\pm$   $3^{\circ}$ C.
- 4. Doser les volumes en utilisant une pipette de classe A appropriée.
- 5. Placer la cuvette de calibrage et la cuvette d'échantillon dans l'obscurité pendant le temps de la couleur chromogène. L'action de la lumière UV (lumière solaire), pendant le temps de la couleur chromogène, conduit à des valeurs mesurées excessives.

#### 6. Perturbations:

- Le fer (II) est un facteur perturbateur en toutes quantités Pour déterminer la concentration en fer (II), on répétera le test sans addition de la solution VARIO DEHA Rgt. 2. Si la concentration est supérieure à 20 µg/l, la valeur affichée sera soustraite du résultat de la détermination du DEHA.
- Les substances réductrices de fer (III) provoquent des interférences. Les substances qui complexent fortement le fer sont susceptibles de provoquer des interférences.
- Substances susceptibles de provoquer des interférences à partir de la concentration indiquée:

| Borate (comme Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> ) | 500 mg/l   |
|---------------------------------------------------------------|------------|
| Cobalt                                                        | 0,025 mg/l |
| Cuivre                                                        | 8,0 mg/l   |
| Dureté (comme CaCO <sub>3</sub> )                             | 1000 mg/l  |
| Lignosulfonates                                               | 0,05 mg/l  |
| Manganèse                                                     | 0,8 mg/l   |
| Molybdène                                                     | 80 mg/l    |
| Nickel                                                        | 0,8 mg/l   |
| Phosphate                                                     | 10 mg/l    |
| Phosphonates                                                  | 10 mg/l    |
| Sulfate                                                       | 1000 mg/l  |
| Zinc                                                          | 50 mg/l    |
|                                                               |            |

Il existe une option pour faire passer l'unité de mg/l à μg/l.
 L'unité mg/l est arrondie, par ex. 25 μg/l = 0,025 mg/l → affichage 0,03 mg/l.



| Réactif / Accessoires                            | Forme de réactif/Quantité                                             | Référence |
|--------------------------------------------------|-----------------------------------------------------------------------|-----------|
| VARIO OXYSCAV 1 Rgt<br>VARIO DEHA 2 Rgt Solution | Set (100 Tests)<br>Sachet de poudre / 200<br>Réactif liquide / 100 ml | 536000    |



## Dioxyde de chlore, en absence de chlore avec pastilles

0,05 - 1 mg/l ClO<sub>2</sub>



- Remplir une cuvette propre de 50 mm avec l'échantillon
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

## Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter 10 ml d'échantillon et dissoudre la pastille.
- 8. Remplir la cuvette de 50 mm avec la solution.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l de dioxyde de chlore.

#### Remarques:

1. Nettoyage des cuvettes

Beaucoup de produits de nettoyage domestiques (par exemple les produits à laver la vaisselle) comportent des agents réducteurs, il est possible que lors de la détermination de dioxyde de chlore les résultats soient de moindre précision. Pour éviter ces erreurs de mesure, il est conseillé d'employer des récipients et instruments en verre insensible aux effets du chlore. Pour ce faire, il convient de laisser les récipients et instruments en verre pour une durée d'une heure dans une solution d'hypochlorite de natrium (0,1g/l) et de bien les rincer à l'eau déminéralisée.

- 2. Lors de la préparation de l'échantillon, éviter les émanations de dioxyde de chlore, par exemple par la pipette ou l'agitation. L'analyse doit avoir lieu aussitôt après le prélèvement de l'échantillon.
- 3. La coloration due au DPD survient lorsque la valeur pH est comprise entre 6,2 et 6,5. Le réactif comporte à cet effet un tampon permettant un ajustement de la valeur pH. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à une plage entre 6 et 7 (au moyen de 0,5 mo/l d'acide sulfurique ou 1 mol/l de lessive de soude).
- 4. Turbidité (entraîne des erreurs):
  - L'utilisation de pastille DPD No.1 dans les échantillons présentant une concentration élevée en ions calcium\* et / ou une conductivité élevée\* peut entraîner l'apparition d'une turbidité dans l'échantillon, et par conséquent fausser les mesures. Dans ce cas, utiliser à la place la pastille de réactif DPD No.1 Calcium Élevé. \* Il est impossible de donner des valeurs exactes car le développement de la turbidité dépend de la nature et de la composition de l'échantillon.
- 5. Les concentrations supérieures à 19 mg/l de dioxyde de chlore peuvent provoquer des résultats allant jusqu'à 0 mg/l. Dans ce cas, il convient de diluer l'échantillon d'eau avec de l'eau libre de dioxyde de chlore. Ajouter 10 ml de l'échantillon dilué au réactif et recommencer la mesure (test de plausibilité).
- 6. Tous les agents d'oxydation contenus dans les échantillons réagissent comme le dioxyde de chlore, ce qui entraîne des résultats trop élevés.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| DPD No. 1             | Pastille / 100            | 511050BT  |







## Dioxyde de chlore avec pastilles

0,05 - 2,5 mg/l CIO,

Dioxyde de chlore >> présence de Cl absence de Cl

La sélection suivante s'affiche:

>> présence de Cl

pour la détermination de dioxyde de chlore en présence de chlore

>> absence de Cl

pour la détermination de dioxyde de chlore en absence de chlore

Sélectionner la détermination souhaitée au moyen des touches fléchées [A] et [V] puis confirmer avec [A].

- 1. Nettoyage des cuvettes
  - Beaucoup de produits de nettoyage domestiques (par exemple les produits à laver la vaisselle) comportent des agents réducteurs, il est possible que lors de la détermination de dioxyde de chlore les résultats soient de moindre précision. Pour éviter ces erreurs de mesure, il est conseillé d'employer des récipients et instruments en verre insensible aux effets du chlore. Pour ce faire, il convient de laisser les récipients et instruments en verre pour une durée d'une heure dans une solution d'hypochlorite de natrium (0,1g/l) et de bien les rincer à l'eau déminéralisée.
- 2. Lors de la préparation de l'échantillon, éviter les émanations de dioxyde de chlore, par exemple par la pipette ou l'agitation. L'analyse doit avoir lieu aussitôt après le prélèvement de l'échantillon.
- 3. La coloration due au DPD survient lorsque la valeur pH est comprise entre 6,2 et 6,5. Le réactif comporte à cet effet un tampon permettant un ajustement de la valeur pH. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à une plage entre 6 et 7 (au moyen de 0,5 mo/l d'acide sulfurique ou 1 mol/l de lessive de soude).
- 4. Les concentrations supérieures à 19 mg/l de dioxyde de chlore peuvent provoquer des résultats allant jusqu'à 0 mg/l. Dans ce cas, il convient de diluer l'échantillon d'eau avec de l'eau libre de dioxyde de chlore. Ajouter 10 ml de l'échantillon dilué au réactif et recommencer la mesure (test de plausibilité).
- 5. Si lors de résultats différenciés de tests s'affiche??? cf. page 356.
- 6. Tous les agents d'oxydation contenus dans les échantillons réagissent comme le dioxyde de chlore, ce qui entraîne des résultats trop élevés.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| DPD No. 1             | Pastille / 100            | 511050BT  |
| GLYCINE               | Pastille / 100            | 512170BT  |







## Dioxyde de chlore, en présence de chlore

0,05 - 2,5 mg/l CIO,



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm
- Ajouter une pastille de Glycine directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- Remplir une deuxième cuvette propre avec 10 ml d'échantillon et fermer le couvercle de la cuvette.
- 5. Mettre la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

#### Préparer zéro Presser ZÉRO

- 6. Appuyer sur la touche **ZÉRO**.
- Retirer la cuvette de la chambre de mesure et la vider.
- Ajouter une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Verser le contenu de la première cuvette (solution de Glycine) dans la cuvette préparée (point 8).
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 11. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer T 1 Presser TEST

12. Appuyer sur la touche **TEST**.

- Retirer la cuvette de la chambre de mesure, la rincer soigneusement ainsi que le couvercle et y verser quelques gouttes d'échantillon.
- 14. Ajouter **une pastille de DPD No. 1** directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 15. Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 17. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- 18. Appuyer sur la touche **TEST**.
- 19. Retirer la cuvette de la chambre de mesure.
- Ajouter au même échantillon une pastille de DPD No. 3 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 22. Placer la cuvette étalon dans la chambre de mesure. Positionnement  $\chi$ .
- 23. Appuyer sur la touche **TEST**.

Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche en:

dioxyde de chlore en mg/l de chlore ou

dioxyde de chlore en mg/l de ClO<sub>2</sub>.

mg/l chlore libre mg/l chlore combiné mg/l chlore total

(Remarques cf. page suivante)

T1 accepté Préparer T2 Presser TEST

T2 accepté Préparer T3 Presser TEST

Compte à rebours 2:00

\*,\*\* mg/l ClO<sub>2</sub> [Cl]

\*,\*\* mg/l ClO<sub>2</sub>

\*,\*\* mg/l Cl libre \*,\*\* mg/l Cl combiné \*,\*\* mg/l Cl total

#### Remarques

## (Dioxyde de chlore en présence de chlore):

 Le facteur pour la conversion de dioxyde de chlore (en unités chlore) en dioxyde de chlore (CIO<sub>2</sub>) est de 0,4 (plus précisément le facteur 0,38): mg/I CIO<sub>2</sub> = mg/I CIO<sub>2</sub>[CI] x 0,38

CIO<sub>2</sub>[CI]

(le dioxyde de chlore affiché en unités de chlore  ${\rm CIO_2[CI]}$  provient du domaine du traitement des piscines selon DIN 19643.)

- 2. Le taux de chlore total s'affiche, le dioxyde de chlore inclus (en unité chlore). Le taux de chlore total exact s'obtient en soustrayant la proportion de dioxyde de chlore (en unité chlore) du taux total affiché.
- 3. Cf. également page 149.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| DPD No. 1             | Pastille / 100            | 511050BT  |
| DPD No. 3             | Pastille / 100            | 511080BT  |
| GLYCINE               | Pastille / 100            | 512170BT  |







## Dioxyde de chlore, en absence de chlore

0,05 - 2,5 mg/l ClO<sub>2</sub>



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- Mettre la cuvette dans la chambre de mesure. Positionnement √X.

## Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure et la vider en y laissant quelques gouttes.
- Ajouter dans l'échantillon de 10 ml une pastille de DPD No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 6. Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer le test Presser TEST

9. Appuyer sur la touche **TEST**.

\*,\*\* mg/l ClO<sub>2</sub> [Cl]

\*,\*\* mg/l ClO<sub>2</sub>

Le résultat de la mesure s'affiche en: dioxyde de chlore en mg/l de chlore ou dioxyde de chlore en mg/l de CIO<sub>2</sub>

#### Remarques

cf. page 149



Préparer zéro

Presser ZÉRO





## Dioxyde de silicium avec pastilles

 $0.05 - 3 \text{ mg/l SiO}_{3}$ 



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer son couvercle
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- 5. Ajouter dans l'échantillon de 10 ml une pastille de SILICA No. 1 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 6. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.

## Compte à rebours 5:00

7. Appuyer sur la touche [4].

Attendre 5 minutes de temps de réaction.

Après écoulement du temps de réaction, procéder comme suit:

- 8. Ajouter une pastille de SILICA PR directement de l'emballage protecteur dans le même échantillon et l'écraser à l'aide d'un agitateur propre.
- 9. Ajouter une pastille de SILICA No. 2 directement de l'emballage protecteur dans le même échantillon et l'écraser à l'aide d'un agitateur propre.
- 10. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 11. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .
- 12. Appuyer sur la touche **TEST**.

Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le dioxyde de silicium en mg/l.

## départ: 🔟

Zéro accepté Préparer test **Presser TEST** 

## Compte à rebours 2:00

- 1. L'ordre d'apport des pastilles doit être respecté scrupuleusement.
- 2. Les phosphates ne gênent pas dans les conditions de réaction indiquées.
- 3. Conversion:

$$mg/l Si = mg/l SiO_2 \times 0,47$$



| Réactif / Accessoires       | Forme de réactif/Quantité              | Référence |
|-----------------------------|----------------------------------------|-----------|
| Set<br>SILICA No. 1 / No. 2 | Pastille / par 100<br>Agitateur inclus | 517671BT  |
| SILICA No. 1                | Pastille / 100                         | 513130BT  |
| SILICA No. 2                | Pastille / 100                         | 513140BT  |
| SILICA PR                   | Pastille / 100                         | 513150BT  |







## Dioxyde de silicium LR avec réactifs en sachet de poudre (PP) et réactif liquide

0,1 - 1,6 mg/l SiO<sub>2</sub>



Ø 24 mm

Préparer deux cuvettes propres de 24 mm. Repérer l'une des deux cuvettes comme cuvette de calibrage.

- 1. Verser **10 ml d'échantillon** dans chaque cuvette.
- Dans chaque cuvette, ajouter 0,5 ml de solution de réactif Vario Molybdate 3.
- Refermer les couvercles respectifs des cuvettes et mélanger le contenu en retournant les cuvettes (rem. 1).
- 4. Appuyer sur la touche [4].

Attendre un temps de réaction de 4 minutes (rem. 2) Continuer comme suit après l'expiration du temps de réaction:

- Ajouter dans chaque cuvette le contenu d'un sachet de poudre Vario Silica Citric Acid F10, directement à partir de la pellicule.
- 6. Refermer le couvercle de la cuvette et dissoudre la poudre en retournant la cuvette.
- 7. Appuyer sur la touche [4].

Attendre pendant **un temps de réaction d'1 minute** (rem. 3)

Continuer comme suit après l'expiration du temps de réaction:

- 8. Placer ensuite la cuvette de calibrage dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- Dans la cuvette contenant l'échantillon, ajouter le contenu d'un sachet de poudre Vario LR Silica Amino Acid F F10 directement à partir de la pellicule.
- 10. Refermer le couvercle de la cuvette et dissoudre la poudre en retournant la cuvette.
- 11. Appuyer alors sur la touche **ZÉRO**. (La cuvette zéro est déjà dans la chambre de mesure voir point 8)

Attendre pendant un temps de réaction de 2 minutes

## Compte à rebours 1 4:00 départ: 🚽



Compte à rebours 2 1:00 départ: 🔟

Préparer zéro Presser ZÉRO

Compte à rebours 2:00

La mesure du zéro s'effectue automatiquement après l'expiration du temps de réaction.

- 12. Sortir la cuvette de la chambre de mesure.
- 13. Placer ensuite la cuvette d'échantillon dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- 14. Appuyer alors sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l de dioxyde de silicium.

## Zéro accepté Préparer test Presser TEST

### Remarques:

- 1. Les cuvettes doivent être refermées immédiatement avec leur couvercle après l'addition de la solution de réactif Vario Molybdate 3, car, dans le cas contraire, on pourrait aboutir à des résultats plus faibles.
- 2. Le temps de réaction indiqué de 4 minutes se rapporte à une température d'échantillon de 20 °C. Attendre un temps de réaction de 2 minutes pour une température d'échantillon de 30 °C et de 8 minutes pour une température d'échantillon de 10 °C.
- 3. Le temps de réaction indiqué de 1 minute se rapporte à une température d'échantillon de 20 °C. Attendre pendant un temps de réaction de 30 secondes pour une température d'échantillon de 30 °C et de 2 minutes pour une température d'échantillon de 10 °C.

4 Perturbations:

| Citaibations. |                                                                                       |
|---------------|---------------------------------------------------------------------------------------|
| Substance     | Perturbation                                                                          |
| Fer           | Perturbe en grandes concentrations                                                    |
| Phosphate     | Le phosphate ne perturbe pas jusqu'à 50 mg/l PO <sub>4</sub>                          |
|               | A une concentration de 60 mg/l $PO_4$ , la perturbation est de $-2\%$ environ         |
|               | A une concentration de 75 mg/l PO <sub>4</sub> , la perturbation est de – 11% environ |
| Sulfures      | Perturbent en toutes concentrations                                                   |

Occasionnellement, les échantillons d'eau contiennent des formes d'anhydride silicique, qui réagissent très lentement avec le molybdène. La nature exacte de ces formes n'est pas connue actuellement. Par un traitement préalable au bicarbonate de sodium et, ensuite, à l'acide sulfurique, il est possible de les transformer en formes très réactives (description dans «Standard Methods for the Examination of Water and Wastewater» dans "Silica-Digestion with Sodium Bicarbonate").



| Réactif / Accessoires          | Forme de réactif/Quantité  | Référence |
|--------------------------------|----------------------------|-----------|
| Set                            |                            | 535690    |
| VARIO LR Silica Amino Acid F10 | Sachet de poudre / 100     |           |
| VARIO Silica Citric Acid F10   | Sachet de poudre / 200     |           |
| VARIO Molybdate 3              | Réactif liquide / 2x 50 ml |           |







## Dioxyde de silicium HR avec réactifs en sachet de poudre (PP)

1 - 100 mg/l SiO<sub>2</sub>



Préparer zéro Presser ZÉRO



Compte à rebours 1

départ: 🗐

- Verser 10 ml d'échantillon dans une cuvette de 24 mm propre (rem. 1) et fermer cette dernière avec le convercle de la cuvette
- 2. Placer ensuite la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- 3. Appuyer alors sur la touche **ZÉRO**.
- 4. Sortir la cuvette de la chambre de mesure.
- Dans l'échantillon de10 ml, ajouter le contenu d'un sachet de poudre Vario Silica HR Molybdate F10 directement à partir de la pellicule.
- 6. Refermer le couvercle de la cuvette et dissoudre la poudre en retournant la cuvette.
- Ajouter au même échantillon le contenu d'un sachet de poudre Vario Silica HR Acid Rgt. directement à partir de la pellicule (rem. 2).
- 8. Refermer le couvercle de la cuvette et mélanger le contenu en retournant la cuvette
- Appuyer sur la touche [].
   Attendre pendant un temps de réaction de 10 minutes

Continuer comme suit après l'expiration du temps de réaction:

- Ajouter au même échantillon le contenu d'un sachet de poudre Vario Silica Citric Acid F10 directement à partir de la pellicule (rem. 3).
- 11. Refermer le couvercle de la cuvette et dissoudre la poudre en retournant la cuvette.
- 12. Placer ensuite la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- Appuyer alors sur la touche TEST.
   Attendre pendant un temps de réaction de 2 minutes.

La mesure s'effectue automatiquement après l'expiration du temps de réaction.

Le résultat s'affiche dans l'affichage, en mg/l de dioxyde de silicium.

## Zéro accepté Préparer test Presser TEST

Compte à rebours 2 2:00

### Remarques:

- 1. La température de l'échantillon doit être comprise entre 15 °C et 25 °C.
- 2. Dans le cas de la présence de dioxyde de silicium ou de phosphate, il se formera une coloration jaune.
- 3. Une couleur jaune générée par le phosphate s'éliminera par cette étape de travail (voir plus bas).
- 4. Perturbations:

| Substance | Perturbation                                                                          |
|-----------|---------------------------------------------------------------------------------------|
| Fer       | Perturbe en grandes concentrations                                                    |
| Phosphate | Le phosphate ne perturbe pas jusqu'à 50 mg/l PO <sub>4</sub>                          |
|           | A une concentration de 60 mg/l $PO_4$ , la perturbation est de – 2% environ           |
|           | A une concentration de 75 mg/l PO <sub>4</sub> , la perturbation est de – 11% environ |
| Sulfures  | Perturbent en toutes concentrations                                                   |

Occasionnellement, les échantillons d'eau contiennent des formes d'anhydride silicique, qui réagissent très lentement avec le molybdène. La nature exacte de ces formes n'est pas connue actuellement. Par un traitement préalable au bicarbonate de sodium et, ensuite, à l'acide sulfurique, il est possible de les transformer en formes très réactives (description dans «Standard Methods for the Examination of Water and Wastewater» dans "Silica-Digestion with Sodium Bicarbonate").

| Réactif / Accessoires           | Forme de réactif/Quantité | Référence |
|---------------------------------|---------------------------|-----------|
| Set                             |                           | 535700    |
| VARIO Silica HR Molybdate F10   | Sachet de poudre / 100    |           |
| VARIO Silica HR Acid Rgt F10    | Sachet de poudre / 100    |           |
| VARIO Silica HR Citric Acid F10 | Sachet de poudre / 100    |           |







## Dureté, totale avec pastilles

2 - 50 mg/l CaCO<sub>3</sub>



1. Verser **10 ml d'échantillon** dans une cuvette de 24 mm et refermer le couvercle de la cuvette.

2. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- 4 Retirer la cuvette de la chambre de mesure
- Ajouter une pastille de HARDCHECK P directement de l'emballage protecteur dans les 10 ml d'échantillon et écraser à l'aide d'un agitateur propre.
- Refermer le couvercle de la cuvette et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00

8. Appuyer sur la touche **TEST**.

Attendre 5 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique la dureté totale en mg/l.

- 1. La valeur pH des eaux fortement acides ou alcalines doit être régulée entre 4 et 10 avant l'analyse (à l'aide d'1 mol/l d'acide chlorhydrique ou d'1 mol/l de lessive de soude).
- 2. Table de conversion:

|                          | mg/l CaCO₃ | °dH   | °fH  | °eH  |
|--------------------------|------------|-------|------|------|
| 1 mg/l CaCO <sub>3</sub> |            | 0,056 | 0,10 | 0,07 |
| 1 °dH                    | 17,8       |       | 1,78 | 1,25 |
| 1 °fH                    | 10,0       | 0,56  |      | 0,70 |
| 1 °eH                    | 14,3       | 0,80  | 1,43 |      |

| <b>A</b>       | CaCO <sub>s</sub><br>°dH |
|----------------|--------------------------|
|                | °eH                      |
|                | °fH                      |
| $\blacksquare$ | °aH                      |

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| HARDCHECK P           | Pastille / 100            | 515660BT  |







## Dureté, totale HR avec pastilles

20 - 500 mg/l CaCO<sub>2</sub>



Ø 24 mm

- Verser 1 ml d'échantillon et 9 ml d'eau déminéralisée dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\mathbf{V}}$ .

## Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO.**
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille de HARDCHECK P directement de l'emballage protecteur dans les 10 ml d'échantillon et écraser à l'aide d'un agitateur propre.
- Refermer le couvercle de la cuvette et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- Placer la cuvette dans la chambre de mesure. Positionnement √X.

### Zéro accepté Préparer test Presser TEST

## Compte à rebours 5:00

8. Appuyer sur la touche **TEST**.

Attendre 5 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique la dureté totale en mg/l.

- 1. La valeur pH des eaux fortement acides ou alcalines doit être régulée entre 4 et 10 avant l'analyse (à l'aide d'1 mol/l d'acide chlorhydrique ou d'1 mol/l de lessive de soude).
- 2. Table de conversion:

|                          | mg/l CaCO₃ | °dH   | °fH  | °eH  |
|--------------------------|------------|-------|------|------|
| 1 mg/l CaCO <sub>3</sub> |            | 0,056 | 0,10 | 0,07 |
| 1 °dH                    | 17,8       |       | 1,78 | 1,25 |
| 1 °fH                    | 10,0       | 0,56  |      | 0,70 |
| 1 °eH                    | 14,3       | 0,80  | 1,43 |      |

| 3. 🛕 | CaCO |
|------|------|
|      | °dH  |
|      | °eH  |
|      | °fH  |
|      | °aH  |

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| HARDCHECK P           | Pastille / 100            | 515660BT  |



\* Détermination du fer total dissous Fe<sup>2+</sup> et Fe<sup>3+</sup>.



\* Détermination du fer total dissous Fe<sup>2+</sup> et Fe<sup>3+</sup>.



\* Détermination du fer total dissous Fe<sup>2+</sup> et Fe<sup>3+</sup>.

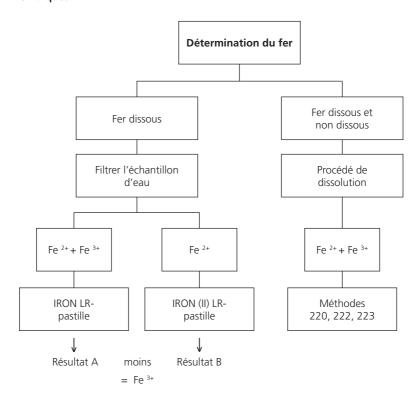




\* Détermination de toutes les formes dissous du fer et de la plupart des formes non dissous du fer.






0,1 - 1,8 mg/l Fe

\* Détermination de toutes les formes dissous du fer et de la plupart des formes non dissous du fer; la plupart des oxydes de fer non dissous sont récupérés par le réactif.

\*Cette information se réfère à l'analyse de l'échantillon d'eau sans minéralisation.

Des informations supplémentaires sont disponibles dans les remarques sur la méthode.

#### Remarques:



Procédé de minéralisation pour la détermination du fer totalement dissous et non dissous:

- 1. Ajouter dans l'échantillon d'eau de 100 ml 1 ml d'acide sulfurique concentré et porter à ébullition pendant dix minutes ou suffisamment longtemps pour que le tout soit complètement dissous. Après refroidissement, ajuster la valeur pH de l'échantillon à une valeur comprise entre 3 et 5 à l'aide d'une solution ammoniaquée et remplir avec de l'eau déminéralisée jusqu'au volume initial de 100 ml. On utilise 10 ml de cette solution pré-traitée pour l'analyse suivante. Suivre les instructions comme décrit sous chaque réactif.
- 2. Les eaux qui ont été traitées avec des combinaisons organiques comme anti-corrosifs, etc., doivent être oxydées le cas échéant afin de détruire les complexes ferreux. Pour ce faire, ajouter 1 ml d'acide sulfurique concentré ainsi qu'1 ml d'acide nitrique concentré dans l'échantillon de 100 ml et porter à ébullition jusqu'à réduction de moitié. Après refroidissement, procéder selon le mode indiqué plus haut.







## Fer avec pastilles

0.1 - 1 mg/l Fe



 Remplir une cuvette propre de 10 mm avec l'échantillon.

10 mm

2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

## Préparer zéro Presser ZÉRO

3. Appuyer sur la touche **ZÉRO**.

- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Remplir un récipient d'analyse approprié avec 10 ml d'échantillon.
- Ajouter une pastille d'IRON LR directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.
- 7. Remplir la cuvette de 10 mm avec la solution.
- 8. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00

9. Appuyer sur la touche **TEST**.

Attendre 5 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le fer en mg/l.

- 1. Cette méthode permet de déterminer le Fe<sup>2+</sup> et Fe<sup>3+</sup> total dissous.
- 2. La détermination du  $Fe^{2+}$  se fera avec une pastille IRON (II) LR, comme décrit plus haut, au lieu de la pastille IRON LR.
- 3. Le procédé de désagrégation décrit ci-après est nécessaire à la détermination du fer total dissous et non dissous (procédé de dissolution acide cf. page 165).

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| IRON LR               | Pastille / 100            | 515370BT  |
| IRON (II) LR          | Pastille / 100            | 515420BT  |







## Fer avec pastilles

0.01 - 0.5 mg/l Fe



- Remplir une cuvette propre de 50 mm avec l'échantillon.
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Remplir un récipient d'analyse approprié avec 10 ml d'échantillon.
- Ajouter une pastille d'IRON LR directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.
- 7. Remplir la cuvette de 50 mm avec la solution.
- 8. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00

Appuyer sur la touche TEST.
 Attendre 5 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le fer en mg/l.

- 1. Cette méthode permet de déterminer le Fe<sup>2+</sup> et Fe<sup>3+</sup> total dissous.
- 2. La détermination du  $Fe^{2+}$  se fera avec une pastille IRON (II) LR, comme décrit plus haut, au lieu de la pastille IRON LR.
- 3. Le procédé de désagrégation décrit ci-après est nécessaire à la détermination du fer total dissous et non dissous (procédé de dissolution acide cf. page 165).

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| IRON LR               | Pastille / 100            | 515370BT  |
| IRON (II) LR          | Pastille / 100            | 515420BT  |







## Fer (remarque 1) avec pastilles

0.01 - 1 mg/l Fe



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter dans l'échantillon de 10 ml une pastille d' IRON LR directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00

8. Appuyer sur la touche **TEST**.

Attendre 5 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le fer en mg/l.

- 1. Cette méthode permet de déterminer le Fe<sup>2+</sup> et Fe<sup>3+</sup> total dissous.
- 2. La détermination du  $Fe^{2+}$  se fera avec une pastille IRON (II) LR, comme décrit plus haut, au lieu de la pastille IRON LR.
- 3. Le procédé de désagrégation décrit ci-après est nécessaire à la détermination du fer total dissous et non dissous (procédé de dissolution acide cf. page 165).

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| IRON LR               | Pastille / 100            | 515370BT  |
| IRON (II) LR          | Pastille / 100            | 515420BT  |







## Fer (remarque 1) avec réactif en sachet de poudre (PP)

0.01 - 3 mg/l Fe



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Préparer zéro Presser ZÉRO





- 4. Retirer la **cuvette** de la chambre de mesure.
- Ajouter dans l'échantillon de 10 ml le contenu d'un sachet de poudre de Vario Ferro F10 directement de l'emballage protecteur.
- 7. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant l'ensemble (remarque 4).
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 3:00 9. Appuyer sur la touche **TEST**.

Attendre 3 minutes de temps de réaction (remarque 5).

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le fer en mg/l.

- 1. Cette méthode permet la détermination de toutes les formes de fer dissous et à la plupart des formes de fer non dissous.
- 2. L'oxyde de fer requiert avant l'analyse d'une dissolution faible, forte ou Digesdahl (procédé de dissolution acide cf. page 165).
- 3. Les eaux fortement alcalines ou acides doivent être ramenées avant l'analyse à une valeur pH comprise entre 3 et 5.
- 4. La précision ne sera pas affectée par de la poudre non dissoute.
- 5. Dans le cas d'échantillons contenant de la rouille visible, il convient de respecter au minimum un temps de réaction de 5 minutes.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| VARIO Ferro F10       | Sachet de poudre / 100    | 530560    |







## Fer, total (TPTZ, rem. 1) avec réactif en sachet de poudre (PP)

0.1 - 1.8 mg/l Fe



Préparer deux cuvettes propres de 24 mm. Repérer l'une des deux cuvettes comme cuvette de calibrage.

 Verser 10 ml d'eau entièrement déminéralisée dans une cuvette propre de 24 mm (cuvette de calibrage).



- 2. Verser **10 ml d'échantillon** dans une deuxième cuvette propre de 24 mm (cuvette d'échantillon).
- Ajouter dans chaque cuvette le contenu d'un sachet de poudre Vario IRON TPTZ F10, directement à partir de la pellicule.
- Refermer les couvercles respectifs des cuvettes et mélanger le contenu en agitant les cuvettes (30 sec).

Compte à rebours 3:00 départ: 🗐

5. Appuyer sur la touche [4].

Attendre un temps de réaction de 3 minutes.

Continuer comme suit après l'expiration du temps de réaction.

6. Placer ensuite la cuvette de calibrage dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 7. Appuyer alors sur la touche **ZÉRO**.
- 8. Sortir la cuvette de la chambre de mesure.
- 9. Placer ensuite la cuvette d'échantillon dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Appuyer alors sur la touche TEST.
 Le résultat s'affiche dans l'affichage, en mg/l de fer.

#### Remarques:

- 1. La dissolution sera nécessaire pour la détermination de la teneur en fer. Le réactif TPTZ saisit la majorité des oxydes de fer sans dissolution.
- 2. Avant l'analyse, rincer toutes les verreries de laboratoire en utilisant une solution diluée d'acide chlorhydrique (1:1) et ensuite de l'eau entièrement déminéralisée dans le but d'éliminer les dépôts ferrugineux, qui seraient susceptibles de conduire à des résultats légèrement plus élevés.
- 3. Avant l'analyse, les eaux fortement alcalines ou acides doivent être ramenées à une valeur pH comprise dans une plage de 3 à 8 (avec 0,5 mol/l d'acide sulfurique ou 1 mol/l de soude caustique).
- 4. Perturbations:

Dans le cas de l'apparition de perturbations, le développement de la couleur a été empêché ou il ses formé des précipités.

Les données se rapportent à un standard d'une concentration en fer de 0,5 mg/l. Les substances suivantes ne provoquent pas de perturbations jusqu'à la concentration indiquée:

| Substance      | Aucune perturbation jusqu'à |
|----------------|-----------------------------|
| Cadmium        | 4,0 mg/l                    |
| Chrome (3+)    | 0,25 mg/l                   |
| Chrome (6+)    | 1,2 mg/l                    |
| Cyanure        | 2,8 mg/l                    |
| Cobalt         | 0,05 mg/l                   |
| Cuivre         | 0,6 mg/l                    |
| Manganèse      | 50 mg/l                     |
| Molybdène      | 4,0 mg/l                    |
| Nickel         | 1,0 mg/l                    |
| Ion de nitrite | 0,8 mg/l                    |
| Mercure        | 0,4 mg/l                    |

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| VARIO IRON TPTZ F10   | Sachet de poudre / 100    | 530550    |







## Fluorure avec réactif liquide

0,05 - 1,5 mg/l F



#### Se conformer aux remarques!

- Verser exactement 10 ml d'échantillon (remarque 4) dans une cuvette propre de 24 mm et la refermer avec son couvercle.
- 2. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- 5. Ajouter exactement 2 ml de solution réactive SPADNS (remarque 4) dans l'échantillon de 10 ml.

Attention: la cuvette est pleine jusqu'au bord! (remarque 8)

- 6. Refermer la cuvette avec son bouchon et remuer son contenu en faisant balancer la cuvette de haut en bas.
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l du fluorures.

- 1. Il faut utiliser le même batch de solution réactive SPADNS pour l'ajustement et la mesure de l'échantillon. Procéder pour chaque nouveau batch de solution réactive à un nouvel ajustement de l'appareil (selon Standard Methods 20th, 1998, APHA, AWWA, WEF 4500 F D. P. 4-82).
  - Le procédé est décrit dans le chapitre 2.4.5 «calibrage mode 40» à la page 321.
- Pour l'ajustement et la mesure, le calage du zéro et le test doivent être faits avec la même cuvette, étant donné que les cuvettes présentent des tolérances minimes entre elles.
- 3. Les solutions de calibrage et les échantillons d'eau à mesurer doivent avoir la même température (+/-1°C).
- 4. Le résultat de l'analyse dépend en grande partie de l'exactitude du volume de l'échantillon et du réactif. Ne doser le volume de l'échantillon et du réactif qu'avec une pipette de 10 ml ou de 2 ml (classe A).
- 5. Au dessus de 1,2 mg/l de fluorures, l'exactitude diminue. Bien que les résultats soient assez précis pour la plupart des applications, on peut atteindre une meilleure exactitude en diluant l'échantillon 1 : 1 avant l'utilisation et en multipliant le résultat par 2.
- 6. La solution de réactif SPADNS contient de l'arsenic. Les concentrations jusqu'à 5 mg/l ne sont pas gênantes.
- 7. Les échantillons d'eau de mer et d'eau usée doivent être distillés.
- 8. Il convient d'utiliser les éprouvettes spéciales à grand volume.

| Réactif / Accessoires   | Forme de réactif/Quantité | Référence |
|-------------------------|---------------------------|-----------|
| SPADNS Solution réactif | Réactif liquide / 250 ml  | 467481    |
| Etalon fluorure         | Solution / 30 ml          | 205630    |







# Hydrazine avec réactif de poudre

 $0.05 - 0.5 \text{ mg/l N}_2\text{H}_4 / 50 - 500 \text{ }\mu\text{g/l N}_2\text{H}_4$ 



 Verser 10 ml d'échantillon (Remarques 1, 2) dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur loa touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- 5. Ajouter **1 g de poudre de dosage HYDRAZINE** (Remarque 3) à l'échantillon d'eau.
- Fermer soigneusement le couvercle de la cuvette et agiter plusieurs fois la cuvette pour mélanger son contenu.

Compte à rebours 10:00 départ: 🚽

7. Appuyer sur la touche [4].

Respecter un temps de réaction de 10 minutes.

Lorsque le temps de réaction est écoulé, procéder comme suit:

- 8. La légère turbidité apparaissant lorsque le réactif est ajouté doit être retirée par filtration (Remarque 4).
- 9. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\lambda}$ .

Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran en mg/l hydrazine.

- 1. Si l'échantillon d'eau est trouble, il faut le filtrer avant d'effectuer l'étalonnage du zéro.
- 2. La température de l'échantillon d'eau ne doit pas dépasser 21°C.
- 3. Utilisation de la cuillère d'Hydrazine: 1 g est équivalent à une cuillère rase.
- 4. Nous conseillons les papiers filtres à plis qualitatifs pour les précipités moyens.
- 5. Pour vérifier que le réactif n'est pas trop vieux (qu'il n'a pas été stocké trop longtemps), effectuer le test comme décrit ci-dessus en utilisant de l'eau du robinet. Si le résultat est supérieur à la limite de détection de 0,05 mg/l, utiliser le réactif sous réserve (risque de fluctuations majeures des résultats).
- 6. Il existe une option pour faire passer l'unité de mg/l à μg/l. L'unité mg/l est arrondie, par ex. 25 μg/l = 0,025 mg/l → affichage 0,03 mg/l.



| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| Hydrazin Test Powder  | Poudre / 30 g             | 462910    |
| Cuillère              |                           | 384930    |







## **Hydrazine** avec réactif liquide

 $0,005 - 0,6 \text{ mg/l } N_2H_4 / 5 - 600 \mu\text{g/l } N_2H_4$ 



Préparer deux cuvettes propres de 24 mm. Repérer l'une des deux cuvettes comme cuvette de calibrage.

- 1. Verser 10 ml d'eau déminéralisée dans une cuvette propre de 24 mm (cuvette de calibrage).
- 2. Ajouter 1 ml de VARIO Hydra 2 Rgt solution dans la cuvette (rem. 3).
- 3. Refermer la cuvette avec son couvercle et mélanger le contenu.
- 4. Placer ensuite la cuvette de calibrage dans la chambre de mesure. Positionnement  $\chi$ .

#### Préparer zéro Presser ZÉRO

- 5. Appuyer sur la touche **ZÉRO**.
- 6. Retirer la cuvette de la chambre de mesure.
- 7. Verser **10 ml d'échantillon** dans une deuxième cuvette propre de 24 mm (cuvette d'échantillon).
- 8. Ajouter 1 ml de VARIO Hydra 2 Rgt solution dans la cuvette.
- 9. Refermer la cuvette avec son couvercle et mélanger le contenu.
- 10. Placer ensuite la cuvette d'échantillon dans la chambre de mesure. Positionnement  $\chi$ .

Zéro accepté Préparer test **Presser TEST** 

Compte à rebours 12:00

11. Appuyer sur la touche **TEST**. Attendre 12 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l hydrazine.

#### Remarques:

- 1. Les échantillons ne peuvent pas être conservés et doivent être analysés immédiatement.
- 2. La température des échantillons doit être de 21°C ± 4°C.
- 3. Du fait du réactif lui-même, une couleur jaune pâle peut se développer dans le blanc.
- 4 Interférences:
  - L'ammonium ne provoque aucune interférence jusqu'à 10 mg/l.
     A une concentration de 20 mg/l, il est possible que le résultat du test augmente jusqu'à 20%.
  - La morpholine ne provoque aucune interférence jusqu'à 10 mg/l.
  - Échantillons très colorés ou troubles:

Mélanger 1 part d'eau déionisée avec 1 part d'eau de Javel. Ajouter 1 goutte de ce mélange à 25 ml d'échantillon d'eau et mélanger. Utiliser 10 ml de l'échantillon préparé à la place de l'eau déionisée de l'étape 1.

Remarque: à l'étape 7, utiliser l'échantillon d'eau non préparé.

Principe: l'hydrazine est oxydée par l'eau de Javel. Les interférences dues à la couleur sont éliminées en faisant un zéro.

5. Il existe une option pour faire passer l'unité de mg/l à µg/l.

L'unité mg/l est arrondie, par ex. 25  $\mu$ g/l = 0,025 mg/l  $\rightarrow$  affichage 0,03 mg/l.

mg/l μg/l

| Réactif / Accessoires      | Forme de réactif/Quantité | Référence |
|----------------------------|---------------------------|-----------|
| VARIO Hydra 2 Rgt Solution | Réactif liquide / 100 ml  | 531200    |







## lode avec pastilles

0,05 - 3,6 mg/l I



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- Retirer la cuvette de la chambre de mesure, vider la cuvette en y laissant quelques gouttes.
- 5. Ajouter **une pastille de DPD No. 1** directement de l'emballage dans l'échantillon d'eau et écraser la pastille à l'aide d'un agitateur propre.
- 6. Ajouter de l'échantillon d'eau jusqu'au repère de 10 ml.
- Fermer soigneusement le couvercle de la cuvette et agiter plusieurs fois la cuvette jusqu'à dissolution complète de la pastille.
- 8. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

9. Appuyer sur la touche **TEST**.

Le résultat s'affiche en mg/l iode.

### Remarques:

1. Les agents oxydants, tels que le chlore, le brome, etc. interfèrent car ils réagissent comme l'iode.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| DPD No. 1             | Pastille / 100            | 511050BT  |







# Manganèse avec pastilles

0.2 - 4 mg/l Mn



 Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille de MANGANESE LR 1 directement de l'emballage dans l'échantillon, écraser la pastille à l'aide d'un agitateur propre et dissoudre la pastille.
- Ajouter une pastille de MANGANESE LR 2 directement de l'emballage dans le même échantillon et écraser la pastille à l'aide d'un agitateur propre.
- Fermer soigneusement le couvercle de la cuvette et agiter plusieurs fois la cuvette jusqu'à dissolution complète de la pastille.
- 8. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00 9. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement lorsque le temps de réaction est écoulé.

Le résultat s'affiche en mg/l manganèse.

### Remarques:

1. **A** Mn

MnO<sub>4</sub>
KMnO<sub>4</sub>

| Réactif / Accessoires             | Forme de réactif/Quantité              | Référence |
|-----------------------------------|----------------------------------------|-----------|
| Set<br>MANGANESE LR No. 1 / No. 2 | Pastille / par 100<br>Agitateur inclus | 517621BT  |
| MANGANESE LR No. 1                | Pastille / 100                         | 516080BT  |
| MANGANESE LR No. 2                | Pastille / 100                         | 516090BT  |







## Manganèse LR avec réactif en sachet de poudre (PP)

0.01 - 0.7 mg/l Mn



Préparer deux cuvettes propres de 24 mm (rem. 1). Une des deux cuvettes sera marquée comme cuvette étalon.

- Verser 10 ml d'eau déminéralisée dans une cuvette propre de 24 mm (cuvette étalon).
- Verser dans la deuxième cuvette propre de 24 mm 10 ml d'échantillon (cuvette échantillon).



- Ajouter dans chaque cuvette le contenu d'un sachet de poudre de Vario Ascorbic Acid directement de l'emballage protecteur. (rem. 2)
- 4. Fermer les cuvettes avec leur couvercle respectif et mélanger le contenu en agitant.
- 5. Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans chaque cuvette (rem. 3):

15 gouttes de solution de réaction Alkaline-Cyanide

- 6. Fermer les cuvettes avec leur couvercle respectif et mélanger le contenu en agitant.
- Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans chaque cuvette:

#### 21 gouttes de solution indication PAN

8. Fermer les cuvettes avec leur couvercle respectif et mélanger le contenu en agitant.

| Compte à rebours |  |
|------------------|--|
| 2:00             |  |
| départ: 🚚        |  |

Appuyer sur la touche [ [ ].
 Attendre un temps de réaction de 2 minutes (rem. 4).
 Après écoulement du temps de réaction, procéder comme suit:

10. Placer la cuvette étalon dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 11. Appuyer sur la touche **ZÉRO**.
- 12. Retirer la cuvette de la chambre de mesure.
- 13. Placer la cuvette échantillon dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

14. Appuyer sur la touche TEST. Le résultat de la mesure s'affiche et indique le manganèse en mg/l.

- 1. Rincer l'ensemble des instruments de laboratoire en verre avant l'analyse avec de l'acide nitrique dilué puis de l'eau déminéralisée.
- Si l'échantillon contient plus de 300 mg/l de duréte CaCO<sub>3</sub>, ajouter, après le sachet de poudre Vario Ascourbic Acid, 10 gouttes de solution Saline Rochelle.
- 3. Certains échantillons peuvent devenir troubles ou présenter un aspect nuageux sous l'action de la solution de réaction «Alkaline-Cyanide». La turbidité devrait disparaître après le point 7.
- 4. Si l'échantillon a une teneur élevée en fer (à partir de 5 mg/l), attendre un temps de réaction de 10 minutes.
- 5. Conversion:  $mg/l MnO_{\lambda} = mg/l Mn \times 2,17$
- 6. ▲ Mn
  MnO₄
  KMnO₄

| Réactif / Accessoires                                                | Forme de réactif/Quantité                                                    | Référence |
|----------------------------------------------------------------------|------------------------------------------------------------------------------|-----------|
| Set                                                                  |                                                                              | 535090    |
| VARIO Ascorbic Acid<br>VARIO Alkaline-Cyanide<br>VARIO PAN Indicator | Sachet de poudre / 100<br>Réactif liquide / 60 ml<br>Réactif liquide / 60 ml |           |
| VARIO Rochelle solution Saline                                       | 30 ml                                                                        | 530640    |







## Manganèse HR avec réactif en sachet de poudre (PP)

0,1 - 18 mg/l Mn



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- Mettre la cuvette dans la chambre de mesure. Positionnement √Y.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.



- Ajouter le contenu d'un sachet de poudre Vario Manganese Citrate Buffer F10 directement dans l'échantillon de 10 ml.
- 6. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant les cuvettes.
- Ajouter le contenu d'un sachet de poudre Vario Sodium periodate F10 directement de l'emballage protecteur dans le même échantillon.
- 8. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant les cuvettes.
- Mettre la cuvette dans la chambre de mesure. Positionnement √X.

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00 10. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 2 minutes.

La mesure démarre automatiquement lorsque le temps de réaction est écoulé.

Le résultat s'affiche en mg/l manganèse.

- 1. Ce test s'applique à la détermination du manganèse soluble dans l'eau et les eaux usées.
- 2. Les échantillons d'eau très tamponnés ou présentant des valeurs de pH extrêmes peuvent dépasser la capacité tampon des réactifs et nécessitent un pré-traitement. Si les échantillons ont été acidifiés pour les conserver, ajuster le pH entre 4 et 5 avec de l'hydroxyde de sodium 5 mol/l (5 N) avant le test. Ne pas dépasser pH 5, car le manganèse peut précipiter.
- 3. Interférences:

| Substance interférente | Niveau d'interférence    |
|------------------------|--------------------------|
| Calcium                | supérieur à 700 mg/l     |
| Chlorure               | supérieur à 70.000 mg/l  |
| Fer                    | supérieur à 5 mg/l       |
| Magnésium              | supérieur à 100.000 mg/l |

| 4. | Mn              |
|----|-----------------|
|    | $MnO_{\Lambda}$ |
|    | KMnŌ,           |

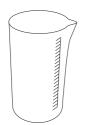
| me de réactif/Quantité | Référence |
|------------------------|-----------|
| het de poudre / 100    | 535100    |
| r                      |           |







# Molybdate avec pastilles


 $1 - 30 \text{ mg/l MoO}_{4} / 0,6 - 18 \text{ mg/l Mo}$ 



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO





- 4. Retirer la cuvette de la chambre de mesure et **vider la cuvette**.
- Verser 20 ml d'échantillon d'eau dans un bécher de 100 ml.
- Ajouter une pastille de MOLYBDATE HR No. 1 directement de l'emballage dans l'échantillon d'eau et écraser la pastille à l'aide d'un agitateur propre.
- 7. Ajouter **une pastille de MOLYBDATE HR No. 2** directement de l'emballage dans le même échantillon d'eau et écraser la pastille à l'aide d'un agitateur propre.
- 8. Dissoudre les pastilles avec un agitateur propre.
- 9. Rincer la cuvette avec l'échantillon d'eau préparé puis la remplir jusqu'au repère de 10 ml.
- 10. Fermer soigneusement le couvercle de la cuvette.
- 11. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Appuyer sur la touche **TEST**.
 Le résultat s'affiche en mg/l molybdate.

- 1. Ajouter les pastilles dans le bon ordre.
- 2. Dans les conditions du test (pH 3,8 3,9), ni le fer ni les autres métaux n'interfèrent aux niveaux attendus dans les systèmes d'eau industriels.
- 3. Conversions: mg/l Mo = mg/l MoO<sub>4</sub> x 0,6 mg/l Na<sub>2</sub>MoO<sub>6</sub> = mg/l MoO<sub>4</sub> x 1,3
- 4. **M**OO<sub>4</sub> Mo
  - ▼ Na<sub>2</sub>MoO<sub>4</sub>

| Réactif / Accessoires          | Forme de réactif/Quantité              | Référence |
|--------------------------------|----------------------------------------|-----------|
| Set MOLYBDATE HR No. 1 / No. 2 | Pastille / par 100<br>Agitateur inclus | 517631BT  |
| MOLYBDATE HR No. 1             | Pastille / 100                         | 513060BT  |
| MOLYBDATE HR No. 2             | Pastille / 100                         | 513070BT  |







## Molybdate LR avec réactif en sachet de poudre (PP)

 $0.05 - 5 \text{ mg/l MoO}_4 / 0.03 - 3 \text{ mg/l Mo}$ 







- Ajouter le contenu d'un sachet de poudre Vario Molybdenum 1 LR F20 directement de l'emballage protecteur dans l'échantillon de 20 ml.
- Bien refermer l' eprouvette avec le bouchon et dissoudre la poudre en agitant l' eprouvette.



- 4. Préparer deux cuvettes propres de 24 mm. Repérer l'une des deux cuvettes comme cuvette de calibrage.
- Verser 10 ml d'echantillon dans chaque cuvette préparée à l'avance.
- 6. Bien refermer la cuvette étalon avec le couvercle.
- Dans la cuvette échantillon, ajouter 0,5 ml de solution de réactif Vario Molybdenum 2 LR.
- 8. Bien refermer la cuvette avec le couvercle et mélanger le contenu en agitant légèrement.

Compte à rebours 1 2:00 départ:

- Appuyer sur la touche [4].
   Attendre un temps de réaction de 2 minutes.
- 10. Après écoulement du temps de réaction, procéder comme suit:
- 11. Placer ensuite la cuvette étalon dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 12. Appuyer sur la touche **ZERO**.
- 13. Retirer la cuvette de la chambre de mesure.
- 14. Placer ensuite la cuvette échantillon dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

15. Appuyer sur la touche **TEST**.

Le résultat s'affiche en mg/l molybdène.

- 1. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à une plage entre 3 et 5 (au moyen de 0,5 mo/l d'acide sulfurique ou 1 mol/l de lessive de soude).
- 2. Pour éviter les erreurs dûes aux dépôts, rincer les appareils en verre avant l'analyse en utilisant une solution d'acide chlorhydrique (de concentration 20 % env.) et de l'eau entièrement déminéralisée.
- 3. ▲ MoO<sub>4</sub> Mo
  - ▼ Na<sub>2</sub>MoO<sub>4</sub>

| Réactif / Accessoires                                     | Forme de réactif/Quantité                         | Référence |
|-----------------------------------------------------------|---------------------------------------------------|-----------|
| Set<br>VARIO Molybdenum 1 LR F20<br>VARIO Molybdenum 2 LR | Sachet de poudre / 100<br>Réactif liquide / 50 ml | 535450    |
| Eprouvette graduée                                        | 25 ml                                             | 19802650  |







## Molybdate HR avec réactif en sachet de poudre (PP)

 $0.5 - 66 \text{ mg/l MoO}_4 / 0.3 - 40 \text{ mg/l Mo}$ 



Ø 24 mm

#### Préparer zéro Presser ZÉRO

- 1. Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\nabla$ .
- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.



- 5. Ajouter le contenu d'un sachet de poudre Vario Molybdenum HR 1 F10 directement dans l'échantillon de 10 ml.
- 6. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 7. Ajouter le contenu d'un sachet de poudre VARIO Molybdenum HR 2 F10 directement de l'emballage protecteur dans le même échantillon.
- 8. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 9. Ajouter le contenu d'un sachet de poudre VARIO Molybdenum HR 3 F10 directement de l'emballage protecteur dans le même échantillon.
- 10. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 11. Mettre la cuvette dans la chambre de mesure. Positionnement \( \bar{\chi} \)

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00

12. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement lorsque le temps de réaction est écoulé.

Le résultat s'affiche en mg/l molybdate.

#### Remarques:

- 1. Filtrer les échantillons d'eau troubles à l'aide de papier filtre et d'un entonnoir avant de les analyser.
- Ajuster les échantillons d'eau très tamponnés ou présentant des valeurs de pH extrêmes sur un pH proche de 7 avec 1 mol/l de l'acide nitrique ou 1 mol/l de l'hydroxyde de sodium.
- 3. Une concentration supérieure à 10 mg/l Cu entraîne des valeurs de test trop élevées si le temps de réaction de 5 minutes est augmenté. Il est donc très important d'effectuer la procédure du test en continu.
- 4. Substances pouvant interférer si présentes en concentrations de:

| Aluminium | 50 mg/l      |
|-----------|--------------|
| Chrome    | 1000 mg/l    |
| Fer       | 50 mg/l      |
| Nickel    | 50 mg/l      |
| Nitrite   | tous niveaux |

5. ▲ MoO<sub>4</sub>
Mo
Na,MoO<sub>4</sub>

| Réactif / Accessoires    | Forme de réactif/Quantité | Référence |
|--------------------------|---------------------------|-----------|
| Set                      |                           | 535300    |
| VARIO Molybdenum HR1 F10 | Sachet de poudre / 100    |           |
| VARIO Molybdenum HR2 F10 | Sachet de poudre / 100    |           |
| VARIO Molybdenum HR3 F10 | Sachet de poudre / 100    |           |







## Nickel avec test en cuvette

0,02 - 1 mg/l Ni



- Remplir une cuvette propre de 50 mm avec l'échantillon
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Ajouter 10 ml d'échantillon dans un récipient adéquat.
- Ajouter deux cuillères graduées no. 8 (noir) remplie à ras bord de Nickel-51 et dissoudre le contenue.
- 7. Ajouter **0,2 ml de Nickel-52** et mélanger le contenu.
- 8. Remplir la cuvette de 50 mm avec la solution.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

Compte à rebours 3:00 Appuyer sur la touche TEST.
 Respecter un temps de réaction de 3 minutes.

La mesure démarre automatiquement lorsque le temps de réaction est écoulé

Le résultat s'affiche en mg/l nickel.

- 1. L'échantillon à tester et les réactifs doivent être à température ambiante pour effectuer le test.
- 2. Le pH de l'échantillon à tester doit être compris entre 3 et 9.

| Réactif / Accessoires      | Forme de réactif/Quantité       | Référence |
|----------------------------|---------------------------------|-----------|
| <b>SET:</b> NICKEL 51 / 52 | Test en cuvette / env. 50 Tests | 2419033   |







### Nickel avec test en cuvette

0.2 - 7 mg/l Ni



- 1. Verser 3 ml d'échantillon et 7 ml d'eau déminéra**lisée** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\nabla$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- 5. Ajouter deux cuillères graduées no. 8 (noir) remplies à ras bord de Nickel-51 dans l'échantillon préparé.
- 6. Refermer la cuvette avec son couvercle et mélanger son contenu en l'agitant.
- 7. Ajouter 0,2 ml de Nickel-52 dans le même échantillon.
- 8. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 9. Mettre la cuvette dans la chambre de mesure. Positionnement  $\nabla$ .

#### Zéro accepté Préparer test **Presser TEST**

#### Compte à rebours 3:00

10. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 3 minutes.

La mesure démarre automatiquement lorsque le temps de réaction est écoulé.

Le résultat s'affiche en mg/l nickel.

- 1. L'échantillon à tester et les réactifs doivent être à température ambiante pour effectuer le test.
- 2. Le pH de l'échantillon à tester doit être compris entre 3 et 9.

| Réactif / Accessoires      | Forme de réactif/Quantité       | Référence |
|----------------------------|---------------------------------|-----------|
| <b>SET:</b> NICKEL 51 / 52 | Test en cuvette / env. 50 Tests | 2419033   |







## Nitrate avec test en cuvette

1 - 30 mg/l N



- Ouvrir une cuvette de réactif (réactif A) à couvercle blanc et la remplir d'1 ml d'eau déminéralisée (cuvette étalon).
- Ouvrir une autre cuvette de réactif (réactif A) à couvercle blanc et la remplir d'1 ml d'échantillon (cuvette échantillon).



- Verser dans chaque cuvette le contenu d'un sachet de poudre Vario Nitrate Chromotropic directement de l'emballage protecteur.
- 4. Refermer les cuvettes avec leur couvercle respectif et mélanger le contenu en l'agitant avec précaution (10 fois) (remarque 1).

Compte à rebours 5:00 départ: ⊿

5. Appuyer sur la touche [4].

Attendre 5 minutes de temps de réaction.

Après écoulement du temps de réaction, procéder de la manière suivante:

 Placer la cuvette étalon dans la chambre de mesure. Positionnement √.

#### Préparer zéro Presser ZÉRO

- 7. Appuyer sur la touche **ZÉRO**.
- 8. Retirer la cuvette de la chambre de mesure.
- Placer la cuvette échantillon dans la chambre de mesure. Positionnement Å.

Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le nitrate en mg/l.

- 1. Il se peut qu'une petite quantité de matière solide ne se dissolve pas.
- 2. Conversion:  $mg/l NO_3 = mg/l N \times 4,43$
- 3. N NO<sub>3</sub>

| Réactif / Accessoires                                                                        | Forme de réactif/Quantité                                | Référence |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------|
| Set<br>VARIO Nitrate Chromotropic<br>VARIO Nitra X Reagent tube<br>VARIO I'eau déminéralisée | Set Sachet de poudre / 50 Cuvette de réactif / 50 100 ml | 535580    |







## Nitrate LR avec test en cuvette

0.5 - 14 mg/l N



- Placer la cuvette à valeur zéro (portant l'étiquette rouge) livrée dans la chambre de mesure.
   Positionnement \( \lambda \)
- 2. Appuyer sur la touche **ZÉRO**.

#### Préparer zéro Presser ZÉRO

- 3. Retirer la cuvette de la chambre de mesure.
- Ouvrir une cuvette de réaction et ajouter 0,5 ml d'échantillon.
- Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
   (ATTENTION: le tube devient chaud!)
- 6. Ajouter de 0,2 ml Nitrate-111.
- 7. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 8. Placer la cuvette échantillon dans la chambre de mesure. Positionnement \( \)

Zéro accepté Préparer test Presser TEST

Compte à rebours 15:00 Appuyer sur la touche TEST.
 Respecter un temps de réaction de 15 minutes.

La mesure démarre automatiquement lorsque le temps de réaction est écoulé.

Le résultat de la mesure s'affiche et indique le nitrate en mg/l.

- 1. Une concentration en nitrite supérieure à 2 mg/l  ${\rm NO_2}^-$  entraı̂ne une majoration des résultats des tests.
- 2. Des valeurs de DCO importantes entraînent une majoration des résultats des tests.
- 3. N NO<sub>3</sub>

| Réactif / Accessoires                      | Forme de réactif/Quantité                    | Référence |
|--------------------------------------------|----------------------------------------------|-----------|
| Set:<br>Cuvette de réaction<br>NITRATE-111 | Test en cuvette (Réactif liquide) / 24 Tests | 2420702   |







# Nitrite avec pastilles

0,01 - 0,5 mg/l N



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- 5. Ajouter **une pastille de NITRITE LR** directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 10:00 8. Appuyer sur la touche **TEST**.

Attendre 10 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le nitrite en mg/l.

#### Remarques:

- Les ions suivants peuvent par précipitation provoquer des interférences: antimoine (III), fer (III), plomb, mercure (I), chloroplatinate, métavanadate et bismuth.
   Les ions de cuivre (II) provoquent selon les cas des valeurs plus basses, car ils accélèrent la dégradation du sel de diazonium.
   En pratique cependant, il est peu vraisemblable que les ions surviennent en
  - En pratique cependant, il est peu vraisemblable que les ions surviennent en concentrations telles qu'elles provoquent des erreurs de mesures importantes.
- 2. Conversion:  $mg/l NO_2 = mg/l N \times 3,29$

3.

N NO<sub>2</sub>

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| NITRITE LR            | Pastille / 100            | 512310BT  |







## Nitrite LR avec réactif en sachet de poudre (PP)

0,01 - 0,3 mg/l N



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

 Mettre la cuvette dans la chambre de mesure. Positionnement √x.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.



- 5. Ajouter le contenu **d'un sachet de poudre Vario Nitri 3** directement dans l'échantillon de 10 ml.
- 6. Refermer la cuvette avec son couvercle et mélanger son contenu en l'agitant .
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 20:00 8. Appuyer sur la touche **TEST**.

Attendre 20 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le nitrite en mg/l.

#### Remarques:

#### 1. Interférences:

- Les substances fortement oxydantes ou réductrices interfèrent.
- Les ions cuivrigues et ferreux entraînent des résultats plus faibles.
- Les ions antimoneux, auriques, de chloroplatinate, de bismuth, ferriques, de plomb, de mercure, de métavanadate et d'argent provoquent une précipitation.
- Dans les échantillons présentant une concentration très élevée de nitrate (> 100 mg/l), une petite quantité de nitrite est détectée. De tels niveaux de nitrate semblent subir une légère quantité de réduction en nitrite, soit spontanément, soit pendant la durée de réaction du test.



| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| Vario Nitri 3 F10     | Sachet de poudre / 100    | 530980    |







## Nitrite, LR avec test en cuvette

0.03 - 0.6 mg/l N



 Placer la cuvette à valeur zéro (portant l'étiquette rouge) livrée dans la chambre de mesure.
 Positionnement \( \lambda \)

2. Appuyer sur la touche ZÉRO.

#### Préparer zéro Presser ZÉRO

- 3. Retirer la cuvette de la chambre de mesure.
- Ouvrir une cuvette de réaction et ajouter 2 ml d'échantillon
- 5. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- Ajouter une cuillère graduée no. 8 (noir) remplie à ras bord de Nitrite-101.
- 7. Refermer la cuvette avec son couvercle et dissoudre son contenu en l'agitant.
- 8. Mettre la cuvette dans la chambre de mesure. Positionnement \( \frac{1}{3} \)

Zéro accepté Préparer test Presser TEST

9. Appuyer sur la touche **TEST**.

Compte à rebours 10:00 Attendre 10 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le nitrite en mg/l.

- 1. Stocker les réactifs dans des récipients fermés à une température comprise entre + 4°C et + 8°C.
- 2. L'échantillon à tester et les réactifs doivent être à température ambiante pour effectuer le test.



| Réactif / Accessoires                      | Forme de réactif/Quantité           | Référence |
|--------------------------------------------|-------------------------------------|-----------|
| Set:<br>Cuvette de réaction<br>NITRITE-101 | Test en cuvette (Poudre) / 24 Tests | 2419018   |







## Nitrite, HR avec test en cuvette

0.3 - 3 mg/l N



- Placer la cuvette à valeur zéro (portant l'étiquette rouge) livrée dans la chambre de mesure.
   Positionnement \( \lambda \).
- 2. Appuyer sur la touche ZÉRO.

#### Préparer zéro Presser ZÉRO

- 3. Retirer la cuvette de la chambre de mesure.
- Ouvrir une cuvette de réaction et ajouter 0,5 ml d'échantillon
- 5. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- Ajouter une cuillère graduée no. 8 (noir) remplie à ras bord de Nitrite-101.
- 7. Refermer la cuvette avec son couvercle et dissoudre son contenu en l'agitant.
- Mettre la cuvette dans la chambre de mesure. Positionnement

Zéro accepté Préparer test Presser TEST

Compte à rebours 10:00 9. Appuyer sur la touche **TEST**.

Attendre 10 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le nitrite en mg/l.

- Stocker les réactifs dans des récipients fermés à une température comprise entre + 4°C et + 8°C.
- 2. L'échantillon à tester et les réactifs doivent être à température ambiante pour effectuer le test.
- 3. N NO<sub>2</sub>

| Réactif / Accessoires                      | Forme de réactif/Quantité           | Référence |
|--------------------------------------------|-------------------------------------|-----------|
| Set:<br>Cuvette de réaction<br>NITRITE-101 | Test en cuvette (Poudre) / 24 Tests | 2419018   |







# Oxygène, actif \* avec pastilles

 $0,1 - 10 \text{ mg/l } O_{2}$ 



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- 5. Ajouter **une pastille de DPD No. 4** directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 7. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00 8. Appuyer sur la touche **TEST**.

Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique l'oxygène actif en mg/l.

- \* L'oxygène actif est un synonyme désignant un désinfectant courant (à base "d'oxygène") dans le traitement des piscines.
- 1. Lors de la préparation de l'échantillon, éviter les émanations d'oxygène, par exemple par la pipette ou l'agitation.
- 2. L'analyse doit avoir lieu aussitôt après le prélèvement de l'échantillon.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| DPD No. 4             | Pastille / 100            | 511220BT  |







# Ozone avec pastilles

 $0.02 - 0.5 \text{ mg/l O}_3$ 





Ozone avec pastilles

 $0.02 - 1 \text{ mg/l O}_{3}$ 



#### Ozone

>> présence de Cl absence Cl La sélection suivante s'affiche:

>> présence de Cl

pour la détermination d'ozone en présence de chlore

>> absence de Cl

pour la détermination d'ozone en absence de chlore

Sélectionner la détermination souhaitée au moyen des touches fléchées  $[\![\Delta]\!]$  et  $[\![\nabla]\!]$  puis confirmer avec  $[\![\omega]\!]$ .

- 1. Nettoyage des cuvettes
  - Beaucoup de produits de nettoyage domestiques (par exemple les produits à laver la vaisselle) comportent des agents réducteurs, il est possible que lors de la détermination de l'ozone les résultats soient de moindre précision. Pour éviter ces erreurs de mesure, il est conseillé d'employer des récipients et instruments en verre insensible aux effets du chlore. Pour ce faire, il convient de laisser les récipients et instruments en verre pour une durée d'une heure dans une solution d'hypochlorite de natrium (0,1g/l) et de bien les rincer à l'eau déminéralisée.
- 2. Lors de la préparation de l'échantillon, éviter les émanations d'ozone, par exemple par la pipette ou l'agitation. L'analyse doit avoir lieu aussitôt après le prélèvement de l'échantillon.
- 3. La coloration due au DPD survient lorsque la valeur pH est comprise entre 6,2 et 6,5. Le réactif comporte à cet effet un tampon permettant un ajustement de la valeur pH. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à une plage entre 6 et 7 (au moyen de 0,5 mo/l d'acide sulfurique ou 1 mol/l de lessive de soude).
- 4. Les concentrations supérieures à 6 mg/l d'ozone peuvent provoquer des résultats allant jusqu'à 0 mg/l. Dans ce cas, il convient de diluer l'échantillon d'eau avec de l'eau libre d'ozone. Ajouter 10 ml de l'échantillon dilué au réactif et recommencer la mesure (test de plausibilité).
- 5. Si lors de résultats différenciés de tests s'affiche??? , cf. page 356.
- 6. Tous les agents d'oxydation contenus dans les échantillons réagissent comme l'ozone, ce qui entraîne des résultats trop élevés







# Ozone, en présence de chlore avec pastilles

 $0.02 - 0.5 \text{ mg/l } 0.02 - 0.00 \text{ mg/l } 0.00 \text$ 



- Remplir une cuvette propre de 50 mm avec l'échantillon.
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuver.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 et une pastille de DPD No. 3 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille.
- 8. Remplir la cuvette de 50 mm avec la solution.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer T 1 Presser TEST

10. Appuyer sur la touche **TEST**.

Attendre un temps réaction de 2 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

- 11. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Remplir un récipient d'analyse avec 10 ml d'échantillon.
- 13. Ajouter **une pastille de Glycine** directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.
- 14. Nettoyer avec un peu d'échantillon un deuxième récipient d'analyse approprié **et le vider**.

### Compte à rebours 2:00

- 15. Ajouter **une pastille de DPD No. 1** et **une pastille de DPD No. 3** directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 16. Verser le contenu du premier récipient d'analyse (solution de Glycine) dans le récipient d'analyse préparée (point 13) et dissoudre les pastilles.
- 17. Verser la solution d'échantillon dans la cuvette de 50 mm.
- 18. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.
- Appuyer sur la touche TEST.
   Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche en:

mg/l d'ozone mg/l chlore total

T1 accepté Préparer T2 Presser TEST

Compte à rebours 2:00

\*,\*\* mg/l O<sub>3</sub>
\*,\*\* mg/l Cl total

Remarques: cf. page 215

| Réactif / Accessoires    | Forme de réactif/Quantité              | Référence |
|--------------------------|----------------------------------------|-----------|
| Set<br>DPD No. 1 / No. 3 | Pastille / par 100<br>Agitateur inclus | 517711BT  |
| DPD No. 1                | Pastille / 100                         | 511050BT  |
| DPD No. 3                | Pastille / 100                         | 511080BT  |
| GLYCINE                  | Pastille / 100                         | 512170BT  |







# Ozone, en absence de chlore avec pastilles

 $0.02 - 0.5 \text{ mg/l } O_3$ 



- Remplir une cuvette propre de 50 mm avec l'échantillon
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de DPD No. 1 et une pastille de DPD No. 3 directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille.
- 8. Remplir la cuvette de 50 mm avec la solution.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00

10. Appuyer sur la touche **TEST**.

Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique l'ozone en mg/l.

Remarques: cf. page 215

| Réactif / Accessoires    | Forme de réactif/Quantité              | Référence |
|--------------------------|----------------------------------------|-----------|
| Set<br>DPD No. 1 / No. 3 | Pastille / par 100<br>Agitateur inclus | 517711BT  |
| DPD No. 1                | Pastille / 100                         | 511050BT  |
| DPD No. 3                | Pastille / 100                         | 511080BT  |







# Ozone, en présence de chlore avec pastilles

0,02 - 1 mg/l O<sub>3</sub>



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- Retirer la cuvette de la chambre de mesure et la vider en y laissant quelques gouttes.
- Ajouter une pastille de DPD No. 1 et une pastille de DPD No. 3 directement de l'emballage protecteur et les écraser à l'aide d'un agitateur propre.
- Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 8. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer T 1 Presser TEST

Compte à rebours 2:00 Appuyer sur la touche TEST.
 Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

- 10. Retirer **la cuvette** de la chambre de mesure et la rincer soigneusement ainsi que le couvercle.
- 11. Remplir une deuxième cuvette propre avec 10 ml d'échantillon.

- Ajouter une pastille de Glycine directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 14. Ajouter **une pastille de DPD No. 1** et **une pastille de DPD No. 3** directement de l'emballage protecteur et les écraser à l'aide d'un agitateur propre.
- 15. Verser le contenu de la deuxième cuvette (solution de Glycine) dans la cuvette préparée (point 14).
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 17. Mettre la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

T1 accepté Préparer T2 Presser TEST

Compte à rebours 2:00 18. Appuyer sur la touche **TEST**.

Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche en:

\*,\*\* mg/l O<sub>3</sub>
\*,\*\* mg/l Cl total

mg/l d'ozone mg/l chlore total

#### Remarques cf. page 215.

| Réactif / Accessoires    | Forme de réactif/Quantité              | Référence |
|--------------------------|----------------------------------------|-----------|
| Set<br>DPD No. 1 / No. 3 | Pastille / par 100<br>Agitateur inclus | 517711BT  |
| DPD No. 1                | Pastille / 100                         | 511050BT  |
| DPD No. 3                | Pastille / 100                         | 511080BT  |
| GLYCINE                  | Pastille / 100                         | 512170BT  |







# Ozone, en absence de chlore avec pastilles

0,02 - 1 mg/l O<sub>3</sub>



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure et la vider en y laissant quelques gouttes.
- Ajouter une pastille de DPD No. 1 et une pastille de DPD No. 3 directement de l'emballage protecteur et les écraser à l'aide d'un agitateur propre.
- Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 8. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

## Compte à rebours 2:00

9. Appuyer sur la touche **TEST**.

Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique l'ozone en mg/l.

Remarques: cf. page 215

| Réactif / Accessoires    | Forme de réactif/Quantité              | Référence |
|--------------------------|----------------------------------------|-----------|
| Set<br>DPD No. 1 / No. 3 | Pastille / par 100<br>Agitateur inclus | 517711BT  |
| DPD No. 1                | Pastille / 100                         | 511050BT  |
| DPD No. 3                | Pastille / 100                         | 511080BT  |







# Peroxyde d'hydrogène avec pastilles

0,01 - 0,5 mg/l H<sub>2</sub>O<sub>2</sub>



- Remplir une cuvette propre de 50 mm avec l'échantillon
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Nettoyer avec un peu d'échantillon un récipient d'analyse approprié et le vider pour ne laisser que quelques gouttes.
- Ajouter une pastille de HYDROGENPEROXIDE LR directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 7. Ajouter **10 ml d'échantillon** et dissoudre la pastille
- 8. Remplir la cuvette de 50 mm avec la solution.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00

10. Appuyer sur la touche **TEST**.

Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le peroxyde d'hydrogène en mg/l.

- 1. Nettoyage des cuvettes
  - Beaucoup de produits de nettoyage domestiques (par exemple les produits à laver la vaisselle) comportent des agents réducteurs, il est possible que lors de la détermination du peroxyde d'hydrogène les résultats soient de moindre précision. Pour éviter ces erreurs de mesure, il est conseillé d'employer des récipients et instruments en verre insensible aux effets du chlore. Pour ce faire, il convient de laisser les récipients et instruments en verre pour une durée d'une heure dans une solution d'hypochlorite de natrium (0,1g/l) et de bien les rincer à l'eau déminéralisée.
- 2. Lors de la préparation de l'échantillon, éviter les émanations de peroxyde d'hydrogène, par exemple par la pipette ou l'agitation. L'analyse doit avoir lieu aussitôt après le prélèvement de l'échantillon.
- 3. La coloration due au DPD survient lorsque la valeur pH est comprise entre 6,2 et 6,5. Le réactif comporte à cet effet un tampon permettant un ajustement de la valeur pH. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à une plage entre 6 et 7 (au moyen de 0,5 mo/l d'acide sulfurique ou 1 mol/l de lessive de soude).
- 4. Les concentrations de peroxyde d'hydrogène supérieures à 5 mg/l peuvent provoquer des résultats allant jusqu'à 0 mg/l. Dans ce cas, il convient de diluer l'échantillon d'eau avec de l'eau libre de peroxyde d'hydrogène. Ajouter 10 ml de l'échantillon dilué au réactif et recommencer la mesure (test de plausibilité).
- 5. Tous les agents d'oxydation contenus dans les échantillons réagissent comme le peroxyde d'hydrogène ce qui entraîne des résultats trop élevés.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| Hydrogenperoxide LR   | Pastille / 100            | 512380BT  |







# Peroxyde d'hydrogène avec pastilles

0,03 - 1,5 mg/l H<sub>2</sub>O<sub>2</sub>



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure et la vider en y laissant quelques gouttes.
- Ajouter une pastille de HYDROGENPEROXIDE LR dans l'échantillon de 10 ml, directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre.
- 6. Verser de l'échantillon dans la cuvette jusqu'à la marque de 10 ml.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00

9. Appuyer sur la touche **TEST**.

Attendre 2 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le peroxyde d'hydrogène en mg/l.

- 1. Nettoyage des cuvettes
  - Beaucoup de produits de nettoyage domestiques (par exemple les produits à laver la vaisselle) comportent des agents réducteurs, il est possible que lors de la détermination du peroxyde d'hydrogène les résultats soient de moindre précision. Pour éviter ces erreurs de mesure, il est conseillé d'employer des récipients et instruments en verre insensible aux effets du chlore. Pour ce faire, il convient de laisser les récipients et instruments en verre pour une durée d'une heure dans une solution d'hypochlorite de natrium (0,1g/l) et de bien les rincer à l'eau déminéralisée.
- 2. Lors de la préparation de l'échantillon, éviter les émanations de peroxyde d'hydrogène, par exemple par la pipette ou l'agitation. L'analyse doit avoir lieu aussitôt après le prélèvement de l'échantillon.
- 3. La coloration due au DPD survient lorsque la valeur pH est comprise entre 6,2 et 6,5. Le réactif comporte à cet effet un tampon permettant un ajustement de la valeur pH. Il convient d'ajuster la valeur pH des eaux fortement alcalines ou acides à une plage entre 6 et 7 (au moyen de 0,5 mo/l d'acide sulfurique ou 1 mol/l de lessive de soude).
- 4. Les concentrations de peroxyde d'hydrogène supérieures à 5 mg/l peuvent provoquer des résultats allant jusqu'à 0 mg/l. Dans ce cas, il convient de diluer l'échantillon d'eau avec de l'eau libre de peroxyde d'hydrogène. Ajouter 10 ml de l'échantillon dilué au réactif et recommencer la mesure (test de plausibilité).
- 5. Tous les agents d'oxydation contenus dans les échantillons réagissent comme le peroxyde d'hydrogène ce qui entraîne des résultats trop élevés.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| Hydrogenperoxide LR   | Pastille / 100            | 512380BT  |







# Phénol avec pastille

 $0,1 - 5 \text{ mg/l C}_{5}H_{5}OH$ 



- 1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- 5. Ajouter **une pastille de PHENOLE No. 1** directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.
- Ajouter une pastille de PHENOLE No. 2 directement de l'emballage protecteur dans le même échantillon et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant légèrement jusqu'à dissolution complète des pastilles.
- 8. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00 Appuyer sur la touche TEST.
 Attendre 5 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le phénol en mg/l.

- Cette méthode détermine les phénols ortho- et méta-substitués mais pas les phénols para-substitués (voir: "Standard Methods for Examination of Water and Wastewater, 20e édition, 5-40 f."). Les échantillons d'eau pouvant contenir différents types de composés phénoliques, le résultat est affiché en concentration équivalente de phénol (C<sub>c</sub>H<sub>c</sub>OH).
- 2. Le pH de l'échantillon à tester doit être compris entre 3 et 11.
- 3. La présence d'agents réducteurs, réactifs oxydants, sulfures ou solides en suspension peut provoquer des interférences (voir : "Standard Methods for Examination of Water and Wastewater, 20e édition, 5-40 f.").
- 4. Les échantillons d'eaux usées et d'eau de mer peuvent également nécessiter une distillation.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| PHENOLE No. 1         | Pastille / 100            | 515950    |
| PHENOLE No. 2         | Pastille / 100            | 515960BT  |



- Phosphate, total LR
  avec test en cuvette, 0,07 3 mg/l P
  Détermination des ions orthophosphate + phosphates
  inorganiques condensés + phosphates organiquement
  combinés
- Phosphate, total HR
  avec test en cuvette, 1,5 20 mg/l P
  Détermination des ions orthophosphate + phosphates
  inorganiques condensés + phosphates organiquement
  combinés
- Phosphate, ortho LR avec pastilles, 0,05 4 mg/l PO<sub>4</sub> Détermination des ions orthophosphate
- Phosphate, ortho HR
  avec pastilles, 1 80 mg/l PO<sub>4</sub>
  Détermination des ions orthophosphate
- Phosphate, ortho
  avec sachet de poudre (PP), 0,06 2,5 mg/l PO<sub>4</sub>
  Détermination des ions orthophosphate
- Phosphate, ortho
  avec test en cuvette, 0,06 5 mg/l PO<sub>4</sub>
  Détermination des ions orthophosphate
- Phosphate, ortho (vanadate-molybdate)
  avec test en cuvette, 3 60 mg/l PO<sub>4</sub>
  Détermination des ions orthophosphate
- Phosphate, hydrolysable par acide avec test en cuvette, 0,02 1,6 mg/l P

  Détermination des ions orthophosphate + phosphates inorganiques condensés

Informations supplémentaires disponibles dans les remarques relatives aux méthodes.

#### Généralités:

La couleur bleue obtenue pour les méthodes **317**, **318**, **320**, **323**, **324**, **325**, **326** est due à la réaction du réactif au contact des ions d'ortho-phosphate.

Le phosphate sous forme organique ou inorganique condensée (méta-, pyro- et polyphosphates) doit être converti en ions orthophosphate avant analyse. Le pré-traitement de l'échantillon à l'acide et la chaleur fournit les conditions favorables à l'hydrolyse des formes inorganiques condensées. Les phosphates organiquement combinés sont convertis en ions orthophosphate en les chauffant en présence d'acide et de persulfate. La quantité de phosphate organiquement combiné peut être calculée:

mg/l phosphate, organique = mg/l phosphate, total – mg/l phosphate, hydrolysable à l'acide

Pour les méthodes **321** et **322**, les ions d'ortho-phosphate réagissent au contact du réactif Vanadate-molybdate dans une solution acide et forment un complexe de couleur jaune.

## Notes – uniquement pour analyse en tube à essai et analyse avec sachets de poudre: 323, 324, 325, 326

- 1. Application: pour eau, eaux usées et eau de mer.
- 2. Les échantillons très tamponnés ou échantillons avec valeurs pH extrêmes doivent être ajustés entre pH 6 et pH 7 avant l'analyse (avec de l'acide chlorhydrique 1 mol/l) ou de l'hydroxyde de sodium 1 mol/l).
- 3 Interférences:

Une turbidité importante peut entraîner des résultats contradictoires.

| Substance interférante       | Niveau d'interférence |
|------------------------------|-----------------------|
| Aluminium                    | supérieur à 200 mg/l  |
| Arséniate                    | à tous les niveaux    |
| Chrome                       | supérieur à 100 mg/l  |
| Cuivre                       | supérieur à 10 mg/l   |
| Fer                          | supérieur à 100 mg/l  |
| Nickel                       | supérieur à 300 mg/l  |
| Silice (dioxyde de silicium) | supérieur à 50 mg/l   |
| Silicate                     | supérieur à 10 mg/l   |
| Sulfure                      | à tous les niveaux    |
| Zinc                         | supérieur à 80 mg/l   |







## Phosphate, totale avec test en cuvette

0.02 - 1.1 mg/l P





- Ouvrir le capuchon blanc d'un tube de minéralisation PO4-P Acid reagent et ajouter 5 ml d'échantillon d'eau.
- Ajouter le contenu d'un sachet de poudre Vario Potassium Persulfate F10 directement de l'emballage dans le tube (Remarque 2).
- 3. Fermer soigneusement le couvercle du tube. Retourner plusieurs fois le tube pour mélanger le contenu.
- 4. Chauffer le tube pendant **30 minutes** dans le réacteur préchauffé à une température **de 100°C**.
- Après 30 minutes, retirer les tubes du réacteur. (ATTENTION: les tubes sont chauds!)
   Laisser les tubes refroidir jusqu'à la température ambiante.
- Ouvrir le tube de minéralisation refroidi et ajouter 2 ml de solution d'hydroxyde de sodium 1,54 N dans le tube.
- 7. Fermer soigneusement le couvercle du tube et retourner plusieurs fois le tube pour mélanger le contenu.
- 8. Placer le tube dans la chambre de mesure en s'assurant que les repères sont alignés.
- 9. Appuyer sur la touche **ZÉRO**.
- 10. Retirer le tube de la chambre de mesure
- 11. Ajouter le contenu **d'un sachet de poudre Vario Phos 3 F10** directement de l'emballage dans le tube (Remarque 2).
- 12. Fermer soigneusement le couvercle du tube et agiter plusieurs fois le tube pour mélanger le contenu (environ 10 15 sec., Remarque 3).
- 13. Placer le tube dans la chambre de mesure en s'assurant que les repères sont alignés.
- 14. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 2 minutes.

La mesure démarre automatiquement lorsque le temps de réaction est écoulé.

Le résultat s'affiche pour le Phosphate total en mg/l.

#### Préparer zéro Presser ZÉRO

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00

- 1. Respecter les règles de sécurité appropriées et suivre de bonnes pratiques de laboratoire pendant toute la procédure.
- 2. Utiliser un entonnoir pour ajouter le réactif.
- 3. Le réactif ne se dissout pas complètement.
- 4. Voir également en page 231.
- 5. Conversions:  $mg/l PO_4 = mg/l P \times 3,07$  $mg/l P_2O_5 = mg/l P \times 2,29$
- 6. ▲ P
  PO<sub>4</sub>
  P<sub>2</sub>O<sub>5</sub>

| Réactif / Accessoires                                                                                                                 | Forme de réactif/Quantité                                                                 | Référence |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------|
| VARIO Acid Reagent Vial VARIO PHOSPHATE RGT F10 PP VARIO Potassium F10 Persulfate VARIO Sodium Hydroxide 1,54 N VARIO deionised water | Set Cuvette de réactif / 50 Sachet de poudre / 50 Sachet de poudre / 50 Solution / 100 ml | 535210    |







## Phosphate, total LR avec test en cuvette

0.07 - 3 mg/l P



Ø 16 mm

#### Dissolution:

- Ouvrir une cuvette de réaction et ajouter 5 ml d'échantillon.
- Ajouter une cuillère graduée no. 4 (blanc) remplie à ras bord de Phosphate-103. (Fermer immédiatement la bouteille de réactif!)
- 3. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- Exposer pendant 30 minutes les cuvettes à une température de 100 °C dans le réacteur thermique préchauffé.
- Retirer le tube du thermoréacteur. (ATTENTION: les tubes sont chauds!)
   Retourner le tube et le laisser refroidir jusqu'à la température ambiante.

#### Procédé:

- 6. Placer la cuvette à valeur zéro (portant l'étiquette rouge) livrée dans la chambre de mesure. Positionnement  $\lambda$
- 7. Appuyer sur la touche **ZÉRO**.
- 8. Retirer la cuvette de la chambre de mesure.
- 9. Ajouter **2 gouttes (0,1 ml) de Phosphate-101** dans le tube préparé à l'avance (voir étape 5).
- 10. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 11. Ajouter une cuillère graduée no. 4 (blanc) remplie à ras bord de Phosphate-102.
- Refermer la cuvette avec son couvercle et mélanger son contenu en l'agitant jusqu'à ce que le réactif soit complètement dissout.
- 13. Mettre la cuvette dans la chambre de mesure. Positionnement  $\lambda$
- 14. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 10 minutes.

La mesure démarre automatiquement lorsque le temps de réaction est écoulé.

Le résultat s'affiche pour le Phosphate total en mg/l.

### Préparer zéro Presser ZÉRO

Zéro accepté Préparer test Presser TEST

Compte à rebours 10:00

- 1. Si l'analyse est effectuée sans minéralisation, seuls les ortho-phosphates seront dosés.
- 2. Voir également en page 231.



| Réactif / Accessoires                                                          | Forme de réactif/Quantité                            | Référence |
|--------------------------------------------------------------------------------|------------------------------------------------------|-----------|
| SET:<br>Cuvette de réaction<br>Phosphate-103<br>Phosphate-101<br>Phosphate-102 | Test en cuvette (Poudre, Réactif liquide) / 24 Tests | 2419019   |







## Phosphate, total HR avec test en cuvette

1.5 - 20 mg/l P



#### Dissolution:

- Ouvrir une cuvette de réaction et ajouter 1 ml d'échantillon.
- Ajouter une cuillère graduée no. 4 (blanc) remplie à ras bord de Phosphate-103. (Fermer immédiatement la bouteille de réactif!)
- 3. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- Exposer pendant 30 minutes les cuvettes à une température de 100 °C dans le réacteur thermique préchauffé.
- Retirer le tube du thermoréacteur.
   (ATTENTION: les tubes sont chauds!)
   Retourner le tube et le laisser refroidir jusqu'à la température ambiante.

#### Procédé:

- 6. Placer la cuvette à valeur zéro (portant l'étiquette rouge) livrée dans la chambre de mesure. Positionnement  $\Lambda$ .
- 7. Appuyer sur la touche **ZÉRO**.
- 8. Retirer la cuvette de la chambre de mesure.
- 9. Ajouter **2 gouttes (0,1 ml) de Phosphate-101** dans le tube préparé à l'avance (voir étape 5).
- 10. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 11. Ajouter une cuillère graduée no. 4 (blanc) remplie à ras bord de Phosphate-102.
- Refermer la cuvette avec son couvercle et mélanger son contenu en l'agitant jusqu'à ce que le réactif soit complètement dissout.
- 13. Mettre la cuvette dans la chambre de mesure. Positionnement  $\Lambda$ .
- 14. Appuyer sur la touche **TEST**.

Respecter un temps de réaction de 10 minutes.

La mesure démarre automatiquement lorsque le temps de réaction est écoulé.

Le résultat s'affiche pour le Phosphate total en mg/l.

#### Préparer zéro Presser ZÉRO

Zéro accepté Préparer test Presser TEST

Compte à rebours 10:00

- 1. Si l'analyse est effectuée sans minéralisation, seuls les ortho-phosphates seront dosés.
- 2. Voir également en page 231.
- 3. ▲ P
  PO<sub>4</sub>
  P<sub>2</sub>O<sub>5</sub>

| Réactif / Accessoires                                                          | Forme de réactif/Quantité                            | Référence |
|--------------------------------------------------------------------------------|------------------------------------------------------|-----------|
| SET:<br>Cuvette de réaction<br>Phosphate-103<br>Phosphate-101<br>Phosphate-102 | Test en cuvette (Poudre, Réactif liquide) / 24 Tests | 2419019   |







# Phosphate, ortho LR avec pastilles

 $0.05 - 4 \text{ mg/l PO}_{4}$ 



 Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille de PHOSPHATE No. 1 LR directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Ajouter une pastille de PHOSPHATE No. 2 LR directement de l'emballage protecteur au même échantillon et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 8. Placer la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 10:00 Appuyer sur la touche TEST.
 Attendre 10 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique l'orthophosphate en mg/l.

#### Remarques:

- 1. Seuls les ions d'ortho-phosphate réagissent.
- 2. L'ordre d'apport des pastilles doit être respecté scrupuleusement.
- 3. La valeur pH de l'échantillon d'eau devrait être comprise entre 6 et 7.
- 4. Perturbations:

La coloration de fortes concentrations de Cu, Ni, Cr (III), V (V) et W (VI) est gênante. Les silicates (masqués par l'acide citrique de la pastille) ne gênent pas.

5. Voir également en page 231.

6. Conversion:

$$mg/l P = mg/l PO_4 \times 0.33$$
  
 $mg/l P_2O_3 = mg/l PO_4 \times 0.75$ 

7. A PO<sub>4</sub>

▼ P<sub>2</sub>O<sub>5</sub>

| Réactif / Accessoires             | Forme de réactif/Quantité              | Référence |
|-----------------------------------|----------------------------------------|-----------|
| Set<br>PHOSPHATE No. 1 / No. 2 LR | Pastille / par 100<br>Agitateur inclus | 517651BT  |
| PHOSPHATE No. 1 LR                | Pastille / 100                         | 513040BT  |
| PHOSPHATE No. 2 LR                | Pastille / 100                         | 513050BT  |







# Phosphate, ortho HR avec pastille

1 – 80 mg/l PO<sub>4</sub> (Rem. 1)



 Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4 Retirer la cuvette de la chambre de mesure
- Ajouter une pastille de PHOSPHATE HR P1 directement de l'emballage dans l'échantillon d'eau et écraser la pastille avec un agitateur propre.
- Ajouter une pastille de PHOSPHATE HR P2 directement de l'emballage dans le même échantillon d'eau et écraser la pastille avec un agitateur propre.
- Fermer soigneusement le couvercle de la cuvette et agiter plusieurs fois la cuvette jusqu'à dissolution complète de la pastille.
- 8. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 10:00 Appuyer sur la touche TEST.
 Respecter un temps de réaction de 10 minutes.

La mesure démarre automatiquement lorsque le temps de réaction s'est écoulé.

Le résultat s'affiche pour l'ortho-phosphate en mg/l.

- 1. Pour des échantillons ayant un taux de phosphate inférieur à 5 mg/l  $PO_4$ , nous recommandons d'effectuer l'analyse en suivant une méthode pour plage de mesure basse, par exemple la méthode n° 320 «phosphate, ortho LR avec pastille».
- 2. Seuls les ions ortho-phosphates réagissent.
- 3. Voir également en page 231.
- 4. Conversions:  $mg/l P = mg/l PO_4 \times 0.33$  $mg/l P_2O_5 = mg/l PO_4 \times 0.75$
- 5. ▲ PO<sub>4</sub>
  P
  P<sub>2</sub>O<sub>5</sub>

| Réactif / Accessoires         | Forme de réactif/Quantité              | Référence |
|-------------------------------|----------------------------------------|-----------|
| Set<br>PHOSPHATE HR P 1 / P 2 | Pastille / par 100<br>Agitateur inclus | 517661BT  |
| PHOSPHATE HR P1               | Pastille / 100                         | 515810BT  |
| PHOSPHATE HR P2               | Pastille / 100                         | 515820BT  |







# Phosphate, ortho avec réactif en sachet de poudre (PP)

0,06 - 2,5 mg/l PO<sub>4</sub>



 Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.



- Ajouter le contenu d'un sachet de poudre VARIO Phos 3 F10 directement de l'emballage dans l'échantillon d'eau.
- Fermer soigneusement le couvercle de la cuvette et agiter plusieurs fois la cuvette pour mélanger le contenu (environ 10 – 15 sec., Remarque 1).
- 7. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00

Appuyer sur la touche TEST.
 Respecter un temps de réaction de 2 minutes.

La mesure démarre automatiquement lorsque le temps de réaction s'est écoulé.

Le résultat s'affiche pour l'ortho-phosphate en mg/l.

- 1. Le réactif ne se dissout pas complètement.
- 2. Voir également en page 231.
- 3. Conversions: mg/l P = mg/l PO<sub>4</sub> x 0,33 mg/l P<sub>2</sub>O<sub>5</sub> = mg/l PO<sub>4</sub> x 0,75 4. ▲ PO<sub>4</sub>
- 4. PO<sub>4</sub>
  P
  P<sub>2</sub>O<sub>5</sub>

| Réactif / Accessoires   | Forme de réactif/Quantité                             | Référence |
|-------------------------|-------------------------------------------------------|-----------|
| Set<br>VARIO PHOS 3 F10 | Sachet de poudre /<br>2 x 50 VARIO PHOSPHATE RGT. F10 | 531550    |







## Phosphate, ortho avec test en cuvette

0,06 - 5 mg/l PO<sub>4</sub>



- Ouvrir une cuvette de dilution PO<sub>4</sub>-P à couvercle blanc à visser et y verser 5 ml d'échantillon.
- 2. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant légèrement.

#### Préparer zéro Presser ZÉRO

- Mettre la cuvette dans la chambre de mesure. Positionnement √.
- 4. Appuyer sur la touche **ZÉRO**.
- 5. Retirer le tube de la chambre de mesure.



- 6. Ajouter le contenu **d'un sachet de poudre VARIO Phos 3 F10** directement de l'emballage dans l'échantillon d'eau (Remarque 1).
- Fermer soigneusement le capuchon du tube et agiter le tube plusieurs fois pour mélanger le contenu (environ 10 – 15 sec., Remarque 2).
- Mettre la cuvette dans la chambre de mesure. Positionnement √.

Zéro accepté Préparer test Presser TEST

Compte à rebours 2:00

Appuyer sur la touche TEST.
 Attendre un temps de réaction de 2 minutes.

La mesure démarre automatiquement lorsque le temps de réaction s'est écoulé.

Le résultat s'affiche pour l'ortho-phosphate en mg/l.

- 1. Utiliser un entonnoir pour ajouter le réactif.
- 2. Le réactif ne se dissout pas complètement.
- 3. Voir également en page 231.
- 4. Conversions: mg/l P = mg/l PO<sub>4</sub> x 0,33 mg/l P<sub>2</sub>O<sub>5</sub> = mg/l PO<sub>4</sub> x 0,75
- 5. ▲ PO<sub>4</sub>
  P
  P,O<sub>5</sub>

| Réactif / Accessoires      | Forme de réactif/Quantité | Référence |
|----------------------------|---------------------------|-----------|
| Set:                       | Set                       | 535200    |
| VARIO Dilution Vial        | Cuvette de réactif / 50   |           |
| VARIO PHOSPHATE RGT F10 PP | Sachet de poudre / 50     |           |
| VARIO l'eau déminéralisée  | 100 ml                    |           |







# Phosphate, ortho avec test en cuvette

3 - 60 mg/l PO



- Placer la cuvette à valeur zéro (portant l'étiquette rouge) livrée dans la chambre de mesure.
   Positionnement \( \lambda \)
- 2. Appuyer sur la touche ZÉRO.

#### Préparer zéro Presser ZÉRO

- 3. Retirer la cuvette de la chambre de mesure.
- Ouvrir une cuvette de réaction à visser et y ajouter 4 ml d'échantillon.
- 5. Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement.
- 6. Mettre la cuvette dans la chambre de mesure. Positionnement 

  √

Zéro accepté Préparer test Presser TEST

Compte à rebours 3:00

Appuyer sur la touche TEST.
 Attendre un temps de réaction de 3 minutes.

La mesure démarre automatiquement lorsque le temps de réaction s'est écoulé.

Le résultat s'affiche pour l'ortho-phosphate en mg/l.

- 1. Seuls les ions ortho-phosphates réagissent.
- 2. Voir également en page 231.





| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| Cuvette de réaction   | Test en cuvette / 24      | 2420701   |







# Phosphate, hydrolysable par acide avec test en cuvette

0.02 - 1.6 mg/l P



- Ouvrir le capuchon blanc d'un tube de minéralisation PO4-P Acid reagent et ajouter 5 ml d'échantillon d'eau.
- 2. Fermer soigneusement le couvercle du tube. Retourner plusieurs fois le tube pour mélanger le contenu.
- Chauffer le tube pendant 30 minutes dans le réacteur préchauffé à une température de 100°C.
- Après 30 minutes, retirer les tubes du réacteur. (ATTENTION: les tubes sont chauds!)
   Laisser les tubes refroidir jusqu'à la température ambiante.
- Ouvrir le tube de minéralisation refroidi et ajouter 2 ml de solution d'hydroxyde de sodium 1,00 N dans le tube.
- 6. Fermer soigneusement le couvercle du tube et retourner plusieurs fois le tube pour mélanger le contenu.
- 7. Mettre la cuvette dans la chambre de mesure. Positionnement  $\lambda$ .
- 8. Appuyer sur la touche **ZÉRO**.

(Remarque 2).

9. Retirer le tube de la chambre de mesure.

- 10. Ajouter le contenu **d'un sachet de poudre Vario Phos 3 F10** directement de l'emballage dans le tube
- Fermer soigneusement le couvercle du tube et agiter plusieurs fois le tube pour mélanger le contenu (environ 10 – 15 sec., Remarque 3).

Zéro accepté Préparer test Presser TEST

Préparer zéro

Presser ZÉRO

13. Appuyer sur la touche **TEST**.

Attendre un temps de réaction de 2 minutes.

Compte à rebours 2:00

La mesure démarre automatiquement lorsque le temps de réaction est écoulé.

Le résultat s'affiche pour le phosphate hydrolysable par acide en mg/l.

#### Remarques:

- 1. Respecter les règles de sécurité appropriées et suivre de bonnes pratiques de laboratoire pendant toute la procédure.
- 2. Utiliser un entonnoir pour ajouter le réactif.
- 3. Le réactif ne se dissout pas complètement.
- 4. Voir également en page 231.
- 5. Conversions: mg/l PO, = mg/l I

$$mg/l PO_4 = mg/l P x 3,07$$
  
 $mg/l P_2O_5 = mg/l P x 2,296.$ 

6. 📤 P

| Réactif / Accessoires                                                                                                                                               | Forme de réactif/Quantité                                                                                          | Référence |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------|
| VARIO Acid Reagent Vial VARIO PHOSPHATE RGT F10 PP VARIO Potassium F10 Persulfate VARIO Sodium Hydroxide 1,54 N VARIO deionised water VARIO Sodium Hydroxide 1,00 N | Set Cuvette de réactif / 50 Sachet de poudre / 50 Sachet de poudre / 50 Solution / 100 ml 100 ml Solution / 100 ml | 535250    |








# Phosphonates Méthode d'oxydation persulfate-UV avec réactif en sachet de poudre (PP)

0 - 125 mg/l (voir tableau 1)



- 1. Sélectionner le volume d'échantillon approprié dans le tableau 1 (voir à la page suivante).
- Verser le volume d'échantillon sélectionné dans une éprouvette graduée propre de 50 ml. Si nécessaire, compléter le remplissage à 50 ml avec de l'eau entièrement déminéralisée et bien mélanger.
- Remplir une cuvette propre de 24 ml jusqu'à la marque 10 ml avec l'échantillon préparé (cuvette de calibrage).
- Verser 25 ml de l'échantillon préparé dans la cuvette de dissolution.
- Dans l'échantillon de 25 ml, verser le contenu d'un sachet de poudre de Vario Potassium Persulfate F10 directement de l'emballage protecteur.
- 6. Fermer le récipient de dissolution avec le couvercle et dissoudre la poudre en basculant le récipient.
- 7. Tenir la lampe UV dans l'échantillon (rem. 3, 4, 5). Attention: porter une lunette de protection!
- 8. Allumer la lampe UV et attendre pendant un temps de réaction de 10 minutes.
- 9. Lorsque le compte à rebours est terminé, éteindre la lampe UV et la sortir de l'échantillon.
- 10. Verser dans une deuxième cuvette de 24 ml 10 ml de l'échantillon dissout (cuvette d'essai).





- 11. Dans chacune des cuvettes (cuvette de calibrage et cuvette d'essai), verser le contenu d'un sachet de poudre de Vario Phosphate Rgt. F10 directement de l'emballage protecteur.
- 12. Refermer les cuvettes avec les couvercles et mélanger le contenu en basculant les cuvettes (30 secondes) (rem. 6).

Préparer zéro Presser ZÉRO

Compte à rebours 2:00 13. Mettre la cuvette de calibrage dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

14. Appuyer alors sur la touche **ZERO**.

Attendre un temps réaction de 2 minutes (rem. 7).

La mesure s'effectue automatiquement après écoulement du temps de réaction.

- 15 Retirer la cuvette de la chambre de mesure
- 16. Mettre la cuvette d'essai dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

17. Appuyer alors sur la touche **TEST**.

La résultat s'affiche sur l'écran, en mg/l PO<sub>4</sub>3-.

Pour le calcul de la concentration en phosphonates réelle, le résultat affiché doit impérativement être multiplié par le facteur de dilution afférent, tel qu'il ressort du tableau 1.

Pour obtenir la concentration en phosphonates active, la concentration en phosphonates réelle doit être multipliée par le facteur de conversion spécifique à la substance tel qu'il ressort du tableau 2.

#### Remarques:

- Avant l'analyse, rincer tous les matériels en verre en utilisant de l'acide chlorhydrique (1:1), puis de l'eau entièrement déminéralisée. Ne pas utiliser d'agent de nettoyage contenant des phosphates.
- 2. Les phosphonates se transforment en orthophosphates lors de la dissolution aux UV. Ce processus se termine normalement au bout de 10 minutes. Les échantillons fortement contaminés organiquement ou une lampe UV peu puissante sont toutefois susceptibles de provoquer une transformation incomplète.
- 3. Lampe UV disponible sur demande.
- 4. Porter impérativement une lunette de protection UV pendant le fonctionnement de la lampe UV.
- 5. Se conformer au mode d'emploi du constructeur lors de l'utilisation de la lampe UV. Ne pas toucher à la surface de la lampe UV. Les empreintes de doigts attaquent le verre. Entre les mesures, essuyer la lampe UV à l'aide d'un torchon doux et propre.
- 6. Le réactif ne se détache pas totalement.
- 7. Le temps de réaction de 2 minutes indiqué se rapporte à une température d'échantillon supérieure à 15 °C. Attendre pendant un temps de réaction de 4 minutes si la température de l'échantillon est inférieure à 15 °C.

#### Tableaux:

Voir à la prochaine page.

## Tableau 1:

| Plage de mesure<br>prévisible<br>(mg/L phosphonate) | Volume d'échantillon<br>en ml | Facteur |
|-----------------------------------------------------|-------------------------------|---------|
| 0 – 2,5                                             | 50                            | 0,1     |
| 0 – 5,0                                             | 25                            | 0,2     |
| 0 – 12,5                                            | 10                            | 0,5     |
| 0 – 25                                              | 5                             | 1,0     |
| 0 – 125                                             | 1                             | 5,0     |

#### Tableau 2:

| Type de phosphonate | Facteur de conversion pour la concentration en phosphonates active |
|---------------------|--------------------------------------------------------------------|
| PBTC                | 2,840                                                              |
| NTP                 | 1,050                                                              |
| HEDPA               | 1,085                                                              |
| EDTMPA              | 1,148                                                              |
| HMDTMPA             | 1,295                                                              |
| DETPMPA             | 1,207                                                              |
| HPA                 | 1,490                                                              |

| Réactif / Accessoires          | Forme de réactif/Quantité | Référence |
|--------------------------------|---------------------------|-----------|
| Set                            |                           | 535220    |
| VARIO Potassium F10 Persulfate | Sachet de poudre / 100    |           |
| VARIO PHOSPHATE RGT F10 PP     | Sachet de poudre / 200    |           |

Les valeurs-limites indiquées baissent proportionnellement à l'augmentation du volume de l'échantillon.

Exemple: Pour un volume d'échantillon de 5 ml, la valeur-limite pour le fer est de 200 mg/L. Si vous utilisez un volume d'échantillon de 10 ml, la valeur-limite baissera à 100 mg/L.

#### Tableau 3:

| Substances interférentes                                                   | Valeur-limite pour les volumes<br>d'échantillon de 5 ml                                                           |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Aluminium                                                                  | 100 mg/l                                                                                                          |
| Arsenate                                                                   | Interfère en toutes concentrations                                                                                |
| Benzotriazole                                                              | 10 mg/l                                                                                                           |
| Hydrogénocarbonate (bicarbonate)                                           | 1000 mg/l                                                                                                         |
| Bromure                                                                    | 100 mg/l                                                                                                          |
| Calcique                                                                   | 5000 mg/l                                                                                                         |
| Acide trans-diaminocyclohexane-1,2-<br>N,N,N',N'-tétraacétique monohydraté | 100 mg/l                                                                                                          |
| Chlorure                                                                   | 5000 mg/l                                                                                                         |
| Chromate                                                                   | 100 mg/l                                                                                                          |
| Cuivre                                                                     | 100 mg/l                                                                                                          |
| Cyanure                                                                    | 100 mg/l; la dissolution UV devrait être prolongée à 30 minutes.                                                  |
| Diethanoldithiocarbamate                                                   | 50 mg/l                                                                                                           |
| EDTA                                                                       | 100 mg/l                                                                                                          |
| Fer                                                                        | 200 mg/l                                                                                                          |
| Nitrates                                                                   | 200 mg/l                                                                                                          |
| NTA                                                                        | 250 mg/l                                                                                                          |
| Ortho-Phosphates                                                           | 15 mg/l                                                                                                           |
| Phosphite et Organophosphate                                               | réagissent en quantité; Les méta-<br>phosphates et les polyphosphates<br>n'interfèrent pas                        |
| Dioxyde de silicium                                                        | 500 mg/l                                                                                                          |
| Silicate                                                                   | 100 mg/l                                                                                                          |
| Sulfate                                                                    | 2000 mg/l                                                                                                         |
| Sulfure                                                                    | Interfère en toutes concentrations                                                                                |
| Sulfites                                                                   | 100 mg/l                                                                                                          |
| Thiourée                                                                   | 10 mg/l                                                                                                           |
| Echantillons fortement tamponnés ou fortement alcalins/acides              | Peuvent dépasser la capacité de<br>tamponnage des réactifs et exiger le<br>traitement préalable des échantillons. |







## Plomb avec MERCK Spectroquant® Test, No. 1.09717.0001

0,1 - 5 mg/l Pb



- Remplir une cuvette propre de 10 mm avec l'échantillon.
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer alors sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.

Attention! Le réactif Pb-1 contient du cyanure de potassium. Respecter impérativement l'ordre indiqué de dosage! (rem. 4)

- Remplir un récipient d'analyse approprié avec 0,5 ml de réactif Pb-1.
- 6. Ajouter **0,5 ml de réactif Pb-2** et mélanger la solution.
- 7. Ajouter **8 ml d'échantillon** et mélanger la solution
- 8. Remplir la cuvette de 10 mm avec la solution.
- 9. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

10. Appuyer alors sur la touche **TEST**.

Le résultat s'affiche dans l'affichage en mg/l de plomb.

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- 5. Toujours mesurer les volumes d'échantillon et de réactif à l'aide de pipettes volumétriques (classe A).
- 6. Le test dose uniquement les ions Pb²+. Les échantillons doivent être prétraités ou décomposés par minéralisation avant de pouvoir mesurer le plomb colloïdal, non dissous et lié au complexe.

| Réactif / Accessoires            | Forme de réactif/Quantité  | Référence |
|----------------------------------|----------------------------|-----------|
| MERCK Spectroquant® 1.09717.0001 | Test en cuvette / 50 Tests | 420753    |

# Plomb avec MERCK Spectroquant® test en cuvette, No. 1.14833.0001

0,1 - 5 mg/l Pb







#### Procédure A

Choisir ce test pour la détermination du plomb dans les eaux de dureté faible à moyenne avec une concentration en Ca<sup>2+</sup> inférieure à 70 mg/l (environ 10°d).







#### Procédure B

Choisir ce test pour la détermination du plomb dans les eaux de dureté élevée à très élevée avec une concentration en Ca<sup>2+</sup> comprise entre 70 mg/l et 500 mg/l (environ 10°d à 70°d).

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- 5. La réaction étant dépendante de la température, la température de l'échantillon doit être comprise entre 10 et 40°C.
- 6. Toujours mesurer les volumes d'échantillon et de réactif à l'aide de pipettes volumétriques (classe A).
- 7. Le test dose uniquement les ions Pb<sup>2+</sup>. Les échantillons doivent être prétraités ou décomposés par minéralisation avant de pouvoir mesurer le plomb non dissous et lié au complexe.
- Stocker les réactifs dans des récipients fermés à une température comprise entre + 15°C et + 25°C.
- 9. Le pH de l'échantillon à tester doit être compris entre 3 et 6.

| Réactif / Accessoires            | Forme de réactif/Quantité  | Référence |
|----------------------------------|----------------------------|-----------|
| MERCK Spectroquant® 1.14833.0001 | Test en cuvette / 25 Tests | 420754    |







# Plomb avec MERCK Spectroquant® test en cuvette, No. 1.14833.0001

0.1 - 5 mg/l Pb



#### Procédure A

Préparer deux cuvettes de réaction propres. Une des deux cuvettes sera marquée comme cuvette étalon.

Attention! Les cuvettes de réaction contiennent du cyanure de potassium. Respecter impérativement l'ordre indiqué de dosage! (rem. 4)

 Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans chaque cuvette:

5 gouttes de réactif Pb-1K

- Bien refermer les couvercles respectifs des cuvettes et mélanger le contenu.
- 3. Mettre dans la cuvette étalon 5 ml d'eau déminéralisée (ceci est le blanc, rem. 6).
- Ajouter au deuxième tube préparée 5 ml d'échantillon d'eau (ceci constitue la solution à tester, rem. 6).
- 5. Bien refermer les couvercles respectifs des cuvettes et mélanger le contenu.

#### Préparer zéro Presser ZÉRO

- 7. Appuyer sur la touche **ZÉRO**.
- 8 Retirer la cuvette de la chambre de mesure
- 9. Placer ensuite la cuvette d'échantillon dans la chambre de mesure. Positionnement  $\sqrt{\phantom{a}}$ .

Zéro accepté Préparer test Presser TEST

Appuyer sur la touche **TEST**.
 Le résultat s'affiche dans l'affichage en mg/l de plomb.

Remarques: cf. page précédente







# Plomb avec MERCK Spectroquant® test en cuvette, No. 1.14833.0001

0.1 - 5 mg/l Pb



#### Procédure B

Préparer deux cuvettes de réaction propres. Une des deux cuvettes sera marquée comme cuvette étalon.

Attention! Les cuvettes de réaction contiennent du cyanure de potassium. Respecter impérativement l'ordre indiqué de dosage! (rem. 4)

 Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans chaque cuvette:

#### 5 gouttes de réactif Pb-1K

- 2. Bien refermer les couvercles respectifs des cuvettes et mélanger le contenu.
- 3. Mettre dans la cuvette étalon 5 ml d'eau déminéralisée (ceci est le blanc, rem. 6).
- 4. Ajouter au deuxième tube préparée 5 ml d'échantillon d'eau (ceci constitue la solution à tester, rem. 6).
- 5. Bien refermer les couvercles respectifs des cuvettes et mélanger le contenu.
- 6. Placer ensuite la cuvette de calibrage dans la chambre de mesure. Positionnement  $\frac{1}{\lambda}$ .

#### Préparer zéro Presser ZÉRO

- 7. Appuyer sur la touche **ZÉRO**.
- 8. Retirer la cuvette de calibrage de la chambre de mesure.

9. Placer ensuite la cuvette d'échantillon dans la chambre de mesure. Positionnement  $\frac{1}{\Delta}$ .

#### Zéro accepté Préparer T 1 Presser TEST

- 10. Appuyer sur la touche **TEST**.
- 11. Retirer la cuvette échantillon de la chambre de mesure et l'ouvrir avec précaution.
- 12. Ajouter 1 micro-cuillère graduée de réactif Pb-2K dans la cuvette échantillon.
- Bien refermer la cuvette avec son couvercle et mélanger son contenu jusqu'à ce que le réactif soit complètement dissoute
- 14. Placer ensuite la cuvette d'échantillon dans la chambre de mesure. Positionnement  $\lambda$ .

T 1 accepté Préparer T 2 Presser TEST

Appuyer sur la touche **TEST**.
 Le résultat s'affiche dans l'affichage en mg/l de plomb.

Remarques: cf. page précédente







# Potassium avec pastilles

1 – 16 mg/l K



 Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

 Mettre la cuvette dans la chambre de mesure. Positionnement ∑.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer alors sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille de POTASSIUM T directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec son couvercle et mélanger le contenu en agitant légèrement jusqu'à dissolution complète de la pastille.
- 7. Mettre la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

#### Zéro accepté Préparer test Presser TEST

8. Appuyer alors sur la touche **TEST**.

Le résultat s'affiche dans l'affichage en mg/l de potassium

#### Remarques:

1. La présence de potassium donne une solution trouble. Les particules les plus petites ne sont pas dues au potassium.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| Potassium T           | Pastille / 100            | 515670    |







# Solides en suspension

0 - 750 mg/l TSS

#### Préparation de l'échantillon:

Homogénéiser 500 ml d'échantillon d'eau pendant 2 minutes dans un mixeur tournant à haut régime.



- Verser 10 ml d'eau déminéralisée dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZERO**.
- 4. Retirer la cuvette de la chambre de mesure et la vider complètement.
- 5. Bien mélanger l'échantillon d'eau homogénéisé. Procéder au rinçage préalable de la cuvette contenant l'échantillon, puis la remplir de cet échantillon.
- 6. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Zéro accepté Préparer test Presser TEST

7. Appuyer sur la touche **TEST**.

La résultat s'affiche sur l'écran, en mg/l TSS (Total Suspended Solids).

- 1. La détermination photométrique des matières solides en suspension se fonde sur une méthode gravimétrique. Dans un laboratoire, la concentration par évaporation du résidu de filtration d'un échantillon d'eau séparé par filtration est réalisée habituellement dans un four à 103 – 105 °C, puis le résidu séché est pesé.
- 2. L'analyse gravimétrique d'un échantillon doit être effectuée si une précision plus élevée est requise. Ce résultat peut être utilisé pour le réglage du photomètre à l'aide du même échantillon, par l'utilisateur.
- 3. La limite de détection estimative est de 20 mg/l TSS pour cette méthode.
- 4. Mesurer l'échantillon d'eau le plus rapidement possible après le prélèvement de l'échantillon. Les échantillons peuvent être conservés jusqu'à 7 jours à une température de 4°C dans des bouteilles en plastique ou en verre. Nous recommandons d'effectuer la mesure à la même température que celle ayant prévalu à la date du prélèvement des échantillons. Les différences de température entre la mesure et le prélèvement des échantillons peuvent influencer le résultat de la mesure.
- 5. Interférences:
  - Les bulles d'air provoquent des interférences, elles peuvent être éliminées par un léger basculement de la cuvette.
  - La couleur provoque des interférences lorsque la lumière est absorbée à 660 nm.







# Sulfate avec réactif en sachet de poudre (PP)

2 - 100 mg/l SO<sub>4</sub>



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la **cuvette** de la chambre de mesure.



- Ajouter le contenu d'un sachet de poudre de VARIO Sulpha 4 / F10 directement de l'emballage protecteur dans l'échantillon de 10 ml.
- 6. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant.
- Mettre la cuvette dans la chambre de mesure. Positionnement √X.

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00

Appuyer sur la touche TEST.
 Attendre 5 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique le sulfate en mg/l.

### Remarques:

1. Le sulfate peut provoquer une turbidité finement répartie.

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| VARIO Sulpha 4 / F10  | Sachet de poudre / 100    | 532160    |







# Sulfite avec pastilles

0,1 - 10 mg/l SO<sub>3</sub>



 Remplir une cuvette propre de 10 mm avec l'échantillon.

10 mm

2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

3. Appuyer sur la touche **ZÉRO**.

- 4. Retirer la cuvette de la chambre de mesure, la vider complètement et bien l'essuyer.
- Remplir un récipient d'analyse approprié avec 10 ml d'échantillon.
- 6. Ajouter **une pastille de SULFITE LR** directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre. Agiter de façon à dissoudre la pastille.
- 7. Remplir la cuvette de 10 mm avec la solution.
- 8. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

Compte à rebours 5:00

Appuyer sur la touche TEST.
 Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement lorsque le temps de réaction s'est écoulé.

Le résultat s'affiche en mg/l sulfite.



| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| SULFITE LR            | Pastille / 100            | 518020BT  |







# Sulfite avec pastilles

0,05 - 4 mg/l SO<sub>3</sub>



1. Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\nabla$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche ZÉRO.
- 4. Retirer la cuvette de la chambre de mesure.
- 5. Ajouter une pastille de SULFITE LR directement de l'emballage dans l'échantillon d'eau et écraser la pastille à l'aide d'un agitateur.
- 6. Fermer soigneusement le couvercle de la cuvette et agiter plusieurs fois la cuvette jusqu'à dissolution complète de la pastille.
- 7. Mettre la cuvette dans la chambre de mesure. Positionnement  $\nabla$ .

Zéro accepté Préparer test **Presser TEST** 

Compte à rebours 5:00

8. Appuyer sur la touche **TEST**. Respecter un temps de réaction de 5 minutes.

La mesure démarre automatiquement lorsque le temps de réaction s'est écoulé.

Le résultat s'affiche en mg/l sulfite.



| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| SULFITE LR            | Pastille / 100            | 518020BT  |







# Sulfure avec pastilles

0.04 - 0.5 mg/l S



- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

#### Préparer zéro Presser ZÉRO

- 3. Appuyer alors sur la touche **ZÉRO**.
- 4 Retirer la cuvette de la chambre de mesure
- Dans l'échantillon de 10 ml, ajouter une pastille de SULFIDE No. 1, écraser et dissoudre cette dernière à l'aide d'un agitateur propre.
- Ajouter au même échantillon une pastille de SULFIDE No. 2 et l'écraser à l'aide d'un agitateur propre.
- Fermer la cuvette avec son couvercle et mélanger le contenu en agitant la cuvette jusqu'à ce que les pastilles se soient dissoutes.
- 8. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

Zéro accepté Préparer test Presser TEST

Compte à rebours 10:00 Appuyer alors sur la touche TEST.
 Attendre un temps de réaction de 10 minutes.

La mesure s'effectue automatiquement après l'expiration du temps de réaction.

Le résultat s'affiche sur l'écran en mg/l de dioxyde de sulfure.

#### Remarques:

- 1. Il importe de respecter impérativement l'ordre d'ajout des pastilles.
- 2. Le chlore et les autres agents d'oxydation, qui réagissent avec le DPD, ne perturbent pas l'analyse.
- 3. Pour éviter les pertes de sulfure, l'échantillon doit être prélevé soigneusement sous une influence minimale de l'air. Par ailleurs, l'analyse doit être effectuée immédiatement après le prélèvement de l'échantillon.
- 4. La température recommandée pour l'analyse s'élève à 20 °C. Toute déviation de cette température sera susceptible de conduire à des différences en moins ou en plus.
- 5. Conversion:  $H_2S = mg/l S \times 1,06$



S H<sub>2</sub>S

| Réactif / Accessoires | Forme de réactif/Quantité  | Référence |
|-----------------------|----------------------------|-----------|
| SULFIDE No. 1         | Pastille / Bouteille / 100 | 502930    |
| SULFIDE No. 2         | Pastille / Bouteille / 100 | 502940    |







# Tensio-actifs, dérivé tensioactif avec MERCK Spectroquant® test en cuvette, No. 1.14697.0001

0,05 - 2 mg/l MBAS



Préparer deux cuvettes de réaction propres. Une des deux cuvettes sera marquée comme cuvette étalon.

- Mettre dans la cuvette étalon 5 ml d'eau déminéralisée (ceci est le blanc, rem. 6). Ne pas mélanger le contenu!
- Ajouter au deuxième tube préparée 5 ml d'échantillon d'eau (ceci constitue la solution à tester, rem. 6). Ne pas mélanger le contenu!
- 3. Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans chaque cuvette:

Ajouter 2 gouttes de réactif T-1K.

- 4. Bien refermer les couvercles respectifs des cuvettes et secouer pendant **30 secondes**.
- 5. Placer ensuite la cuvette de calibrage dans la chambre de mesure. Positionnement 

  ↓.

#### Préparer zéro Presser ZÉRO

- 6. Appuyer sur la touche **ZÉRO**.
- 7. Retirer la cuvette de calibrage de la chambre de mesure.

Compte à rebours 10:00 départ: ↓

8. Appuyer sur la touche [4].

Attendre 10 minutes de temps de réaction.

Après écoulement du temps de réaction, procéder comme suit:

9. **Agiter légèrement** la cuvette d'échantillon et mettre la cuvette dans la chambre de mesure.

Positionnement \( \int \). (rem. 8)

Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique le sulfate en mg/l MBAS.

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- La réaction étant sensible à la température, la température de l'échantillon et du tube doit être comprise entre 10 et 20°C.
- Toujours mesurer le volume de l'échantillon à l'aide d'une pipette volumétrique (classe A).
- 7. Stocker les réactifs dans des récipients fermés à une température comprise entre + 15°C et + 25°C.
- 8. Agiter légèrement le tube avant la mesure. Si la phase inférieure est trouble, réchauffer le tube brièvement dans la main.
- 9. Le pH de l'échantillon à tester doit être compris entre 5 et 10.
- 10.MBAS = Methylene Blue Active Substances (substances actives au bleu de méthylène), calculé en 1-dodécanesulfonate de sodium

| Réactif / Accessoires            | Forme de réactif/Quantité  | Référence |
|----------------------------------|----------------------------|-----------|
| MERCK Spectroquant® 1.14697.0001 | Test en cuvette / 25 Tests | 420763    |







# Tensio-actifs, dérivé tensioactif avec MERCK Spectroquant® test en cuvette, No. 1.02552.0001



0,05 – 2 mg/l SDSA<sup>1)</sup> 0,06 – 2,56 mg/l SDBS<sup>2)</sup> 0,05 – 2,12 mg/l SDS<sup>3)</sup>

0,08 – 3,26 mg/l SDOSSA<sup>4)</sup>

Préparer deux cuvettes de réaction propres.

Repérer l'une des deux cuvettes comme cuvette de calibrage.

- Mettre dans la cuvette étalon 5 ml d'eau déminéralisée (cuvette de calibrage, rem. 6). Ne pas mélanger le contenu!
- Ajouter au deuxième tube préparée 5 ml d'échantillon d'eau (cuvette d'échantillon, rem. 6). Ne pas mélanger le contenu!
- 3. Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans chaque cuvette:

Ajouter 2 gouttes de réactif T-1K.

 Bien refermer les couvercles respectifs des cuvettes et mélanger son contenu en l'agitant énergiquement pendant 30 secondes.

#### Compte à rebours 10:00 départ: ⊿

5. Appuyer sur la touche [4].

Attendre 10 minutes de temps de réaction.

Après écoulement du temps de réaction, procéder comme suit:

 Agiter légèrement la cuvette de calibrage et mettre la cuvette dans la chambre de mesure.

Positionnement  $\int_{-\infty}^{\infty} (rem. 7)$ 

#### Préparer zéro Presser ZÉRO

- 7. Appuyer sur la touche **ZÉRO**.
- 8. Retirer la cuvette de la chambre de mesure.
- Agiter légèrement la cuvette d'échantillon et mettre la cuvette dans la chambre de mesure.

Positionnement  $\int_{-1}^{1}$  (rem. 7)

Zéro accepté Préparer test Presser TEST

Appuyer sur la touche TEST.
 Le résultat s'affiche sur l'écran, en mg/l SDSA.

#### Remarques:

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- 5. La réaction étant sensible à la température, la température de l'échantillon doit être comprise entre **15 et 20°C** et du tube doit être comprise entre **10 et 20°C**.
- 6. Toujours mesurer le volume de l'échantillon à l'aide d'une pipette volumétrique (classe A).
- 7. Si la phase inférieure est trouble, réchauffer le tube brièvement dans la main.
- 8. La valeur pH de l'échantillon d'eau devrait être comprise entre 5 et 10.
- 9. ▲ SDSA<sup>1)</sup>
  SDBS<sup>2)</sup>

SDS<sup>3)</sup>

▼ SDOSSA<sup>4)</sup>

| Réactif / Accessoires            | Forme de réactif/Quantité  | Référence |
|----------------------------------|----------------------------|-----------|
| MERCK Spectroquant® 1.02552.0001 | Test en cuvette / 25 Tests | 420763    |

<sup>&</sup>lt;sup>1)</sup> calculated as sodium 1-dodecanesulfonate (APHA 5540, ASTM 2330-02, ISO 7875-1)

<sup>&</sup>lt;sup>2)</sup> calculated as sodium dodecylbenzenesulfonate (EPA 425.1)

<sup>3)</sup> calculated as sodium dodecvl sulfate

<sup>&</sup>lt;sup>4)</sup> calculated as Sodium dioctyl sulfosuccinate







# Tensio-actifs, non ioniques avec MERCK Spectroquant® test en cuvette, No. 1.01787.0001



0,1 – 7,5 mg/l Triton® X-100 0,11 – 8,25 mg/l NP 10

Préparer deux cuvettes de réaction propres. Repérer l'une des deux cuvettes comme cuvette de calibrage.

- Mettre dans la cuvette étalon 4 ml d'eau déminéralisée (cuvette de calibrage, rem. 6).
- 2. Ajouter au deuxième tube préparée 4 ml d'échantillon d'eau (cuvette d'échantillon, rem. 6).
- Bien refermer les couvercles respectifs des cuvettes et mélanger son contenu en l'agitant énergiquement pendant 1 minute.

#### Compte à rebours 2:00 départ: 🔟

4. Appuyer sur la touche [4].

Attendre 2 minutes de temps de réaction.

Après écoulement du temps de réaction, procéder comme suit:

 Agiter légèrement la cuvette de calibrage et mettre la cuvette dans la chambre de mesure. Positionnement \(\frac{1}{3}\).

#### Préparer zéro Presser ZÉRO

- 6. Appuyer sur la touche **ZÉRO**.
- 7. Retirer la cuvette de la chambre de mesure.
- Agiter légèrement la cuvette d'échantillon et mettre la cuvette dans la chambre de mesure. Positionnement \( \frac{1}{4} \)

Zéro accepté Préparer test Presser TEST

9. Appuyer sur la touche **TEST**.

Le résultat s'affiche sur l'écran, en mg/l Triton® X-100.

#### Remarques:

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- 5. La réaction étant sensible à la température, la température de l'échantillon et du tube doit être comprise entre **20 et 25°C**.
- 6. Toujours mesurer le volume de l'échantillon à l'aide d'une pipette volumétrique (classe A).
- 7. La valeur pH de l'échantillon d'eau devrait être comprise entre 3 et 9.
- 8. Triton® est une marque commerciale déposée de DOW Chemical Company.
- 9. ▲ Triton® X-100

**▼** NP 10

| Réactif / Accessoires            | Forme de réactif/Quantité  | Référence |
|----------------------------------|----------------------------|-----------|
| MERCK Spectroquant® 1.01787.0001 | Test en cuvette / 25 Tests | 420764    |

<sup>1)</sup> Nonylphenol Ethoxylat







# Tensio-actifs, cationiques avec MERCK Spectroquant® test en cuvette, No. 1.01764.0001

0,05 - 1,5 mg/l CTAB



Préparer deux cuvettes de réaction propres. Repérer l'une des deux cuvettes comme cuvette de calibrage.

- Mettre dans la cuvette étalon 5 ml d'eau déminéralisée (cuvette de calibrage, rem. 6). Ne pas mélanger le contenu!
- Ajouter au deuxième tube préparée 5 ml d'échantillon d'eau (cuvette d'échantillon , rem. 6). Ne pas mélanger le contenu!
- Pipeter 0,5 ml de réactif T-1K dans chaque tube. (rem. 6)
- 4. Bien refermer les couvercles respectifs des cuvettes et l'agiter légèrement pendant **30 secondes**.

#### Compte à rebours 5:00 départ: 🔟

5. Appuyer sur la touche [4].

Attendre 5 minutes de temps de réaction.

Après écoulement du temps de réaction, procéder comme suit:

 Mettre la cuvette de calibrage dans la chambre de mesure. Positionnement \( \lambda \). (rem. 9)

#### Préparer zéro Presser ZÉRO

- 7. Appuyer sur la touche **ZÉRO**.
- 8. Retirer la cuvette de la chambre de mesure.
- Placer ensuite la cuvette échantillon dans la chambre de mesure. Positionnement \(\int \). (rem. 9)

Zéro accepté Préparer test Presser TEST

Appuyer sur la touche TEST.
 Le résultat s'affiche sur l'écran, en mg/l CTAB.

- 1. Cette méthode est adaptée de MERCK.
- 2. Avant de réaliser le test, lire les instructions du test d'origine (livrées avec le test) et la FDS (disponible sur www.merckmillipore.com).
- 3. Spectroquant® est une marque commerciale déposée de MERCK KGaA.
- 4. Respecter les normes de sécurité et de bonnes pratiques de laboratoire pendant toute la procédure.
- La réaction étant sensible à la température, la température de l'échantillon et du tube doit être comprise entre 20 et 25°C.
- 6. Toujours mesurer le volume de l'échantillon à l'aide d'une pipette volumétrique (classe A).
- 7. CTAB = calculé en bromure de N-cétyl-N,N,N-triméthylammonium
- 8. La valeur pH de l'échantillon d'eau devrait être comprise entre 3 et 8.
- 9. Si la phase inférieure est trouble, réchauffer le tube brièvement dans la main.

| Réactif / Accessoires            | Forme de réactif/Quantité  | Référence |
|----------------------------------|----------------------------|-----------|
| MERCK Spectroquant® 1.01764.0001 | Test en cuvette / 25 Tests | 420765    |







# **Turbidité**

5 – 500 FAU



- Remplir la cuvette propre de 50 mm avec de l'eau déminéralisée.
- 2. Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure et la vider complètement.
- Bien mélanger l'échantillon d'eau. Procéder au rinçage préalable de la cuvette de 50 mm contenant l'échantillon d'eau, puis la remplir de cet échantillon.
- Mettre la cuvette dans la chambre de mesure. Prêter attention positionnement.

Zéro accepté Préparer test Presser TEST

7. Appuyer sur la touche **TEST**.

Le résultat s'affiche en FAU.

#### Remarques:

- 1. Ce test utilise une méthode de rayonnement atténué pour la mesure de FAU (Unité d'Atténuation Formazine). Les résultats ne peuvent pas être utilisés pour des rapports USEPA, mais ils peuvent être utilisés pour des mesures de routine. La méthode de rayonnement atténué est différente de la méthode néphélométrique.
- 2. Mesurer l'échantillon d'eau le plus rapidement possible après le prélèvement de l'échantillon. Les échantillons peuvent être conservés jusqu'à 48 heures à une température de 4°C dans des bouteilles en plastique ou en verre. Nous recommandons d'effectuer la mesure à la même température que celle ayant prévalu à la date du prélèvement des échantillons. Les différences de température entre la mesure et le prélèvement des échantillons sont capables de modifier la turbidité des échantillons.
- 3. L'interférence de couleur est minimisée par la mesure à 860 nm. Les interférences dépendent de l'absorption lumineuse à 860 nm et des bulles de gaz.
- 4. Les bulles d'air falsifient la mesure de la turbidité. Le cas échéant, dégazer les échantillons dans un bain à ultrasons.







## Urée avec pastille et réactif liquide

 $0.01 - 2 \text{ mg/l (NH<sub>2</sub>)}_{2} CO (\text{mg/l Urea})$ 



Ø 24 mm

#### Préparer zéro Presser ZÉRO

- 1. Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.
- 2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- 5. En présence du chlore libre (HOCI), ajouter une pastille de UREA PRETREAT directement de l'emballage protecteur et l'écraser à l'aide d'un agitateur propre (Remarque 10).
- 6. Bien refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution de la pastille.
- 7. Ajouter dans l'échantillon de 10 ml 2 gouttes de réactif Urea 1 (remarque 9).
- 8. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant l'ensemble.
- 9. Ajouter au même échantillon 1 goutte de réactif Urea 2 (Urease).
- 10. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant l'ensemble.

Compte à rebours 5:00 départ: 🔟

11. Appuyer sur la touche [].

Attendre 5 minutes de temps de réaction.

Après écoulement du temps de réaction, procéder comme suit:

- 12. Ajouter dans l'échantillon préparé, une pastille d'AM-MONIA No. 1 directement de l'emballage protecteur et écraser à l'aide d'un agitateur propre.
- 13. Ajouter au même échantillon, une pastille d'AMMO-NIA No. 2 directement de l'emballage protecteur et écraser à l'aide d'un agitateur propre.

- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète des pastilles.
- 15. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- 16. Appuyer sur la touche **TEST**.

Attendre 10 minutes de temps de réaction.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

Le résultat de la mesure s'affiche et indique l'urée en ma/l.

## Zéro accepté Préparer test Presser TEST

Compte à rebours 10:00

#### Remarques:

- 1. La température de l'échantillon doit être comprise entre 20°C et 30°C.
- 2. Effectuer l'analyse au plus tard une heure après le prélèvement de l'échantillon.
- 3. Les concentrations supérieures à 2 mg/l d'urée peuvent provoquer des résultats compris dans la plage de mesure. Dans ce cas, il convient de diluer l'échantillon d'eau avec de l'eau sans urée et de recommencer la mesure (test de plausibilité).
- 4. Il convient de suivre scrupuleusement l'ordre d'apport des pastilles.
- 5. La pastille d'AMMONIA No. 1 ne se dissout complètement qu'après l'apport de la pastille d'AMMONIA No. 2.
- Pour éviter la formation de cristaux, ne pas stocker le reactif urea 1 à moins de 10°C.
   Bien fermer le réactif 2 (Urease) et conserver dans un réfrigérateur entre 4°C et 8°C.
- 7. L'ammonium et la chloramine sont également saisis lors de la détermination de l'urée.
- 8. Dans le cas d'analyse d'échantillons d'eau de mer, ajouter une mesure d'Ammonia Conditioning Powder avant la pastille d'AMMONIA No. 1 et dissoudre en agitant.
- 9. Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans la cuvette.
- 10. Une pastille UREA PREATREAT permet de compenser l'interférence du chlore libre jusqu'à 2 mg/l (deux pastilles jusqu'à 4 mg/l, trois pastilles jusqu'à 6 mg/l).

| Réactif / Accessoires        | Forme de réactif/Quantité              | Référence |
|------------------------------|----------------------------------------|-----------|
| UREA PRETREAT                | Pastille / 100                         | 516110BT  |
| UREA réactif 1               | Réactif liquide / 15 ml                | 459300    |
| UREA réactif 2               | Réactif liquide / 10 ml                | 459400    |
| Set<br>AMMONIA No. 1 / No. 2 | Pastille / par 100<br>Agitateur inclus | 517611BT  |
| AMMONIA No. 1                | Pastille / 100                         | 512580BT  |
| AMMONIA No. 2                | Pastille / 100                         | 512590BT  |







# Valeur pH 6,5 – 8,4 avec pastille



 Verser 10 ml d'échantillon dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

2. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4 Retirer la cuvette de la chambre de mesure
- Ajouter une pastille de PHENOL RED PHOTOMETER directement de l'emballage protecteur dans l'échantillon de 10 ml et l'écraser à l'aide d'un agitateur propre.
- Refermer la cuvette avec le couvercle et mélanger le contenu en agitant jusqu'à dissolution complète de la pastille.
- 7. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

## Zéro accepté Préparer test Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique la valeur pH.

#### Remarques:

- 1. Pour la détermination de la valeur pH photométrique, n'utiliser que des pastilles PHENOL RED avec une inscription noire sur l'emballage indiquant PHOTOMETER.
- 2. Les échantillons d'eau à faible dureté de carbonate\* peuvent conduire à des valeurs erronées de pH.
  - \*Ks4,3 < 0,7 mmol/l  $\stackrel{\triangle}{=}$  alcalinité totale < 35 mg/l CaCO<sub>3</sub>.
- 3. Les valeurs pH inférieures à 6,5 et supérieures à 8,4 peuvent conduire à des résultats compris dans la plage de mesure.
- 4. Erreur due aux sels

Aux salinités jusqu'à 2 g /L, aucune erreur importante du sel est prévue en raison de la salinité de la pastille. Aux salinités élevées, il faut corriger la valeur mesurée comme suivant:

| Contenu en sels | 30 g/l (eau de mer)  | 60 g/l               | 120 g/l              | 180 g/l              |
|-----------------|----------------------|----------------------|----------------------|----------------------|
| Correction      | - 0,15 <sup>1)</sup> | - 0,21 <sup>2)</sup> | - 0,26 <sup>2)</sup> | - 0,29 <sup>2)</sup> |

<sup>1)</sup> selon la Kolthoff (1922)

<sup>&</sup>lt;sup>2)</sup> selon la Parson und Douglas (1926)

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| PHENOL RED PHOTOMETER | Pastille / 100            | 511770BT  |







# Valeur pH 6,5 – 8,4 avec réactif liquide



1. Verser **10 ml d'échantillon** dans une cuvette propre de 24 mm et fermer le couvercle de la cuvette.

 Mettre la cuvette dans la chambre de mesure. Positionnement √X.

#### Préparer zéro Presser ZÉRO

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même taille dans la cuyette.

6 gouttes de solution de PHENOL RED.

- 6. Refermer la cuvette avec le couvercle et mélanger le contenu en agitant.
- 7. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .

### Zéro accepté Préparer test Presser TEST

8. Appuyer sur la touche **TEST**.

Le résultat de la mesure s'affiche et indique la valeur pH.

#### Remarques:

- 1. Lors de l'analyse d'eau chlorée, la teneur en résidus de chlore peut conditionner la réaction de coloration du réactif liquide. La mesure du pH n'en sera pas gênée si l'on met un petit cristal de sulfate de sodium (Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> · 5 H<sub>2</sub>O) dans la solution d'échantillon avant de diluer la solution de PHENOL RED. Les pastilles de PHENOL RED contiennent déjà du thiosulfate.
- 2. Les différentes tailles de gouttes peuvent provoquer de plus grandes déviations des résultats de test qu'en cas d'utilisation de pastilles. L'emploi d'une pipette (0,18 ml correspondent à 6 gouttes) permet de minimiser ces écarts.
- 3. Il convient de refermer les flacons compte-gouttes immédiatement après l'emploi avec leur bouchon de couleur respectif.

#### 4. Conserver le réactif au frais entre 6°C et 10°C.

5. Erreur due aux sels

Aux salinités élevées, il faut corriger la valeur mesurée comme suivant:

| Contenu en sels | 30 g/l (eau de mer)  | 60 g/l               | 120 g/l              | 180 g/l              |
|-----------------|----------------------|----------------------|----------------------|----------------------|
| Correction      | - 0,15 <sup>1)</sup> | - 0,21 <sup>2)</sup> | - 0,26 <sup>2)</sup> | - 0,29 <sup>2)</sup> |

<sup>1)</sup> selon la Kolthoff (1922)

<sup>2)</sup> selon la Parson und Douglas (1926)

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| PHENOL RED solution   | Réactif liquide / 15 ml   | 471040    |







# Zinc avec pastilles

0,02 - 0,9 mg/l Zn



- Ø 24 mm
- Verser 10 ml d'échantillon dans une cuvette propre de 24 mm
- Ajouter une pastille de COPPER / ZINC LR directement de l'emballage dans l'échantillon d'eau et l'écraser à l'aide d'un agitateur propre.
- 3. Fermer soigneusement le couvercle de la cuvette et agiter la cuvette plusieurs fois jusqu'à dissolution complète de la pastille.
- Mettre la cuvette dans la chambre de mesure. Positionnement X.

#### Préparer zéro Presser ZÉRO

#### Compte à rebours 5:00

5. Appuyer sur la touche **ZÉRO**.

Attendre un temps réaction de 5 minutes.

La mesure s'effectue automatiquement après écoulement du temps de réaction.

- 6. Retirer la cuvette de la chambre de mesure.
- Ajouter une pastille d'EDTA directement de l'emballage dans la cuvette préparée et l'écraser à l'aide d'un agitateur propre.
- 8. Fermer soigneusement le couvercle de la cuvette et agiter la cuvette plusieurs fois jusqu'à dissolution complète de la pastille.
- Mettre la cuvette dans la chambre de mesure. Positionnement X.

Zéro accepté Préparer test Presser TEST

10. Appuyer sur la touche **TEST**.

Le résultat s'affiche en mg/l de zinc.

#### Remarques:

- 1. Ajouter les pastilles dans le bon ordre.
- 2. En cas de concentration élevée en chlore résiduel, effectuer l'analyse avec un échantillon d'eau déchlorurée. Pour déchlorurer, ajouter une pastille DECHLOR (étape 1) à l'échantillon d'eau. Ecraser et mélanger pour dissoudre la pastille. Ajouter ensuite la pastille COPPER/ZINC LR (étape 2) et continuer la procédure du dosage comme décrite ci-dessus.
- 3. Lors de l'utilisation de la pastille cuivre/zinc LR, l'indicateur Zincon réagit à la fois avec le zinc et avec le cuivre. Le cas échéant, la plage de mesure donnée se rapporte à la concentration totale des deux ions.
- 4. Les concentrations supérieures à 1 mg/l peuvent donner des résultats situés dans la plage de mesure. Un test de plausibilité (dilution de l'échantillon) est recommandé.
- 5. L'ajout d'une pastille EDTA au cours de cette deuxième étape de la détermination permet de s'assurer que le cuivre éventuellement présent ne soit pas pris en compte.
- 6. Les eaux fortement alcalines ou acides devraient préalablement à l'analyse être ramenées à un pH situé aux environs de 9 (avec 1 mole/l d'acide chlorhydrique ou 1 mole/l de soude caustique).

| Réactif / Accessoires | Forme de réactif/Quantité | Référence |
|-----------------------|---------------------------|-----------|
| COPPER / ZINC LR      | Pastille / 100            | 512620BT  |
| EDTA                  | Pastille / 100            | 512390BT  |
| DECHLOR               | Pastille / 100            | 512350BT  |

## 1.2 Remarques importantes concernant les méthodes

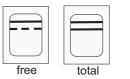
## 1.2.1 Manipulation conforme des réactifs

Il convient de suivre scrupuleusement l'ordre d'apport des pastilles.

#### Les pastilles de réactif:

Les pastilles de réactif doivent être ajoutées directement de leur emballage protecteur dans l'échantillon d'eau sans entrer en contact avec les doigts.

## Les réactifs liquides:


Tenir le flacon compte-gouttes verticalement et en appuyant lentement, verser de grosses gouttes de même grosseur dans la cuvette.

Il convient de refermer les flacons compte-gouttes immédiatement après emploi avec leur bouchon respectif. Observer les consignes de conservation (par exemple conserver au frais).

#### Sachets de poudre (powder packs):



#### VARIO Chlorine DPD / F10



couleur bleue marquage

## 1.2.2 Nettoyage des cuvettes et des instruments d'analyse

Les cuvettes, les couvercles et les agitateurs doivent être nettoyés scrupuleusement **après chaque analyse** pour éviter des erreurs dues à des résidus. De faibles traces de réactifs suffisent à fausser les mesures.

Manière de procéder:

Nettoyer les cuvettes et les instruments d'analyse le plus rapidement possible après une analyse.

- a. Nettoyer les cuvettes et instruments d'analyse avec un produit nettoyant courant pour le matériel en verre de laboratoire (par ex. Extran® MA02 (neutre, à teneur en phosphate), Extran® MA 03 (alcalin, libre de phosphate) de Merck KgaA).
- b. Rincer soigneusement à l'eau du robinet.
- En cas de prescription dans les «Remarques», effectuer à la phase indiquée un nettoyage méthodique, rincer par exemple avec de l'acide chlorhydrique dilué.
- d. Rincer minutieusement avec de l'eau déminéralisée.

## 1.2.3 Informations sur la technique de travail

- Les cuvettes, les couvercles et agitateurs doivent être soigneusement nettoyés après chaque analyse afin d'éviter des erreurs dues à des résidus. De faibles traces de réactifs suffisent à fausser les mesures.
- 2. Les parois extérieures des cuvettes doivent être nettoyées et essuyées avant de procéder à l'analyse. Les traces de doigt ou gouttes d'eau sur les surfaces de passage de la lumière des cuvettes provoquent des erreurs de mesure.
- 3. Si aucune cuvette étalon permanent n'est prescrite, il convient de procéder au calage du zéro et au test avec la même cuvette, car les cuvettes peuvent présenter de faibles divergences de tolérance les unes par rapport aux autres.
- 4. La cuvette doit toujours être placée, pour le calage du zéro, dans la chambre de mesure, de telle manière que la graduation avec le triangle blanc soit tournée vers le repère du boîtier.
- 5. Le couvercle de la cuvette doit être fermé lors du calage du zéro et pendant le test. Il doit être pourvu d'un joint d'étanchéité.
- 6. La formation de gouttelettes sur les parois intérieures de la cuvette provoque des erreurs de mesure. Dans ce cas, il convient de fermer la cuvette avec son couvercle et de dissoudre les gouttelettes en l'agitant avant de procéder au test.
- 7. Il faut éviter de laisser pénétrer de l'eau dans la chambre de mesure. L'apport d'eau dans le boîtier du photomètre peut provoquer la destruction d'éléments électroniques et entraîner des dégradations dues à la corrosion.
- 8. Les salissures sur l'optique dans la chambre de mesure entraînent des erreurs de mesure. Les surfaces de pénétration de la lumière de la chambre de mesure doivent être contrôlées régulièrement et, le cas échéant, être nettoyées. Pour le nettoyage, il est conseillé de se servir de chiffons humides et de cotons-tiges.
- 9. Les grandes différences de température entre le photomètre et la température ambiante peuvent être à l'origine d'erreurs de mesure, par exemple par formation de condensation sur l'optique ou sur la cuvette.

10. Lors de son fonctionnement, protéger l'appareil de l'impact direct des rayons du soleil.

## Remplissage correctement effectué de la cuvette ronde de 24 mm:





## 1.2.4 Dilution des échantillons d'eau

Si l'on prétend une dilution exacte, procéder comme suit:

pipeter l'échantillon à l'aide d'une pipette dans une fiole jaugée de 100 ml, remplir cette fiole d'eau déminéralisée jusqu'à la marque et bien mélanger.

| Échantillon d'eau<br>[ml] | Facteur de<br>multiplication |
|---------------------------|------------------------------|
| 1                         | 100                          |
| 2                         | 50                           |
| 5                         | 20                           |
| 10                        | 10                           |
| 25                        | 4                            |
| 50                        | 2                            |

La quantité d'échantillon sera prélevée à l'aide d'une pipette de cet échantillon d'eau dilué afin d'exécuter l'analyse conformément aux instructions décrites.

#### Attention:

- 1. La dilution entraîne des erreurs de mesure.
- 2. La dilution n'est pas possible dans le cas de valeurs pH. Les mesures seraient erronées. Si l'appareil affiche le message «Overrange», utiliser une autre méthode de mesure (ex. un pH-mètre).

L'eau déminéralisée = l'eau déstilée peut être aussi utilisée

## 1.2.5 Correction d'addition de volume

Si un plus grand volume d'acide ou de base est ajoutée dans le cas d'un pré-réglage de la valeur pH d'un échantillon d'eau, il est nécessaire de procéder à une correction du volume du résultat affiché.

#### Exemple:

Un échantillon de 100 ml est dissous avec 5 ml d'acide chlorhydrique pour l'ajustage de la valeur pH. Le résultat de test affiché est de 10 mg/l.

Volume total = 100 ml + 5 ml = 105 ml

Facteur de correction = 105 ml / 100 ml = 1,05

Résultat corrigé = 10 mg/l x 1,05 = 10,5 mg/l

**Deuxième partie** 

Mode d'emploi

#### 2.1 Utilisation

## 2.1.1 Mise en service

Avant d'utiliser le spectrophotomètre SpectroDirect, il est nécessaire d'insérer deux piles.

Avant la première mise en service pour le PCSpectroII et le SpectroDirect, procéder aux réglages suivants dans le mode menu:

- MODE 10: Sélection de la langue
- MODE 12: Régler l'heure et la date
- MODE 34: Exécuter la suppression des données
- MODE 69: Exécuter "User m. init"; Initialiser le système de méthodes utilisateur

(voir chapitre 2.4 Réglages du photomètre).



## 2.1.2 Piles (SpectroDirect uniquement)

#### Sauvegarder les données - Remarques importantes

Les piles permettent de sauvegarder les données (réglage du photomètre et résultats enregistrés) en cas d'interruption de l'alimentation électrique provenant de l'adaptateur secteur. Tant que l'appareil est alimenté par le transformateur, les piles ne se déchargent pas.

Recommandation: changer les piles tous les 3 ans.

Si aucun transformateur n'alimente l'appareil, tous les résultats et données enregistrés seront perdus si les piles sont retirées.

Recommandation: garder l'appareil raccordé au transformateur pendant le changement de piles. Pour changer les piles, se reporter au chapitre 3.6.3.4 Remplacement des piles (SpectroDirect uniquement).



## 2.1.3 Pile au lithium (PCSpectro II uniquement)

#### Sauvegarder les données - Remarques importantes

L'appareil est livré d'usine avec une pile au lithium déjà en place et une deuxième pile de rechange. Pour changer la pile au lithium, se reporter au chapitre 3.6.3.3 Remplacement de la pile au lithium.

La pile au lithium permet de sauvegarder les données (réglage du photomètre et résultats enregistrés) en cas d'interruption de l'alimentation électrique provenant de l'adaptateur secteur.

Tant que l'appareil est alimenté par le transformateur, la pile ne se décharge pas.

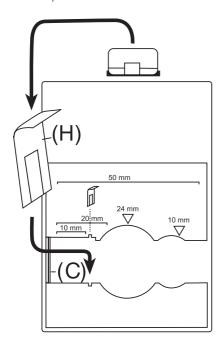
Recommandation: changer la pile au lithium tous les 5 ans.

Si aucun transformateur n'alimente l'appareil, tous les résultats et données enregistrés seront perdus si la pile au lithium est retirée.

Recommandation: garder l'appareil raccordé au transformateur pendant le changement de la pile au lithium.

Attention: éviter les décharges électrostatiques car elles peuvent détruire l'appareil.

## 2.1.4 Chambre de mesure et cuves


Les cuves suivantes sont utilisables avec l'appareil:

#### Cuves rectangulaires (trajet optique 10 - 50 mm):

- Cuves de 10 mm: insérer le support de cuve (H) comme indiqué. Insérer ensuite la cuve de façon à ce qu'un côté mat soit face à l'observateur.
- Cuves de 20, 30, 40 mm et autres cuves rectangulaires: insérer la cuve toujours en contact avec la pince (C) du côté gauche de la chambre de mesure.
- Cuves de 50 mm: pas de support de cuve nécessaire.

#### Cuves cylindriques (diamètre 16 et 24 mm):

Remarque : les cuves cylindriques sont appelées "tubes" dans les instructions des tests.
 Placer les tubes comme indiqué dans le support de cuve, les 2 repères devant correspondre.



## 2.2 Fonctions des touches

## 2.2.1 Vue d'ensemble

| ON  |    |
|-----|----|
| OFF | IV |

Mise en marche et extinction de l'appareil



(Echap) Retour au choix des méthodes ou au menu précédent



Touche de fonction: description dans le texte si touche disponible



Touche de fonction: description dans le texte si touche disponible



Touche de fonction: description dans le texte si touche disponible



Confirmation des saisies



Menu réglages et autres fonctions





Déplacer le curseur vers le haut ou vers le bas



Enregistrer un résultat affiché



Effectuer un calage de zéro



Exécuter une mesure



Affichage date et horloge /compte à rebours de l'utilisateur

## 2.2.2 Affichage date et horloge



Appuyer sur la touche [«heure»].

19:27:20 1

**15.06.2009** L'heure et la date s'affichent.





L'appareil revient aux données antérieures passées 15 secondes ou en appuyant sur la touche [ J] ou [ESC].

## 2.2.3 Compte à rebours de l'utilisateur

Cette fonction permet à l'utilisateur de définir son propre compte à rebours.



Appuyer sur la touche [«heure»].

19.20.20 15.06.2009

L'heure et la date s'affichent



Appuyer sur la touche [«heure»].

Compte à rebours 99:99 L'afficheur indique:

mm : ss

Maintenant, valider le dernier compte à rebours d'utilisateur utilisé en actionnant la touche

OU

0

200

lancer la saisie d'une nouvelle valeur en appuyant sur une touche numérique. L'introduction s'effectue en deux temps d'abord les minutes, puis les secondes par ex.: 2 minutes, 0 secondes [0] [2] [0] [0]



Confirmer les données introduites avec [4].

Compte à rebours 2:00

L'afficheur indique:

départ: 🚽

envoi du compte à rebours par la touche [4].

Le compte à rebours terminé, l'appareil revient aux données antérieures.

## 2.3 Mode de travail

Si le photomètre est raccordé au secteur par un transformateur, il est prêt à être utilisé.

Avant chaque démarrage, s'assurer que la chambre de mesure est vide et que le couvercle du photomètre est fermé, car le photomètre effectue toujours un test automatique lorsqu'il est mis sous tension.



Mettre l'appareil en marche en appuyant sur la touche **ON/ OFF**.

Logo

L'afficheur indique:

initialisation...

Logo

et puis:

PC Spectro II

ou

**SpectroDirect** 

## 2.3.1 Test automatique

Compart. vide? départ: 🚽



autotest...

L'afficheur indique:

S'assurer que la chambre de mesure est vide et que le couvercle du photomètre est fermé.

Démarrer le test automatique en appuyant sur la touche [4].

• Le photomètre effectue à présent un test automatique pendant environ 2 ½ minutes.

Pendant ce temps, l'appareil vérifie:

- le fonctionnement de la lampe halogène au tungstène
- le fonctionnement du moteur pas à pas
- la précision de la longueur d'onde avec le filtre didyme interne et si nécessaire l'ajustement (dans ce cas, l'autotest peut durer jusqu'à 5 minutes)
- le fonctionnement de la sauvegarde des données

Lorsque le test automatique est terminé, la liste de sélection de méthodes s'affiche.

## 2.3.2 Sélection de la méthode

>> 30 alcalinité-m 35 alcalinité-p 40 aluminium ...... Une liste de sélection s'affiche:



Deux modalités permettent de sélectionner la méthode souhaitée:

- a) introduire directement le numéro de la méthode, par ex. [8] [0] pour le brome
- b) en appuyant sur les touches fléchées [▲] ou [▼], sélectionner la méthode souhaitée dans la liste affichée.

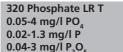
Confirmer la sélection avec [4].

## 2.3.2.1 Informations sur les méthodes (F1)

La touche F1 vous permet d'alterner entre les listes de sélection de méthode compacte ou détaillée.

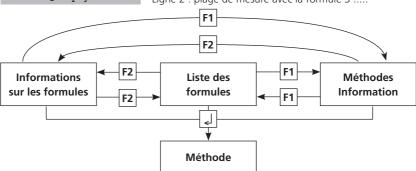
## Exemple:

ligne 1: numéro de méthode, nom de la méthode ligne 2: plage de mesure


ligne 3: type de réactif ligne 4: cuvette lignes 5-7: réactifs utilisés

tube: cuvette de réactif d'un test de cuvette

## 100 chlore 0,02-6 mg/l Cl2 pastille 24 mm DPD No. 1 DPD No. 3


## 2.3.2.2 Informations sur les formules (F2)

En appuyant sur la touche F2, vous faites affichez une liste des formules disponibles, avec les plages de mesure afférentes. Pour la commutation de la formule, se référer au chapitre 2.3.7, page 304.



Ligne 1 : No de méthode, désignation de la méthode

Ligne 2 : plage de mesure avec la formule 1 Ligne 3 : plage de mesure avec la formule 2 Ligne 2 : plage de mesure avec la formule 3 .....



## 2.3.3 Différentiation

Chlore >> diff libre total

Certaines méthodes permettent une différentiation (par ex. le chlore). Une interrogation concernant le type de mesure (par ex. différenciée, libre ou totale) s'affiche.







Les touches fléchées [ $\blacktriangle$ ] ou [ $\blacktriangledown$ ] permettent de sélectionner la méthode souhaitée.

Confirmer la sélection avec [].

## 2.3.4 Calage du zéro

Préparer zéro Presser ZÉRO

L'afficheur indique:



préparer une cuvette conformément aux instructions d'analyse et la placer dans la chambre de mesure en faisant coïncider la marque de la cuvette avec la marque du boîtier.

Zéro accepté Préparer test Presser TEST Appuyer sur la touche **ZÉRO**.

L'afficheur indique:

## 2.3.5 Exécution de l'analyse (Test)

Retirer la cuvette de la chambre de mesure après le calage du zéro. Exécuter l'analyse ensuite selon la description correspondante à chaque méthode.

Après affichage des résultats du test:

- pour certaines méthodes, il est possible de modifier l'unité de mesure,
- les résultats peuvent être enregistrés et / ou imprimés
- d'autres mesures peuvent être effectuées avec le même calage de zéro ou
- une nouvelle méthode peut être sélectionnée

## 2.3.6 Observation des temps de réaction (compte à rebours)

Une fonction minuterie, c'est-à-dire le compte à rebours, propose une aide afin de respecter les temps de réaction.



L'afficheur indique:



Appuyer sur la touche [4]

Préparer l'échantillon, démarrer le compte à rebours au moyen de la touche [4] et après écoulement du compte à rebours, procéder comme il est décrit dans la méthode.



Appuyer sur la touche TEST.

Préparer l'échantillon comme il est décrit dans la méthode et placer la cuvette dans la chambre de mesure. Le compte à rebours apparaît par pression de la touche **TEST** et démarre ainsi automatiquement. La mesure s'effectue automatiquement à la fin du compte à rebours.

Compte à rebours 1:59

#### Remarques:

1. Il est possible d'arrêter le compte à rebours en marche en appuyant sur la touche [4]. La mesure s'effectue automatiquement. Dans ce cas, l'utilisateur devra observer lui-même le temps de réaction nécessaire.

Des temps de réaction non respectés conduisent à des résultats de test erronés.

2. Le temps d'attente restant est affiché en continu.

Un signal sonore retentit pendant les 10 dernières secondes du temps d'attente.

## 2.3.7 Modification de la formule

Pour certaines méthodes, l'utilisateur a la possibilité de modifier la «formule» du résultat de mesure. Une fois que le résultat de la mesure apparaît à l'affichage, appuyer sur les touches [▲] ou [▼].

#### Exemple:

En de modification de la formule du résultat de mesure, l'affichage de la plage de mesure s'adapte automatiquement dans l'écran. La formule affichée lors de la mémorisation d'un résultat de mesure ne peut plus être modifiée pour le résultat mémorisé. La dernière formule utilisée est utilisée à nouveau au prochain lancement de la méthode. S'il est possible de modifier la formule pour une méthode, le manuel d'instruction y fera référence. Dans les remarques afférentes à la méthode, les touches curseurs portent alors une inscription indiquant les formules possibles:

▲ PO<sub>4</sub>

▼ P<sub>2</sub>O<sub>5</sub>

## 2.3.8 Enregistrement des résultats de test




Appuyer sur la touche **STORE**, lorsque le résultat du test s'affiche

## N° de code

----

L'afficheur indique:





- L'utilisateur peut introduire un code à six chiffres. (Le numéro de code peut par exemple renvoyer à l'utilisateur ou au lieu de prélèvement)
  - Confirmer l'introduction du numéro de code en appuyant sur [4].
- Si l'on renonce à l'introduction d'un numéro de code, confirmer directement par [4]. (Le n° de code 0 est attribué automatiquement.)

Le bloc complet des données est enregistré (date, horloge, n° de code, méthode et résultat de test).

#### est enregistré

L'afficheur indique:

À la suite de quoi, le résultat du test s'affiche à nouveau.

## Remarques:

900 codes disponibles

Le nombre de codes de mémoire libres est affiché:

seulement 29 codes disponibles

Lorsque la disponibilité est inférieure à 30, apparaît le message:

Libérer le plus tôt possible la mémoire (cf. chapitre «Effacement des résultats de test enregistrés»). Si la mémoire est pleine, de nouveaux résultats ne pourront plus être enregistrés.

## 2.3.9 Impression des résultats de test

Si une imprimante est installée et connectée, il est possible d'imprimer un résultat de test (sans enregistrement préalable).



Appuyer sur la touche F3.

Impression du bloc complet de données: date, heure, méthode et résultat de test.

 $\begin{array}{l} 100 \; \text{Chlore T} \\ 0,02\text{-}6 \; \text{mg/l Cl}_2 \\ \text{Mode proffessionnel: non} \\ 2009\text{-}07\text{-}01 \quad 14\text{:}53\text{:}09 \\ \text{Numéro d'ordre: 1} \\ \text{Code-no.: 007} \\ 4,80 \; \text{mg/l Cl}_2 \end{array}$ 

Numéro d'ordre: il s'agit d'un numéro interne donné automatiquement lorsqu' on enregistre un résultat de mesure. Ce numéro apparaît seulement lors de l'impression.

## 2.3.10 Exécution d'autres tests



Si de nouveaux échantillons doivent être testés avec la même méthode, il existe deux possibilités:

Zéro accepté Préparer test Presser TEST

soit:



Appuyer sur la touche TEST
 Le message suivant apparaît:
 Confirmer en pressant TEST



soit:

 Appuyer sur la touche ZÉRO pour effectuer un nouveau calage de zéro.

Préparer zéro Presser ZÉRO

Le message suivant apparaît:

## 2.3.11 Sélectionner une nouvelle méthode



En appuyant sur la touche [ESC], le photomètre revient au menu de sélection de méthode.



Il est également possible d'introduire directement le numéro d'une méthode, par exemple [1] [6] [0] pour CyA-TEST (Acide cyanurique).



Confirmer les données introduites avec [4].

# 2.4 Réglages: Vue d'ensemble des fonctions MODE

| Fonction MODE                      | N° | Description résumée                                                                              | Page |
|------------------------------------|----|--------------------------------------------------------------------------------------------------|------|
| Abs / Trans                        | 51 | Mesure de l'extinction et de la transmission à la longueur d'onde sélectionnée                   | 327  |
| Avertissements sonores             | 14 | Marche/arrêt du signal sonore en fin de mesure                                                   | 311  |
| Calibrage                          | 40 | Calibrage des fluorures                                                                          | 321  |
| Cinétique                          | 54 | Représentation dépendant du temps d'une réaction                                                 | 330  |
| Clavier sonore                     | 11 | Marche/arrêt du signal sonore des touches                                                        | 309  |
| Compte à rebours                   | 13 | Marche/arrêt du compte à rebours<br>pour observation des temps de réaction                       | 310  |
| Concentration utilisateur          | 64 | Saisie des données nécessaires à l'exécution d'une méthode de concentration utilisateur          | 336  |
| Effacer                            | 46 | Effacement étalonnage utilisateur étalonnage                                                     | 325  |
| Effacement<br>données              | 34 | Effacement de toutes les données enregistrées                                                    | 321  |
| Effacer méthode utilisateur        | 66 | Efface toutes les données d'une méthode utilisateur de concentration ou de polynôme              | 341  |
| Étalonnage<br>utilisateur          | 45 | Enregistrement étalonnage utilisateur                                                            | 324  |
| Horloge                            | 12 | Réglage de la date et de l'heure                                                                 | 309  |
| Impression                         | 20 | Impression de tous les résultats de test enregistrés                                             | 312  |
| Info appareil                      | 91 | Informations concernant le photomètre,<br>par exemple version actuelle du logiciel               | 347  |
| Impression,<br>n° code             | 22 | Impression des résultats d'une seule méthode sélectionnée                                        | 314  |
| Impression, date                   | 21 | Impression des résultats d'une seule période sélectionnée                                        | 313  |
| Impression,<br>méthode             | 23 | Impression des résultats d'une seule gamme<br>de n° de code sélectionnée                         | 315  |
| Imprimer<br>méthode<br>utilisateur | 67 | Imprime toutes les données enregistrées avec le mode 64 (concentration) ou le mode 65 (polynôme) | 342  |
| Initialiser méthode<br>utilisateur | 69 | Initialise le système de méthode utilisateur (polynôme et concentration)                         | 343  |
| Langelier                          | 70 | Calcul de l'indice de saturation de Langelier                                                    | 344  |
| Langue                             | 10 | Réglage de la langue                                                                             | 308  |
| LCD Contraste                      | 80 | Réglage du contraste de l'afficheur                                                              | 346  |
| LCD Luminosité                     | 81 | Réglage de la luminosité du LCD                                                                  | 346  |
| Liste de méthodes                  | 60 | Liste des méthodes de l'utilisateur, adaptation                                                  | 334  |

| Fonction MODE                 | N° | Description résumée                                                          | Page |
|-------------------------------|----|------------------------------------------------------------------------------|------|
| Liste M toutes activées       | 61 | Liste des méthodes de l'utilisateur,<br>activation de toutes les méthodes    | 335  |
| Liste M toutes<br>désactivées | 62 | Liste des méthodes de l'utilisateur,<br>désactivation de toutes les méthodes | 335  |
| Mémoire données               | 30 | Visualisation de tous les résultats de test enregistrés                      | 317  |
| Mode<br>professionnel         | 50 | Marche/arrêt du guide détaillé de l'utilisateur<br>(fonction laboratoire)    | 326  |
| Paramétres<br>d'impression    | 29 | Réglage des options d'impression                                             | 316  |
| Polynômes<br>utilisateurs     | 65 | Saisie des données nécessaires à l'exécution d'un polynôme utilisateur       | 338  |
| Spectre (balayage)            | 53 | Spectre d'absorption sur une gamme maxi entre 330 et 900 nm                  | 328  |
| Stor., code                   | 32 | Affichage des résultats d'une seule méthode sélectionnée                     | 319  |
| Stor., date                   | 31 | Affichage des résultats d'une seule période sélectionnée                     | 318  |
| Stor., method                 | 33 | Affichage des résultats d'une seule gamme<br>de n° de code sélectionnée      | 320  |
| Température                   | 71 | Sélection de °C ou °F pour mode 70 Langelier                                 | 345  |

La mise hors tension de l'appareil n'affecte pas la sauvegarde des réglages effectués.

## 2.4.1 Non rempli pour des raison techniques

## 2.4.2 Réglage de base 1 de l'appareil

## Sélection de la langue







Appuyer les touches [MODE] [1] [0] l'une après l'autre.



Confirmer avec la touche [4].



Le message suivant apparaît:

Sélectionner la langue souhaitée au moyen des touches fléchées [A] ou [V].



Confirmer la sélection avec [4].

#### Clavier sonore



Appuyer sur les touches [MODE] [1] [1] l'une après l'autre.



Confirmer avec la touche [].

<Touche sonore> MARCHE: 1 ARRÊT: 0

Le message suivant apparaît:





• Le clavier sonore est activé en appuyant sur [1].

Le clavier sonore est désactivé en appuyant sur [0].



#### Remarques:

Lors de déterminations avec temps de réaction, un signal sonore retentit pendant les 10 dernières secondes avant la fin du compte à rebours même si le clavier sonore est désactivé.

Confirmer avec la touche [].

## Date et horloge







Appuyer sur les touches [MODE] [1] [2] l'une après l'autre.



Confirmer avec la touche [4].

<Horloge>
aa-mm-jj hh:mm
\_\_--\_-:\_\_

Le message suivant apparaît: L'introduction est à deux chiffres.

aa-mm-jj hh:mm 09 - 05 -14 \_\_:\_

Consécutivement année, mois, jour par exemple: le 14 mai 2009 = [0] [9] [0] [5] [1] [4]

aa-mm-jj hh:mm 09 - 05 -14 15 : 07

Consécutivement heures, minutes par exemple: 15 heures, 7 minutes = [1] [5] [0] [7]



Confirmer avec la touche [4].

#### Remarques:

À la confirmation de la saisie avec [4], les secondes se remettront automatiquement à zéro.

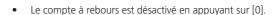
## Compte à rebours (observation des temps de réaction)

Les temps de réaction à observer sont fixés au préalable pour certaines méthodes. Une fonction minuterie du compte à rebours permet pour chaque méthode de consigner ces temps de réaction standard. Le compte à rebours peut être arrêter pour *l'ensemble* des méthodes concernées comme suit:





Appuyer sur les touches [MODE] [1] [3] l'une après l'autre.




Confirmer avec la touche [].

# <Compte rebours> MARCHE: 1 ARRÊT: 0

Le message suivant apparaît:







Le compte à rebours est activé en appuyant sur [1].



Confirmer avec la touche [4].

#### Remarques:

- Au cours d'une mesure, le compte à rebours en marche peut être arrêté en appuyant sur la touche [¿] (application par exemple pour les déterminations en série).
   Le «compte à rebours de l'utilisateur» est toujours disponible même si le compte à rebours est désactivé.
- 2. Si le compte à rebours est désactivé, l'utilisateur doit prendre en compte lui-même le temps de réaction nécessaire. Des temps de réaction non observés entraînent des résultats de test erronés.

## Signal sonore

Le temps employé par le photomètre pour un calage de zéro ou une mesure est de 8 secondes. Un bref signal sonore retentit à la fin de cette mesure.



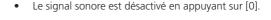




Appuyer sur les touches [MODE] [1] [4] l'une après l'autre.



Confirmer avec la touche [4].


<Signal sonore> MARCHE: 1 ARRÊT: 0

Le message suivant apparaît:











• Le signal sonore est activé en appuyant sur [1].

Confirmer avec la touche [ $\d$ ].

## Remarques:

Lors de déterminations avec temps de réaction, un signal sonore retentit pendant les 10 dernières secondes avant la fin du compte à rebours même si le signal sonore est désactivé.

## 2.4.3 Impression des résultats de test memorisés

## Impression de tous les résultats







Appuyer sur les touches [MODE] [2][0] l'une après l'autre.



Confirmer avec la touche [].

Le message suivant apparaît:



no. ordre:

Par exemple, le message suivant apparaît:

le photomètre revient après l'impression à la sélection de menus.

## Remarques:

Quitter le menu en appuyant sur la touche [ESC] (quitter). Tous les résultats de test mémorisés sont imprimés.

## Impression des résultats d'une période sélectionnée







Appuyer sur les touches [MODE][2][1] l'une après l'autre.



Confirmer avec la touche [4].

<lmprimer> par date de aa-mm-jj Le message suivant apparaît:

Saisir l'année, le mois et le jour du premier jour de la période désirée, par exemple: 14 Mai 2009 = [0][9][0][5][1][4]



Confirmer avec la touche [4].

à aa-mm-jj



Saisir l'année, le mois et le jour du dernier jour de la période désirée, par exemple: 19 Mai 2009 = [0][9][0][5][1][9]



Confirmer avec la touche [4].

Le message suivant apparaît:

Appuyer sur la touche  $\llbracket \centerdot \rrbracket$  pour imprimer tous les résultats enregistrés de la période sélectionnée.

Après l'impression, le photomètre revient automatiquement en <Mode-Menu> (menu de modes).

#### Remarques:

Quitter le menu en appuyant sur la touche [ESC] (quitter). Pour imprimer uniquement les résultats d'une seule journée, saisir la même date deux fois pour caractériser la période.

## Impression des résultats d'une gamme de n° de code sélectionnée







Appuyer sur les touches [MODE] [2] [2] l'une après l'autre.



Confirmer avec la touche [4].

<lmprimer> par no. code de

Le message suivant apparaît:

Saisir le numéro de code (jusqu'à 6 chiffres) pour le premier n° de code désiré, par exemple: [1].



Confirmer avec la touche [4].



Le message suivant apparaît:

Saisir le numéro de code (jusqu'à 6 chiffres) pour le dernier n° de code désiré, par exemple: [1] [0].



Confirmer avec la touche [4].

de 000001 à 000010

départ: 
Fin: ESC

Le message suivant apparaît:

Appuyer sur la touche [ $\[ \] \]$  pour imprimer tous les résultats enregistrés dans la gamme de n° de code sélectionnée.

Après l'impression, le photomètre revient automatiquement à <Mode-Menu> (menu de modes).

#### Remarques:

Quitter le menu en appuyant sur la touche [ESC] (quitter). Pour imprimer un seul n° de code, saisir deux fois le même n° de code.

Pour imprimer tous les résultats sans le n° de code (Code-Nr. est 0), saisir deux fois Zéro [0].

## Impression des résultats d'une méthode sélectionnée







Appuyer sur les touches [MODE] [2] [3] l'une après l'autre.



Confirmer avec la touche [4].

<Imprimer> >>20 Demande en acide 30 Alcalinité-totale

40 Aluminium T

Le message suivant apparaît:

Sélectionner la méthode désirée parmi la liste affichée ou saisir directement le numéro de la méthode.



Confirmer avec la touche [4].

En cas de méthodes différenciées, sélectionner le type de détermination et confirmer avec la touche [4].

<Imprimer> Mèthode 30 Alcalinité-tot.

**ESC** Fin:

Le message suivant apparaît:

Appuyer sur la touche [ J pour imprimer tous les résultats enregistrés de la méthode sélectionnée.

Après l'impression, le photomètre revient automatiquement à <Mode-Menu> (menu de modes).

départ: 🔟

## Paramètre d'impression







Appuyer sur les touches [MODE] [2] [9] l'une après l'autre.



Confirmer avec la touche [4].

<Param. de impr.>

1: Contrôle de flux

2: Taux de baud

Fin: Esc

Le message suivant apparaît:



Appuyer sur la touche [1] pour le choix du protocole.

<Contrôle de flux> est: Hardware choiser: [▲] [▼] enregistrer: ⊿

enregistre

Le message suivant apparaît:





Choisir le mode en appuyant sur les flèches [▼] ou [▲] (Xon/Xoff, aucun, Hardware).



Confirmer avec la touche [4].



Retourner en arriére à l'aide de la touche [ESC] qui est placée derriére «est». Les protocoles sont enregistrés.



Appuyer sur la touche [2] pour le réglage du baud-rate.

<Taux de baud> est: 19200 choiser: [▲] [▼] enregistrer: ↓ Fin: Esc

Le message suivant apparaît:







Choisir le baudrate voulu en appuyant sur les flèches [▼] ou [▲]. (600, 1200, 2400, 4800, 9600, 14400, 19200)

Confirmer avec la touche [4].

Terminer en appuyant sur [ESC].

Retourner au mode menu en appuyant sur [ESC].

Retourner au choix des méthodes en appuyant sur [ESC].

#### Indication:

Si vous utilisez l'imprimante **DP 1012**, choisir «Hardware» pour le protocole et «19200» pour le baudrate.

Si vous utilisez l'imprimante **DPN 2335**, choisir «Hardware» pour le protocole et «9600» pour le baudrate.

Réglage de l'imprimante: voir chapitre 2.5.1 Raccordement à une imprimante.

# 2.4.4 Appel de tous les résultats de test mémorisés

## Rappel de tous les résultats enregistrés







Appuyer sur les touches [MODE] [3] [0] l'une après l'autre.

Confirmer avec la touche [4].

Le message suivant apparaît:

Les blocs de données sont affichés consécutivement en commençant par le dernier résultat de test enregistré. Appuyer sur la touche [4] pour afficher tous les résultats enregistrés dans la gamme de date sélectionnée.

- Appuyer sur la touche [F3] pour imprimer le résultat affiché.
- Appuyer sur la touche [F2] pour imprimer tous les résultats sélectionnés.
- Terminer avec [ESC] (Echap).
- Le prochain bloc de données s'affiche en appuyant sur la touche [▼].
- Le bloc de données antérieur s'affiche en appuyant sur la touche [A].

Si la mémoire ne contient pas de données, le message suivant apparaît:



pas de données

# Rappel des résultats d'une période choisie







Appuyer sur les touches [MODE] [3] [1] l'une après l'autre.



Confirmer avec la touche [4].

<Mémoire> par date de aa-mm-jj Le message suivant apparaît:

\_---- "

Saisir l'année, le mois et le jour du premier jour de la période désirée, par exemple: 14 Mai 2009 = [0][9][0][5][1][4].



Confirmer avec la touche [4].

à aa-mm-jj - - Le message suivant apparaît:

Saisir l'année, le mois et le jour du dernier jour de la période désirée, par exemple: 19 Mai 2009 = [0][9][0][5][1][9].



Confirmer avec la touche [4].

de 2009-05-14 à 2009-05-19 départ: Fin: ESC Imprimer: F3 Impr. toutes: F2 Le message suivant apparaît:

- Appuyer sur la touche [4] pour afficher tous les résultats enregistrés dans la gamme de date sélectionnée.
- Appuyer sur la touche [F3] pour imprimer le résultat affiché.
- Appuyer sur la touche [F2] pour imprimer tous les résultats sélectionnés.
- Terminer avec [ESC] (Echap).

## Remarques:

Quitter le menu en appuyant sur la touche [ESC] (quitter). Pour rappeler uniquement les résultats d'une seule journée, saisir deux fois la même date pour préciser la période.

# Rappel des résultats d'une gamme de n° de code sélectionnée







Appuyer sur les touches [MODE] [3] [2] l'une après l'autre.



Confirmer avec la touche [4].

<Mémoire> par no. code de \_ \_ \_ \_ \_

Le message suivant apparaît:

Saisir le numéro de code (jusqu'à 6 chiffres) du premier n° de code désiré, par exemple: [1].



Confirmer avec la touche [4].



Le message suivant apparaît:

Saisir le numéro de code (jusqu'à 6 chiffres) du dernier n° de code désiré, par exemple: [1] [0].



Confirmer avec la touche [4].

de 000001 à 000010 départ: Fin: ESC Imprimer: F3 Impr. toutes: F2 Le message suivant apparaît:

- Appuyer sur la touche [ ] pour afficher tous les résultats enregistrés dans la gamme de n° de code sélectionnée.
- Appuyer sur la touche [F3] pour imprimer le résultat affiché.
- Appuyer sur la touche [F2] pour imprimer tous les résultats sélectionnés.
- Terminer avec la touche [ESC] (Echap).

## Remarques:

Quitter le menu en appuyant sur la touche [ESC] (quitter).

Pour rappeler uniquement les résultats d'un seul n° de code, saisir deux fois le même n° de code.

Pour rappeler tous les résultats sans le n° de code (Code-Nr. est 0), saisir deux fois Zéro [0].

# Rappel des résultats d'une seule méthode sélectionnée







Appuyer sur les touches [MODE] [3] [3] l'une après l'autre.



Confirmer avec la touche [4].

<Mémoire>
>>20 Demande en acide
30 Alcalinité-tot.
40 Aluminium T

Le message suivant apparaît:

Sélectionner la méthode désirée parmi la liste affichée ou saisir directement le numéro de la méthode.



Confirmer avec la touche [4].

En cas de méthodes différenciées, sélectionner le type de détermination et confirmer avec la touche [4].

Le message suivant apparaît:

- Appuyer sur la touche [ ] pour imprimer tous les résultats enregistrés de la méthode sélectionnée.
- Appuyer sur la touche [F3] pour imprimer le résultat affiché.
- Appuyer sur la touche [F2] pour imprimer tous les résultats sélectionnés.
- Terminer avec [ESC] (Echap).

# Effacement des résultats de test enregistrés







Appuyer sur les touches [MODE] [3] [4] l'une après l'autre.



Confirmer avec la touche [4].

<Effacer données> Effacer ttes données? NON: 0 OUI: 1

Le message suivant apparaît:





- Les données son toujours sauvegardées en appuyant sur [0].
- Après l'actionnement de la touche [1], l'interrogation de sécurité suivante apparaît:

<Effacer données> Effacer données Ne pas effacer: ESC Pour supprimer les données, appuyer sur la touche [4].

#### ATTENTION:

Toutes les données mémorisées seront supprimées

ou alors, quitter le menu en appuyant sur la touche [ESC] (quitter) si vous ne souhaitez pas supprimer les données.

#### Remarques:

Tous les résultats de test enregistrés sont effacés.

## 2.4.5 Calibration

# Calibrage (Fluorure)









<Calibrage> 170 Fluorure Zéro: eau déminéral Presser ZÉRO

#### Se conformer aux indications

Appuyer sur les touches [MODE] [4] [0] l'une après l'autre.

Confirmer avec la touche [4].

Le message suivant apparaît:

- 1. Verser exactement **10 ml d'eau déminéralisée** dans une cuvette propre de 24 mm et refermer la cuvette.
- 2. Placer la cuvette dans la chambre de mesure. Positionnement  $\chi$ .

- 3. Appuyer sur la touche **ZÉRO**.
- 4. Retirer la cuvette de la chambre de mesure.
- 5. Verser **exactement 2 ml de solution réactive SPADNS** dans les 10 ml d'eau déminéralisée.

Attention: La cuvette est remplie jusqu'au bord.

- 6. Fermer la cuvette avec son couvercle et mélanger le contenu en agitant.
- Mettre la cuvette dans la chambre de mesure. Positionnement √X.
- 8. Appuyer sur la touche **TEST**.
- Retirer la cuvette de la chambre de mesure, bien nettoyer la cuvette et le bouchon et remplir avec exactement 10 ml de standard Fluorure (concentration 1 mg/l F).
- Verser dans les 10 ml de standard Fluorure exactement
   2 ml de solution réactive SPADNS.
   Attention: La cuvette est remplie jusqu'au bord.
- 11. Mettre la cuvette dans la chambre de mesure. Positionnement  $\overline{\chi}$ .
- 12. Appuyer sur la touche **TEST**.

Le message suivant apparaît:

Confirmer en appuyant sur la touche [4].

Revenir au choix des méthodes à l'aide de la touche IESCI.

Choisir la méthode Fluorure en appuyant sur les touches [1][7][0] et  $\[ \[ \] \]$ .

#### Indications:

Si vous utilisez un nouveau lot de solution réactive SPADNS, procéder à un nouveau réglage (Standard Methods 20th, 1998, APHA, AWWA, WEF 4500 F D., S. 4-82)

Le résultat de l'analyse dépend en grande partie de l'exactitude du volume de l'échantillon et du volume de réactif. Doser le volume d'échantillon et de réactif exclusivement avec une pipette de 10 ml / 2 ml (classe A).

En cas d'erreur, recommencer le réglage.

Zéro accepté T1: 0 mg/l F Presser TEST

T1 accepté T2: 1 mg/l F Presser TEST

Calibrage accepté











Error, absorbance T2>T1

# Étalonnage par l'utilisateur

#### Procédure:

- Préparer un étalon de concentration connue et utiliser cet étalon à la place de l'échantillon en respectant la procédure du test.
- Nous conseillons d'utiliser des étalons bien connus préparés conformément à DIN EN, ASTM ou à d'autres normes internationales, ou d'utiliser des étalons certifiés disponibles dans le commerce.
- Après avoir mesuré cette solution étalon, il est possible de modifier les résultats affichés pour obtenir la valeur désirée (cf ci-dessous).
- Si une méthode utilise une équation mathématique pour calculer le résultat, il est uniquement possible d'étalonner des dosages de base, car tous les autres dosages utilisent le même polynôme.
- C'est la même chose pour certaines procédures de test utilisant un polynôme d'une autre procédure d'analyse.

Merci de consulter les informations sur les points étalons utiles sur notre page d'accueil dans la section téléchargement.

#### Retour à l'étalonnage d'usine:

En cas d'effacement de l'étalonnage par l'utilisateur, l'étalonnage d'usine est automatiquement activé.

#### Remarques:

La méthode «Fluorure» ne peut pas être étalonnée avec le mode 45 car le test nécessite un étalonnage lié au lot de réactif liquide (SPADNS) (mode 40, chapitre «étalonnage (fluorure)»).

## Enregistrement de l'étalonnage par l'utilisateur

100 Chlore T 0.02-6 mg/l Cl2 0.90 mg/l libre Cl2 Utiliser la méthode désirée comme décrite dans le manuel en utilisant un étalon de concentration connue à la place de l'échantillon d'eau.







Si le résultat du test s'affiche, appuyer sur les touches [MODE] [4] [5] l'une après l'autre et confirmer avec la touche [\_1].



<Calib. utilisateur>
100 Chlore T
0.02-6 mg/l Cl2
0.90 mg/l libre Cl2
augmenter: ↑, reduiret: ↓
enregistrer: ↓

Le message suivant apparaît:

Appuyer une fois sur la touche à flèche [**A**] pour augmenter le résultat affiché.

Appuyer une fois sur la touche à flèche [▼] pour diminuer le résultat affiché

Appuyer sur les touches jusqu'à ce que le résultat affiché corresponde à la valeur de l'étalon.



Confirmer avec la touche [ ] pour enregistrer le nouveau facteur d'étalonnage.

Annuler l'étalonnage de l'utilisateur en appuyant sur la touche [ESC] (Echap).

Jus facteur enregistré

Le message suivant apparaît:

100 Chlore T 0.02-6 mg/l Cl2 1.00 mg/l libre Cl2

Le nom de la méthode s'affiche à présent inversé et le résultat du test est calculé avec le nouveau facteur d'étalonnage.

# Effacer l'étalonnage par l'utilisateur

Ce chapitre s'applique uniquement aux méthodes pouvant être étalonnées par l'utilisateur.

100 Chlore T 0.02-6 mg/l Cl2

Sélectionner la méthode désirée.

préparer Zéro appuyer sur ZÉRO Au lieu de faire le zéro de l'appareil, appuyer sur les touches [MODE] [4] [6] l'une après l'autre et confirmer avec la touche [2].









<Calib. utilisateur>
100 Chlore T
0.02-6 mg/l Cl2
Annuler la calibration?
OUI: 1, NO: 0

Le message suivant apparaît:





Appuyer sur la touche [1] pour effacer l'étalonnage de l'utilisateur.

Appuyer sur la touche [0] pour conserver l'étalonnage d'utilisateur en cours.

L'appareil revient automatiquement à la demande de mise à zéro.

#### 2.4.6 Fonctions laboratoire

## Assistance utilisateur réduite => «Profi-Mode» (mode professionnel)

Les méthodes présentent fondamentalement les informations suivantes:

- a) Méthode
- b) Plage de mesure
- c) Date et heure
- d) Différentiation des résultats de test
- e) Guide détaillé pour l'utilisateur
- f) Observation des temps de réaction

Lorsque le mode professionnel est activé, le guide utilisateur détaillé du photomètre se limite à un minimum. Les points d), e) et f) ne sont pas pris en considération.







Appuyer sur les touches [MODE] [5] [0] l'une après l'autre.



Confirmer avec la touche [4].

<Profi Mode>
MARCHE: 1 ARRÊT: 0

Le message suivant apparaît:







Le mode professionnel est activé en appuyant sur [1].



OU

Le message suivant apparaît:





Confirmer avec la touche [4].

#### Remarques:

Dans le mode professionnel, un enregistrement des résultats est possible. L'afficheur indique en plus des résultats enregistrés «Mode professionnel».

Le réglage sélectionné est sauvegardé, même lorsque l'appareil est mis hors tension, jusqu'à ce qu'un nouveau réglage soit effectué.

# **Absorption / Transmission**







Appuyer sur les touches [MODE] [5] [1] l'une après l'autre.



Confirmer avec la touche [4].

< Abs / Trans > Long. d'onde: \_ \_ \_ nm

Le message suivant apparaît:





Sélectionner une longueur d'onde entre 330 et 900 nm, par ex. [5] [4] [0] et confirmer avec la touche [4].

Long.d'onde introduit

Le message suivant apparaît:

Longeur d'onde: 540 nm Préparer zéro Presser ZÉRO Puis:

Placer le blanc \* dans la chambre de mesure. (\* par ex. une cuve avec de l'eau déionisée ou le blanc réactif, ...)



Appuyer sur la touche **ZÉRO**.

Zéro accepté Préparer test Presser TEST

Placer la cuve avec la solution à tester dans la chambre de mesure.



Appuyer sur la touche **TEST**.

< Abs / Trans > Longeur d'onde: 540 nm E: 0.596 T: 25. 3 %

Le résultat est indiqué sur l'affichage en **E**xtinction (en Abs) et **T**ransmission (en %).

# Spectre (balayage)

L'appareil peut balayer un spectre de longueurs d'onde dans une plage comprise entre 330 et 900 nm. L'intervalle minimal entre la longueur d'onde de départ et de fin est de 10 nm.





Appuyer sur les touches [MODE] [5] [3] l'une après l'autre.



Confirmer avec la touche [4].

< Spectrum> départ: \_ \_ \_ nm Le message suivant apparaît:







Saisir la longueur d'onde de départ: par ex.: [4] [0] [0] et confirmer avec la touche [4].

< Spectrum> Fin: \_ \_ \_ nm









Saisir la longueur d'onde de fin: par ex.: [6] [2] [1] et confirmer avec la touche [4].

< Spectrum > 400 - 621 nm Préparer zéro Presser ZÉRO

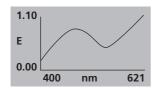
Le message suivant apparaît:

Placer une cuve remplie (blanc) dans la chambre de mesure

(Remarque 1).



Appuyer sur **ZERO** pour démarrer la compensation à zéro (ligne de base).


Zéro accepté Préparer test **Presser TEST** 

Le message suivant apparaît:

Placer la cuve avec la solution à tester dans la chambre de mesure.



Appuyer sur la touche **TEST**.



L'écran affiche le tracé du spectre mesuré.



Appuyer sur la touche [F1] pour permuter entre le graphique et les résultats (pics et vallées).



L'écran affiche à présent les pics (P) et vallées (V) calculés.





Utiliser les touches [▲] ou [▼] pour se déplacer dans la liste de résultats.



Lorsque le graphique est affiché, la touche [F3] permet d'imprimer la liste de résultats (nm / mAbs) ou de transférer les données vers un PC (à l'aide d'HyperTerminal).

Lorsque l'écran affiche les pics et vallées, la touche [F3] permet d'imprimer les données de pics et vallées.



Appuyer sur la touche **ESC** pour revenir à la sélection de la longueur d'onde.

Appuyer à nouveau sur la touche **ESC** pour revenir au menu de mode.

#### Remarques:

- 1. Il est possible de tracer la ligne de base contre l'air. Pour la mesure d'échantillons d'eau, il est conseillé d'utiliser une cuve remplie d'eau déionisée.
- 2. 1000 mAbs = 1,000 E (oder Abs) 1 mAbs = 0,001 E (oder Abs)

## Cinétique

Grâce à la cinétique, il est possible de représenter sous forme graphique le processus réactionnel dans le temps (par exemple les temps de développement chromogène). Le nombre maximal des points de mesure (intervalles) s'élève à 199 pour une durée d'intervalle de 6 à 999 secondes. La concentration de l'échantillon inconnu peut être calculée à l'aide d'un facteur connu. La détermination du facteur s'effectue avant la mesure à proprement parler, au moven d'un étalon standard de concentration connue.

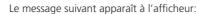
A l'aide des valeurs d'absorbance ainsi déterminées, le facteur se calcule via la pente d'une droite de régression. Pour les mesures futures, la saisie du facteur est possible via une fonction de sélection. Si, des fois, la concentration de l'échantillon n'est pas intéressante, alors saisir un facteur de 1.

Attention: il est possible que la cuvette et donc l'échantillon chauffent en cas de mesures successives d'un grand nombre de points de mesure à des intervalles de temps courts!

### Réalisation de la mesure:







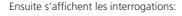

Appuyer successivement sur les touches [MODE] [5] [4].



Valider l'introduction par la touche [4].

< Cinétique > Longeur d'onde: nm





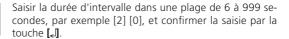





Saisir la longueur d'onde souhaitée dans la plage de 330 à 900 nm, par exemple [4] [0] [0], et confirmer avec la touche [4].

< Cinétique > Temps de temporisation:










Saisir le temps de temporisation dans une plage de 0 à 999 secondes, par exemple [6] [0], et confirmer la saisie par la touche [2].

Durée d'intervalle:







## Nombre d'intervalles:





< Cinétique >

1: Facteur

2: Étalon standard

Saisir le nombre d'intervalles dans une plage de 2 à 199. par exemple [1] [5], et confirmer la saisie par la touche [4].

#### Indication:

La durée de la mesure se calcule à partir du produit des intervalles avec la durée d'intervalle, plus le temps de temporisation.

Dans cet exemple, la mesure cinétique démarre 1 minute après l'actionnement de la touche [Test] et dure 5 minutes au total (15 mesures à des intervalles de temps de 20 secondes). Pendant la mesure, le temps de temporisation affiché n'est pas pris en compte.

Le message suivant apparaît à l'afficheur:

- Après l'actionnement de la touche [1] intervient la saisie d'un facteur.
- Après l'actionnement de la touche [2] intervient la mesure d'un étalon standard de concentration connue.

### Sélection: facteur

Saisir un facteur connu, en une numération scientifique avec un maximum de 6 chiffres après la virgule (rem. 2).

- En actionnant les touches à flèche [▲] ou [▼] choisir entre le signe plus et moins.
- Saisir la valeur du facteur avec virgule décimale, par exemple [9] [.] [3] [4].

Valider l'introduction par la touche [4].

Saisir l'exposant du facteur.

- En actionnant les touches à flèche [▲] ou [▼], choisir entre le signe plus et moins.
- Saisir la valeur de l'exposant, par exemple 1.

Valider l'introduction par la touche [↓].

Une pression sur la touche d'envoi lance la mesure de l'échantillon (voir le déroulement de la mesure standard/ d'échantillon).

### Facteur:









# Facteur:

+ 9.34 E+





# Étalon standard:







Initialisation de la procédure de mesure





#### Sélection: étalon standard

Saisir la concentration de l'étalon standard avec 3 chiffres maximum après la virgule, par exemple [2] [.] [5].

Valider l'introduction par la touche [4].

Une pression sur la touche d'envoi lance la mesure de l'étalon standard (voir le déroulement de la mesure standard/ d'échantillon).

La procédure de mesure initialisée est parcourue une fois avant la mesure de l'échantillon. Le facteur déterminé dans cette phase entre automatiquement dans le calcul de la concentration de l'échantillon.

Les données de la mesure standard sont indiquées à l'afficheur et elles peuvent être transférées à un ordinateur ou une imprimante.

Ensuite, enfoncer la touche [Test] pour lancer la mesure de l'échantillon.

## Déroulement de la mesure standard d'échantillon (rem. 4)

Préparer zéro Presser ZÉRO

l'échantillon



Zéro accepté Préparer test Presser TEST



Le message suivant apparaît à l'afficheur:\*

Placer une cuvette de calibrage remplie dans la chambre de mesure.

Appuyer sur la touche [Zero].

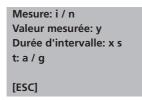
Le message suivant apparaît à l'afficheur:

Placer dans la chambre de mesure une cuvette remplie de l'échantillon préparé.

Appuyer sur la touche [Test].

#### \*Indication:

Si, des fois, un étalon standard a déjà été mesuré avant la mesure, l'afficheur fait apparaître:


Zéro accepté Préparer test Presser TEST

Si vous voulez utiliser le même zéro que pour la mesure standard, appuyer sur la touche [Test]; appuyer sur la touche [Zéro] pour la mesure d'un nouveau zéro.

Temps de temporisation: 28 s


Le temps de temporisation résiduel est affiché sous forme de comptage régressif.

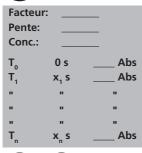
Après l'expiration du temps de temporisation, la première mesure cinétique s'effectue.



Le message suivant apparaît à l'afficheur:

- Numéro de la mesure actuelle (i) / nombre total de mesures (n)
- Le résultat de la dernière mesure (y), (rem. 1)
- La durée d'intervalle résiduelle jusqu'à la prochaine mesure (x)
- La durée de mesure déjà écoulée (a) / durée de mesure totale (g)




#### Indication:

La série de mesures peut être annulée à tout moment par une pression sur la touche [Esc]. Les valeurs déjà mesurées restent préservées.

Après la dernière mesure, le cours du temps de l'absorbance apparaît à l'afficheur sous forme de graphique.



Une pression sur la touche [F1] permet de commuter entre l'affichage du graphique et celui du tableau des valeurs.



Le tableau des valeurs affiche:

- le facteur utilisé pour le calcul de la concentration
- la pente déterminée de l'allure de courbe représentée en Abs/min
- la concentration calculée à partir du facteur
- les absorbances mesurées en Abs aux moments T après x sec



Utiliser les touches à flèche [▲] ou [▼] pour faire défiler le tableau.

Utiliser la touche [F3] pour imprimer le tableau des valeurs ou pour le transmettre à un PC (utilisation d'Hyperterminal).

La touche [Esc] permet d'aller à nouveau à la saisie des valeurs de mesure. Après une pression sur la touche [Test], une nouvelle mesure d'échantillon commence.

#### Remarques:

- 1. Une pression sur la touche [F1] permet de commuter l'affichage des résultats pendant la mesure. L'affichage peut s'effectuer en unités d'absorbance ou en %T.
- 2. Le facteur doit être saisi en numération scientifique avec au maximum 6 chiffres après la virgule, par exemple 121,3673 = 1,213567E+02.
- 3. Toutes les valeurs affichées sont limitées à 9,999E ± 09. Cette valeur est un indicateur d'erreur, aucun message supplémentaire n'est affiché.
- 4. Une mesure standard est signalée par l'affichage **Standard: Conc.** pendant la mesure.

## 2.4.7 Fonctions utilisateur

## Liste personnalisée des méthodes

Après sa mise sous tension, l'appareil affiche automatiquement une liste déroulante de toutes les méthodes disponibles. Pour raccourcir cette liste en fonction des besoins de l'utilisateur, il est possible de créer une liste déroulante définie par l'utilisateur.

Après une mise à jour du logiciel, les nouvelles méthodes supplémentaires sont ajoutées automatiquement dans la liste utilisateur.

La structure du programme nécessite que cette liste contienne au moins une méthode active (sélectionnée). Pour cette raison, il est nécessaire d'activer d'abord toutes les méthodes nécessaires puis de désactiver celle qui a été automatiquement activée par l'appareil si elle n'est pas désirée.

# Liste personnalisée des méthodes, adaptation







Appuyer sur les touches [MODE] [6] [0] l'une après l'autre.



ste méthodes>

sélectionné: • modifier selection: F2 enregistrer: ط annuler: ESC 11 , 1 31 31 3

Confirmer avec la touche [ $\downarrow$ ].

Le message suivant apparaît:

Démarrer avec la touche [4].

50•Ammonium ....

La liste complète des méthodes s'affiche.

Les méthodes avec un point [•] derrière le numéro de la méthode seront affichées dans la liste de sélection des méthodes. Les méthodes sans point ne seront pas affichées dans cette liste.

>> 30•Alcalinité-tot

**F**2

Appuyer sur la touche [▲] ou [▼] pour sélectionner la méthode désirée parmi la liste affichée.

>> 30 Alcalinité-tot

**F2** 

Permuter avec la touche [F2] entre «active» [•] et «inactive» [ ].

>> 30•Alcalinité-tot

Sélectionner la méthode suivante en l'activant ou en la désactivant et ainsi de suite.



Confirmer avec la touche [.1].

Annuler sans enregistrer en appuyant sur la touche [ESC] (Echap).

#### Conseil.

Si seules quelques méthodes sont nécessaires, nous conseillons d'effectuer d'abord le Mode 62 puis le Mode 60.

Tous les polynômes (1-25) et concentrations (1-10) de l'utilisateur apparaissent dans la liste des méthodes, même si celles-ci ne sont pas programmées. Les méthodes non programmées ne peuvent pas être activées!

## Liste personnalisée des méthodes, activation de toutes les méthodes

Ce mode active toutes les méthodes. Après avoir mis l'appareil sous tension, une liste de toutes les méthodes disponibles s'affiche automatiquement.





Appuyer sur les touches [MODE] [6] [1] l'une après l'autre.



Confirmer avec la touche [4].

<Activer ListeM> Activer toutes méthodes OUI: 1, NON: 0

Le message suivant apparaît:





- Appuyer sur la touche [1] pour afficher toutes les méthodes dans la liste de sélection des méthodes.
- Appuyer sur la touche [0] pour conserver la liste de sélection des méthodes en cours.

L'appareil revient automatiquement au menu de modes.

## Liste personnalisée des méthodes, désactivation de toutes les méthodes

La structure du programme nécessite que la liste de méthodes contienne au moins une méthode active (sélectionnée). Pour cette raison, l'appareil active automatiquement une méthode.







Appuyer sur les touches [MODE] [6] [2] l'une après l'autre.



Confirmer avec la touche [4].

<Pre><Desact. ListeM>
Desactiver toutes
méthodes
OUI: 1. NON: 0

Le message suivant apparaît:





- Appuyer sur la touche [1] pour afficher une seule méthode dans la liste de sélection des méthodes.
- Appuyer sur la touche [0] pour conserver la liste de sélection des méthodes en cours.

L'appareil revient automatiquement au menu de modes.

### Méthodes de concentration utilisateur

Il est possible de saisir et d'enregistrer jusqu'à 10 méthodes de concentration utilisateur. Par conséquent, l'utilisateur a besoin de 2 à 14 étalons de concentration connue et d'un blanc (eau déionisée ou valeur de blanc réactif). Mesurer les étalons par concentrations croissantes et de la coloration la plus claire à la plus sombre.

La gamme de mesure pour "dépassement négatif" et "dépassement positif" est définie par -3,5 Abs\* et 9,9 Abs\*. Après avoir sélectionné une méthode, les concentrations du plus bas et du plus haut étalons utilisés s'affichent comme amplitude de mesure. La gamme d'utilisation doit être comprise dans cette fourchette pour obtenir des résultats optimum.

La longueur d'onde peut être déterminée avec le mode 53 "Spectre".

\* 1000 mAbs = 1 Abs = E (affiché)

#### Saisie d'une concentration utilisateur:











< Concentr. util.> choisir no: (850 - 859)









Recouvrir conc. méth.? OUI: 1 NON: 0

long. d'onde: nm (330-900 nm)









Appuyer sur les touches [MODE] [6] [4] l'une après l'autre.

Confirmer avec la touche [4].

#### Procédure de saisie:

Le message suivant apparaît:

Saisir un numéro de méthode compris entre 850 et 859. par ex.: [8] [5] [0]

Confirmer avec la touche [4].

#### Remarques:

Si le nombre saisi a déjà été utilisé pour enregistrer une concentration, l'écran affiche la guestion:

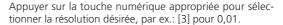
- Appuver sur la touche [0] ou [ESC] pour revenir à la demande de n° de méthode.
- Appuyer sur la touche [1] pour démarrer le mode de saisie

Saisir la longueur d'onde désirée comprise entre 330 et 900 nm, par ex. 550 nm.

Confirmer avec la touche [.].

Appuver sur les touches [▲] ou [▼] pour sélectionner l'unité désirée

Confirmer avec la touche [4].


#### choisir résolution

1: 1

2: 0.1

3: 0.01 4: 0.001

(3)



#### Remarque:

Saisir la résolution désirée en fonction du pré-réglage de l'appareil:

| Gamme       | Résolutions maxi |
|-------------|------------------|
| 0,0009,999  | 0,001            |
| 10,0099,99  | 0,01             |
| 100,0 999,9 | 0,1              |
| 10009999    | 1                |

# Procédure de mesure avec étalons de concentration connue:

Le message suivant apparaît:

Préparer le zéro et appuyer sur la touche [ZÉRO].

#### Remarque:

Utiliser de l'eau déionisée ou du blanc réactif.

Le message suivant apparaît:

Saisir la concentration du premier étalon; par ex. 0,05

- Un pas en arrière avec [ESC].
- Appuyer sur la touche [F1] pour réinitialiser la saisie numérique.

Confirmer avec la touche [4].

Le message suivant apparaît:

< Concentr. util. > Préparer zéro Presser ZÉRO



< Concentr. util.> Zéro accepté

S1: +\_

⊿ | ESC | F1







< Concentr. util.> S1: 0.05 mg/l préparer Presser TEST



S1: 0.05 mg/l E: 0.012

\$1 accepté \$2: +\_\_\_\_\_ \$\alpha | ESC | F1



Préparer le premier étalon et appuyer sur la touche [Test].

L'affichage indique la valeur saisie et la valeur d'extinction mesurée. Confirmer avec la touche [ ].

Saisir la concentration du deuxième étalon; par ex. 0,1

- Un pas en arrière avec [ESC].
- Appuyer sur la touche [F1] pour réinitialiser la saisie numérique.

Confirmer avec la touche [4].

S2: 0.10 mg/l préparer Presser TEST

S2: 0.10 mg/l E: 0.15 \_

S2 accepté
S3: +\_\_\_\_\_
\_ | ESC | F1 | Store

Préparer le deuxième étalon et appuyer sur la touche [Test].

L'affichage indique la valeur saisie et la valeur d'extinction mesurée. Confirmer avec la touche [4].

#### Remarque:

- Procéder comme décrit plus haut pour mesurer les étalons suivants.
- Mesurer au minimum 2 étalons.
- Mesurer au maximum 14 étalons (\$1 à \$14).

Store enregistré

Si tous les étalons désirés ou la valeur maximum de 14 étalons a été mesurée, appuyer sur la touche [Store] (enregistrer).

Le message suivant apparaît:

L'appareil revient automatiquement au menu de modes. La concentration est à présent enregistrée dans l'appareil et peut être rappelée en saisissant le numéro de la méthode ou en la sélectionnant sur la liste de méthodes affichée.

#### CONSEIL:

Sauvegarder toutes les données de concentration sous forme écrite car en cas de coupure de courant (par ex. lors du changement de pile), toutes ces données seront perdues et devront être ressaisies. Il est possible d'utiliser le Mode 67 pour transférer toutes les données de concentration vers un PC.

# Polynômes utilisateurs

Il est possible de saisir et d'enregistrer jusqu'à 25 polynômes utilisateurs. Le programme permet à l'utilisateur d'appliquer un polynôme jusqu'au 5e degré:

## $y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5$

Si un polynôme de degré inférieur est suffisant, les autres coefficients doivent être précisés comme étant 0. Par ex. pour le 2e degré, D, E et F=0.

Saisir les valeurs des coefficients A, B, C, D, E et F sous forme académique avec un maximum de 6 décimales. Par ex. 121,35673 = 1,213567E+02

# Saisie d'un polynôme utilisateur:







Appuyer sur les touches [MODE] [6] [5] l'une après l'autre.



Confirmer avec la touche [4].

< Polynômes ut.> choisir n°: \_\_\_\_ (800-824) Le message suivant apparaît:



Saisir un numéro de méthode compris entre 800 et 824, par ex.: [8] [0] [0]



Recouvrir polynôme? OUI: 1 NON: 0 Confirmer avec la touche [4].

#### Remarque:

Si le nombre saisi a déjà été utilisé pour enregistrer un polynôme, l'écran affiche la question:

- Appuyer sur la touche [0] ou [ESC] pour revenir à la demande de n° de méthode.
- Appuyer sur la touche [1] pour démarrer le mode de saisie.

long. d'onde: \_\_\_\_\_ nm (330-900 nm)

Saisir la longueur d'onde désirée comprise entre 330 et 900, par ex.: 550 nm.





< Polynômes ut. > y = A+Bx+C $x^2$ +D $x^3$ + E $x^4$ +F $x^5$ A: +





A: 1.32\_\_\_\_ E+\_\_\_





B: +\_\_\_\_



limit. domaine mesure Min E: +\_\_\_\_ Max E: +



Confirmer avec la touche [].

- Appuyer sur les touches [▲] ou [▼] pour permuter entre le signe plus et moins.
- Saisir les données du coefficient A, y compris le point décimal par ex.: 1,32
- Appuyer sur la touche [F1] pour réinitialiser la saisie numérique.

Confirmer avec la touche [4].

- Appuyer sur les touches [▲] ou [▼] pour permuter entre le signe plus et moins.
- Saisir l'exposant du coefficient A, par ex.: 3

Confirmer avec la touche [4].

L'appareil demande successivement les données des autres coefficients (B, C, D, E et F).

#### Remarque:

Si l'utilisateur saisit [0] comme valeur de coefficient, la saisie de l'exposant est automatiquement omise.

Confirmer avec la touche [4].

Entrer les plages de mesure de -3,5 à +9,9 Abs.

- Appuyer sur les touches [▲] ou [▼] pour permuter entre le signe plus et moins.
- Saisir les valeurs en Absorbance (E = Extinction) pour la limite supérieure (Max) et la limite inférieure (Min).

Confirmer avec la touche [4].

## choisir unité: >> mg/l a/l mmol/l mAbs µg/l Е Α

Appuyer sur les touches [▲] ou [▼] pour choisir l'unité désirée.



Confirmer avec la touche [4].

choisir résolution

%

1:1 2: 0.1 3: 0.01

4: 0.001



Appuyer sur la touche numérique appropriée pour choisir la résolution désirée, par ex.: [3] pour 0,01.

#### Remarque:

Saisir la résolution désirée en fonction du pré-réglage de l'appareil:

| Gamme       | Résolutions maxi |
|-------------|------------------|
| 0,0009,999  | 0,001            |
| 10,0099,99  | 0,01             |
| 100,0 999,9 | 0,1              |
| 10009999    | 1                |

## enregistré

Le message suivant apparaît:

L'appareil revient automatiquement au menu de modes.

Le polynôme est à présent enregistré dans l'appareil et peut être rappelé en saisissant le numéro de la méthode ou en le sélectionnant sur la liste de méthodes affichée

#### CONSEIL:

Sauvegarder toutes les données de polynômes sous forme écrite car en cas de coupure de courant (par ex. lors du changement de pile), toutes ces données seront perdues et devront être ressaisies. Il est possible d'utiliser le Mode 67 pour transférer toutes les données de polynômes vers un PC.

## Effacer les méthodes utilisateurs (polynômes et concentrations)

En principe, une méthode utilisateur valide peut être écrasé.

Une méthode utilisateur existante (polynôme ou concentration) peut également être entièrement supprimée et extraite de la liste de sélection des méthodes:







Appuyer sur les touches [MODE] [6] [6] l'une après l'autre.



Confirmer avec la touche [4].

<Effacer mét. u.> choisir n°: (800-824), (850-859)



Le message suivant apparaît:



Saisir le numéro de méthode utilisateur à supprimer (compris entre 800 et 824 ou 850 et 859) par ex.: 800



Confirmer avec la touche [4].

M800 effacer?

OUI: 1, NON: 0

L'affichage demande:





- Appuyer sur la touche [1] pour effacer la méthode utilisateur sélectionnée.
- Appuyer sur la touche [0] pour conserver la méthode utilisateur valide.

L'appareil revient automatiquement au menu de modes.

# Imprimer les données d'une méthode utilisateur (polynômes ou concentrations)

Avec cette fonction de Mode, toutes les données (par ex. longueur d'onde, unité, ...) des méthodes polynômes ou concentrations enregistrées peuvent être imprimées ou transmises à un PC avec HyperTerminal.







Appuyer sur les touches [MODE] [6] [7] l'une après l'autre.



Confirmer avec la touche [4].

<Imprimer m. u.> départ: ↓

Le message suivant apparaît:



Appuyer sur la touche  $\llbracket \mathcal{A} \rrbracket$  pour imprimer les données (par exemple longueur d'onde, unité, ...) de toutes les méthodes utilisateur enregistrées.

M800 M803 ...

L'affichage indique par exemple:

Lorsque le transfert de données est terminé, l'appareil revient automatiquement au menu de modes.

# Initialiser le système de méthodes utilisateur (polynômes et concentrations)

Une coupure de courant au niveau du dispositif de stockage entraîne des données incohérentes. Le système de méthodes utilisateur doit alors être réinitialisé avec cette fonction de mode pour le paramétrer sur un état prédéfini.

#### ATTENTION:

Toutes les méthodes utilisateurs (polynômes et concentrations) enregistrées sont effacées avec l'initialisation!







Appuyer sur les touches [MODE] [6] [9] l'une après l'autre.



Confirmer avec la touche [4].

Le message suivant apparaît:



Confirmer avec la touche [4].

Initialisiation?
OUI: 1. NON: 0

L'affichage demande:





- Appuyer sur la touche [1] pour démarrer l'initialisation.
- Appuyer sur la touche [0] pour annuler sans initialisation.

L'appareil revient automatiquement au menu de modes.

# 2.4.8 Fonctions spéciales

## Indice de saturation de Langelier (équilibre hydrique)

Les tests suivants sont nécessaires pour le calcul:

- Valeur du pH
- Température
- Dureté calcique
- Alcalinité totale
- TDS (solides dissous totaux)

Effectuer les tests à part et noter les résultats. Calculer l'indice de saturation de Langelier comme décrit:

# Calcul de l'indice de saturation de Langelier









Avec le Mode 71 (voir ci-dessous), il est possible de choisir entre les degrés Celsius et Fahrenheit.

Appuyer sur les touches [MODE] [7] [0] l'une après l'autre.

Confirmer avec la touche [4].

<Langelier> température °C: 3°C <=T<=53°C



Le message suivant apparaît:

Saisir la valeur de température (T) dans la gamme comprise entre 3 et 53°C et confirmer avec la touche [[4]]. Si °F est choisi, saisir la valeur de température dans une gamme comprise entre 37 et 128°F.

Calcique dureté 50<=CH<=1000

**-**\_ \_ \_ \_



Le message suivant apparaît:

Saisir la valeur de dureté calcique (CH) dans une gamme comprise entre 50 et 1000 mg/l  $CaCO_3$  et confirmer avec la touche [ $_{\bullet}$ ].

Tot. alcalinité 5<=TA<=800

+\_ \_ \_ \_



Le message suivant apparaît:

Saisir la valeur d'alcalinité totale (AT) dans une gamme comprise entre 5 et 800 mg/l CaCO<sub>3</sub> et confirmer avec la touche [ ].

total dissol. solids 0<=TDS<=6000

+\_ \_ \_



Le message suivant apparaît:

Saisir la valeur de TDS (solides dissous) dans une gamme comprise entre 0 et 6000 mg/l et confirmer avec la touche [4].

# valeur-pH 0<=pH<=12

+\_ \_ \_ \_



<Langelier>
Index de saturation
Langelier:
0,00

Esc 🚽

Le message suivant apparaît:

Saisir la valeur de pH dans une gamme comprise entre 0 et 12 et confirmer avec la touche  $[\![ \downarrow \!]\!]$ .

L'affichage indique l'indice de saturation de Langelier.

Appuyer sur la touche [4] pour démarrer un nouveau calcul.

Appuyer sur la touche [ESC] (Echap) pour retourner au menu de mode.

#### **Exemples:**

#### Erreur d'utilisation:

# CH<=1000 mg/l CaCO3! CH>=50 mg/l CaCO3!

Valeurs hors de la gamme définie:

La valeur saisie est trop élevée.



La valeur saisie est trop faible.

Confirmer le message affiché avec la touche [ع] et saisir une valeur dans la gamme définie.

# Sélection de l'unité de température

L'utilisateur peut saisir la valeur de température en degrés Celsius ou Fahrenheit. La présélection suivante est par conséquent nécessaire (une fois).







Appuyer sur les touches [MODE] [7] [1] l'une après l'autre.



Confirmer avec la touche [4].

# <température> 1: °C 2: °F

Le message suivant apparaît:



Appuyer sur la touche [1] pour sélectionner les degrés Celsius.



Appuyer sur la touche [2] pour sélectionner les degrés Fahrenheit.

L'appareil revient automatiquement au menu de modes.

# 2.4.9 Réglage de base 2 de l'appareil

## Réglage du contraste de l'afficheur







Appuyer sur les touches [MODE] [8] [0] l'une après l'autre.



Confirmer avec la touche [4].

<Contraste LCD>

[▲] [▼]

Le message suivant apparaît:









Le contraste de l'afficheur LCD diminue en appuyant sur  $[\mathbf{\nabla}]$ .

Confirmer avec la touche [4].

# Réglage de la luminosité de l'affichage







Appuyer sur les touches [MODE] [8] [1] l'une après l'autre.



Confirmer avec la touche  $\llbracket \lrcorner \rrbracket$ .

## <Luminosité LCD>

Le message suivant apparaît:



1 1



1 1

Appuyer sur la touche [▲] pour augmenter la luminosité de l'affichage d'environ une unité.

Appuyer sur la touche [▼] pour diminuer la luminosité de l'affichage d'environ une unité.







Appuyer sur la touche [**T**est] pour diminuer la luminosité de l'affichage d'environ dix unités.

0...254:200

Le message suivant apparaît:

L'utilisateur peut régler la luminosité entre 0 et 254 unités. Voici: 200.



Confirmer avec la touche [4].

# 2.4.10 Fonctions spéciales de l'appareil/service

# Informations concernant le photomètre







Appuyer sur les touches [MODE] [9] [1] l'une après l'autre.



Valider les introductions par la touche [اي].

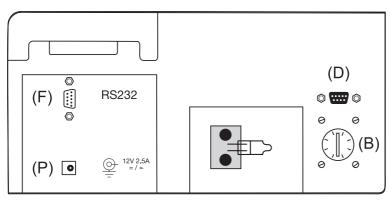
<Info-appareil>
Software:
V201.001.1.001.002
suivant: ▼, Fin: Esc

Ce mode fournit des informations sur le logiciel actuel, l'état identifié actuel de l'alimentation secteur, le nombre de mesures effectuées et le nombre d'adresses mémoires disponibles.




En appuyant sur la touche  $[\P]$  on affiche le nombre de tests effectués et la mémoire encore disponible.

<Info-appareil> Nombre de tests: 139 enregistrements: 999 Fin: Esc


Retour au menu MODE par la touche [ESC].

## 2.5 Transfert de données

Mettre hors tension l'ordinateur ou l'imprimante ainsi que le photomètre. Raccorder l'interface RS232 du photomètre à l'interface sérielle de l'ordinateur ou de l'imprimante avec un câble dont la disposition des broches est adéquate (cf. caractéristiques techniques). Le câble de raccordement à l'ordinateur est inclus dans la livraison.



PC Spectro II



SpectroDirect

Le photomètre est équipé de 2 interfaces RS 232:

Interface (F) est utilisée dans l'état de livraison.

**Interface (D)** est utilisée pour transférer les données à un PC ou une imprimante et pour effectuer les mises à jour du logiciel.

## 2.5.1 Raccordement à une imprimante

L'appareil peut être utilisé avec des imprimante disposant d'une interface sérielle (voir 3.4 donnés techniques, interface).

L'imprimante DP 1012 ou l'imprimanate DPN 2335 pour papier normal est adaptée comme imprimante compacte.

Procéder aux modifications de la configuration standard de l'imprimante **DP 1012** pour une utilisation avec le photomètre:

(Les instructions sont décrites dans le mode d'emploi de l'imprimante.)

Data bits: 8 Parity: None Baud-rate: 19200 Country: Germany Print mode: Text Auto-off: 5 Min. Emulation: Standard Normal DTR:

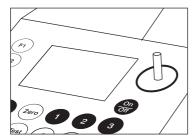
Procéder aux modifications de la configuration standard de l'imprimante **DPN 2335** pour une utilisation avec le photomètre:

(Les instructions sont décrites dans le mode d'emploi de l'imprimante.)

Baud-rate: 9600
Parity: None
Data bits: 8

**Indication:** raccorder l'imprimante avec le photomètre avant l'impression et mettre en marche.

**Attention:** régler les paramètres d'impression en mode 29. Voir chapitre 2.4.3 paramètres d'impression.


## 2.5.2 Transfert de données à un ordinateur

Le transfert des résultats de test à un ordinateur requiert un programme de transfert par exemple Hyperterminal. La procédure exacte est décrite dans la page d'accueil de notre site Internet en «téléchargement».

# 2.5.3 Téléchargement de mises à jour

Des mises à jour de nouvelles versions de logiciel et de langues sont possibles par téléchargement depuis notre site internet. La procédure exacte est décrite dans notre page d'accueil sous la rubrique téléchargement.

La pièce aimantée livrée avec l'appareil est nécessaire à la mise à jour de l'appareil!



#### Remarque

Pour éviter la perte des résultats de tests enregistrés, il est préférable de les enregistrer ou de les imprimer avant d'effectuer une mise à jour.

# Troisième partie

**Annexe** 

# 3.1 Déballage

Lors du déballage, veuillez vérifier à l'aide de la liste suivante si toutes les pièces sont complètes et en bon état.

En cas de réclamations, veuillez en informer immédiatement votre revendeur local.

## 3.2 Contenu de la livraison

Le contenu de la livraison standard du PC Spectro II/SpectroDirect se compose de:

| $\checkmark$ |                                                                |
|--------------|----------------------------------------------------------------|
|              | 1 photomètre                                                   |
|              | 1 pile au lithium, CR 2032; 3V (uniquement avec PC Spectro II) |
|              | 2 piles AA/LR6 (uniquement avec SpectroDirect)                 |
|              | 1 transformateur secteur, 100 – 240 V, 50 – 60 Hz              |
|              | 1 câble de connexion pour PC                                   |
|              | 1 aimant (pour mise à jour du SpectroDirect)                   |
|              | 1 mode d'emploi                                                |
|              | 1 certificat de test du fabricant M                            |
|              | 1 déclaration de garantie                                      |

Les jeux de réactifs ne sont pas compris dans le contenu de la livraison standard. Vous trouverez des informations plus détaillées concernant les jeux de réactifs disponibles en vous reportant à notre catalogue général en vigueur.

# 3.3 Non rempli pour des raisons techniques

#### 3.4 Caractéristiques techniques

Affichage graphique (7 lignes, 21 positions)

Interface RS232 pour raccordement à imprimante et ordinateur connecteur 9 broches, format ASCII, taux de baud 19200,

8 bits, parité: néant, 1 bit de démarrage, 1 bit d'arrêt,

protocole: Xon/Xoff Disposition des broches:

1 = disponible6 = disponible2 = données rx7 = RTS3 = données tx8 = CTS4 = disponible9 = disponible

5 = GND

Source lumineuse lampe halogène au tungstène, pré-réglée (6V. 10W)

durée de vie: environ 200.000 mesures

Monochromateur réseau de diffraction holographique (600 lignes/mm)

Détecteur Diode au silicium Plage de longeur d'onde 330 à 900 nm

Gamme photométrique -0,3 à 2,5 Abs (Extinction); 0,1–130% T (Transmission)

 $\begin{array}{ll} \text{Pr\'ecision} & 0,259 \text{ Abs} < x < 0,273 \text{ Abs à 440 nm} \\ \text{photom\'etrique} & 0,250 \text{ Abs} < x < 0,264 \text{ Abs à 635 nm} \\ \text{avec des filtres} & 0,548 \text{ Abs} < x < 0,568 \text{ Abs à 440 nm} \\ \text{(traçabilit\'e NIST)} & 0,542 \text{ Abs} < x < 0,562 \text{ Abs à 635 nm} \\ 0,954 \text{ Abs} < x < 0,994 \text{ Abs à 440 nm} \\ \end{array}$ 

0,907 Abs < x < 0,947 Abs à 635 nm ± 0.005 Abs/h à 500 nm

 $\begin{array}{lll} \mbox{Dérive} & \pm \mbox{ 0,005 Abs/h à 500 nm} \\ \mbox{Lumière parasite} & < \mbox{0,5 \% à 340 nm et 400 nm} \end{array}$ 

Précision de longeur d'onde

± 2 nm

Reproductibilité de

± 1 nm

longeur d'onde Bande passante

10 nm

spectrale Maniement

Clavier tactile résistant aux acides et dissolvants avec retour

acoustique par signal sonore intégré

Alimentation transformateur secteur externe

(Input: 100–240 V; 50–60 Hz; Output: 12 V === 30W ⊝-⊕-⊕) Pile au lithium, CR 2032; 3 V (uniquement avec PCSpectroll); 2 piles AA/LR6 (uniquement avec SpectroDirect); pour conserver les données en cas d'absence de transformateur secteur externe

Dimensions 265 x 320 x 170 mm environ (PC Spectro II)

270 x 275 x 150 mm environ (SpectroDirect)

Poids 3 kg environ (inclusive bloc d'alimentation)

Conditions d'utilisation 5–40°C pour une humidité relative de 30-90%

(sans condensation)

La précision spécifique du photomètre est seulement valable

par une température de 20 à 25°C.

Sélection de la langue allemand, anglais, français, espagnol, italien, portugaise;

autres langues par téléchargement de mises à jour

Mémoire environ 1000 blocs de données

## Sous réserve de modifications techniques!

La précision spécifique des appareils n'est garantie que pour une utilisation des réactifs originaux joints par le fabriquant.

## 3.5 Abréviations

| Abréviations | Definition                                                                               |  |  |  |
|--------------|------------------------------------------------------------------------------------------|--|--|--|
| °C           | degrés Celsius                                                                           |  |  |  |
| °F           | degrés Fahrenheit °F = (°C x 1.8) + 32                                                   |  |  |  |
| °dH          | degrés, en dureté, allemande                                                             |  |  |  |
| °fH          | degrés, en dureté, française                                                             |  |  |  |
| °eH          | degrés, en dureté, anglaise                                                              |  |  |  |
| °aH          | degrés, en dureté, américaine                                                            |  |  |  |
| Abs          | Absorption unité ( <u>△</u> Extinction E)<br>1000 mAbs = 1 Abs <u>△</u> 1 A <u>△</u> 1 E |  |  |  |
| μg/l         | Microgramme par litre (= ppb)                                                            |  |  |  |
| mg/l         | Miligramme par litre (= ppm)                                                             |  |  |  |
| g/l          | Gramme par litre (= ppth)                                                                |  |  |  |
| KI           | iodure de potassium                                                                      |  |  |  |
| Ks 4.3       | Acidité jusqu'à une valeur pH 4,3                                                        |  |  |  |
| TDS          | Solides dissous totaux                                                                   |  |  |  |
|              |                                                                                          |  |  |  |
| LR           | Plage de mesure inférieure                                                               |  |  |  |
| MR           | Plage de mesure mojenne                                                                  |  |  |  |
| HR           | Plage de mesure supérieure                                                               |  |  |  |
| С            | Réactifs Chemetrics®                                                                     |  |  |  |
| L            | Réactif liquide (liquid)                                                                 |  |  |  |
| Р            | Réactif en poudre                                                                        |  |  |  |
| PP           | Sachets de poudre                                                                        |  |  |  |
| Т            | Pastille                                                                                 |  |  |  |
| ТТ           | Test en cuvette                                                                          |  |  |  |
|              |                                                                                          |  |  |  |
| DEHA         | N,N-Diethylhydroxylamin                                                                  |  |  |  |
| DPD          | Diethyl-p-phenylendiamin                                                                 |  |  |  |
| DTNB         | Réactif Ellmans                                                                          |  |  |  |
| PAN          | 1-(2-Pyridylazo)-2-napthol                                                               |  |  |  |
| PDMAB        | Paradimethylaminobenzaldehyd                                                             |  |  |  |
| PPST         | 3-(2-Pyridyl)-5,6-bis(4-phenylsulfonsäure)1,2,4-triazine                                 |  |  |  |
| ТВРЕ         | ester éthylique de tétrabromophénolphtaléine                                             |  |  |  |
| TPTZ         | 2,4,6-Tri-(2-Pyridyl)-1,3,5-triazine                                                     |  |  |  |

### 3.6 Que fait, si...

# 3.6.1 Consignes pour l'utilisateur concernant l'affichage et les messages d'erreur

| Affichage                                   | Origine possible                                                                                                                          | Mesure                                                                                                                                                            |  |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| trop élevé                                  | dépassement de la limite supé-<br>rieure de la plage de mesure                                                                            | Diluer si possible l'échantillon ou<br>utiliser une autre plage de mesure                                                                                         |  |  |
|                                             | turbidités dans l'échantillon                                                                                                             | Filtrer l'échantillon                                                                                                                                             |  |  |
|                                             | pénétration de lumière dans la<br>chambre de mesure                                                                                       | Le joint d'étanchéité sur le couver-<br>cle de la cuvette, est-il en place?<br>Répétition de la mesure avec le<br>joint d'étanchéité.                             |  |  |
| trop bas                                    | dépassement de la limite<br>inférieure de la plage de mesure                                                                              | Indiquer le résultat de test avec<br>un x mg/l inférieur<br>x = limite inférieure de la plagede<br>mesure; si nécessaire appliquer<br>d'autres méthodes d'analyse |  |  |
| Eurreur de<br>sauvegarde:<br>Mode 34        | Approvisionnement en courant interrompu ou non existant                                                                                   | Placer ou changer pile lithium.<br>Effacer les données en mode 34.                                                                                                |  |  |
| Jus supérieur à la<br>gamme E4              | L'étalonnage par l'utilisateur est<br>en-dehors de la gamme acceptée.                                                                     | Vérifer l'étalon, le temps de réaction et les autres erreurs possibles.                                                                                           |  |  |
| Jus inférieur à la<br>gamme E4              |                                                                                                                                           | Répéter l'ètalonnage par l'utili-<br>sateur.                                                                                                                      |  |  |
| Supérieur à la<br>gamme E1                  | La concentration de l'étalon est<br>trop élevée/trop faible, ce qui a<br>entraîné un dépassement des                                      | Effecteur un test avec un étalon<br>de concentration plus faible/plus<br>élevée.                                                                                  |  |  |
| Inférieur à la<br>gamme E1                  | limites de la gamme pendant<br>l'étalonnage par l'utilisateur                                                                             |                                                                                                                                                                   |  |  |
| E40 étalonnage<br>utilisateur<br>impossible | Si l'affichage indique Supérieur/<br>Inférieur à la gamme pour un<br>résultat de dosage, l'étalonnage<br>par l'utilisateur est impossible | Effecteur un test avec un étalon<br>de concentration plus faible/plus<br>élevée                                                                                   |  |  |
| Zéro                                        | peu ou trop de lumière déficient                                                                                                          | Cuvette étalon oubliée?<br>Placer la cuvette étalon, répéter<br>la mesure.<br>Nettoyer la chambre de mesure.<br>Recommencer le calage du zéro.                    |  |  |

| Affichage                                                     | Origine possible                                                                     | Mesure                                                                                                                                                                                                                                                                                                                  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ???                                                           | Le calcul d'une valeur<br>n'est pas possible<br>(par ex. chlore combiné)             | Mesure correctement<br>exécutée?<br>Répétition dans le cas contraire.                                                                                                                                                                                                                                                   |  |
| Exemple 1  0,60 mg/l libre Cl ??? comb. Cl 0,59 mg/l total Cl |                                                                                      | Exemple 1: Les valeurs affichées sont d'un ordre de grandeur différent, mais égales en ce qui concerne les tolérances de valeurs de mesure. Pas de présence de chlore combiné dans ce cas.                                                                                                                              |  |
| Exemple 2  trop bas libre CI ??? comb. CI 1,59 mg/l total CI  |                                                                                      | Exemple 2: La valeur de mesure pour le chlore libre se situe au-delà de la plage de mesure. L'appareil, par conséquent, ne peut calculer la valeur de chlore combiné. Puisque le chlore libre mesurable n'est pas présent, la proportion de chlore combiné égale à la teneur en chlore total peut être prise en compte. |  |
| Exemple 3  0,60 mg/l libre Cl ??? comb. Cl trop bas total Cl  |                                                                                      | Exemple 3: La valeur de mesure du chlore total se situe au-delà de la plage de mesure. L'appareil, par conséquent, ne peut calculer la valeur de chlore combiné. Dans ce cas, diluer l'échantillon afin de pouvoir saisir la teneur en chlore totale.                                                                   |  |
| Erreur, absorbance<br>par example.:<br>T2>T1                  | Eurreur lors du calibrage<br>des fluorures par example<br>T1 et T2 ont été confundus | Recommencer le calibrage                                                                                                                                                                                                                                                                                                |  |
| Imprimante<br>«timeout»                                       | Imprimante débranchée<br>pas de connections                                          | Brancher l'imprimante<br>Tester les contacts<br>Mettre l'imprimante en marche                                                                                                                                                                                                                                           |  |

### 3.6.2 Recherche détaillée d'erreurs

| Problème                                                                                                              | Cause possible                                                          | Mesure de dépannage                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Le résultat ne correspond<br>pas à la valeur<br>escomptée.                                                            | La formule n'est pas celle attendue.                                    | Appuyer sur les touches curseurs pour sélectionner la formule souhaitée.          |  |
| Aucune différenciation:<br>par exemple, pour le<br>chlore, il manque la<br>sélection différenciée,<br>libre ou total. | Le mode pro est activé.                                                 | Désactiver le mode pro avec<br>Mode 50.                                           |  |
| Le compte à rebours<br>automatique pour le<br>temps de et/ou dévelop-<br>pement chromogène ne<br>s'affiche pas.       | Le compte à rebours est<br>désactivé le mode pro est<br>activé.         | Activer le compte à rebours<br>Mode 13 et désactiver le<br>mode pro avec Mode 50. |  |
| La méthode semble ne pas exister.                                                                                     | La méthode est désactivée<br>dans la liste des méthodes<br>utilisateur. | Activer la méthode souhaitée dans Mode 60.                                        |  |

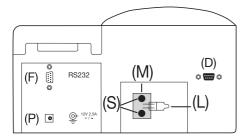
#### 3.6.3 Service / Maintenance

#### 3.6.3.1 Manipulation et nettoyage

- Utiliser l'appareil uniquement dans des conditions ambiantes (par ex. sans chaleur extrême, poussière, humidité).
- Stocker l'appareil dans un endroit sec et à l'abri de la poussière.
- Pour nettoyer l'appareil, utiliser simplement un chiffon humide, sans solvant.
   Toujours fermer le couvercle de la chambre de mesure pour protéger les optiques.
- Éviter de renverser de l'eau dans la chambre de mesure. Une fuite d'eau dans le boîtier de l'appareil peut détruire les composants électroniques et entraîner une corrosion.

#### 3.6.3.2 Changement de source lumineuse

La source lumineuse est une lampe halogène pré-ajustée de qualité supérieure. Cependant, de temps en temps, il peut être nécessaire de changer ce composant pré-assemblé.

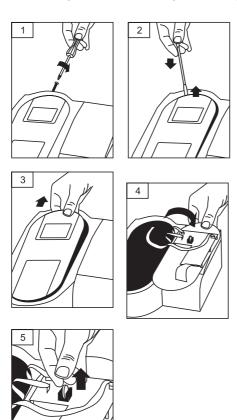

Suivre les instructions:

**ATTENTION:** déconnecter l'appareil du secteur et se rappeler que la lampe peut être encore chaude si l'appareil a été récemment utilisé.

**ATTENTION:** La lampe halogène peut être brûlante. La laisser refroidir avant de la changer.

**Remarque:** ne pas toucher la nouvelle lampe halogène (L) avec les doigts car cela peut altérer la durée de vie du composant.

- 1) Déconnecter l'appareil du secteur.
- 2) Sortir la plaque métallique servant à couvrir la source lumineuse.
- 3) Dévisser (S) et retirer l'ancien module de la lampe halogène (M).
- 4) Sortir le nouveau module de lampe halogène pré-ajusté de son emballage et le mettre en place.
- 5) Fixer les vis et remettre la plaque métallique en place.
- 6) Raccorder l'appareil au secteur et démarrer les tests automatiques.

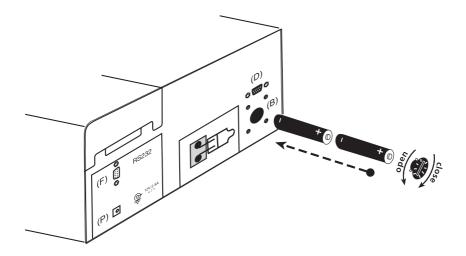



## 3.6.3.3 Changement de la pile au lithium (PCSpectroll uniquement)

- 1. Mettre l'appareil hors tension.
- 2. Dévisser la plaque frontale (1).
- 3. Retirer la plaque frontale en la soulevant délicatement et en la poussant vers l'arrière (2-4). Attention: ne pas détruire la connexion du câble.
- 4. Retirer l'ancienne pile au lithium (5).
- 5. Mettre la nouvelle pile au lithium en place dans le support en respectant la polarité.
- 6. Remettre la plaque frontale en place.
- 7. Fixer la plaque frontale avec les vis.

#### Attention:

Éliminer la pile au lithium en respectant la réglementation locale.




#### 3.6.3.4 Changement des piles (SpectroDirect uniquement)

- 1. Mettre l'appareil hors tension.
- 2. Ouvrir le couvercle des piles (B).
- 3. Retirer les anciennes piles.
- 4. Mettre les nouvelles piles en place dans le support en **respectant la polarité**.
- 5. Remettre le couvercle des piles en place et le fixer.

#### Attention:

Éliminer les piles en respectant la réglementation locale.



#### 3.7 Déclaration de conformité européenne

#### **Declaration of CE-Conformity**

The manufacturer: Tintometer GmbH

Schleefstraße 8-12 44287 Dortmund Deutschland

declares that this product

Product name: Lovibond® Spectro Direct

The product above mentioned is in compliance with:

European Union Council Directive of may, 3rd, 1989 regarding the reconciliation of union members legislations relative to Electromagnetic Compatibility (89/336/CEE) (JOCE 23.05.89 L 139/19-26).

Low voltage directive regarding people, animals and goods security during the use of electrical materials which should be employed within certain voltage limits (73/23/CEE).

This conformity is presumed according to the following standard:

EN 61326: 1997 + A1: 1998 + A2: 2001 + A3: 2003

When electrostatic discharge occurs close to the display or the metal parts in the cell chamber, the display or the internal communication may be disturbed. In this case please switch the instrument off, wait a few seconds and restart.

Electromagnetic interference with field strength greater than 3V/m may increase the specified tolerances.

For data transfer and update use the cable delivered with the instrument only.

Dortmund, 26. Februar 2007

Cay-Peter Voss, Managing Director

#### **Declaration of CE-Conformity**

The manufacturer: Tintometer GmbH

Schleefstraße 8a 44287 Dortmund Deutschland

declares that this product

Product name: Lovibond® PCspectro

The product above mentioned is in compliance with:

European Union Council Directive of may, 3rd, 1989 regarding the reconciliation of union members legislations relative to Electromagnetic Compatibility (89/336/CEE) (JOCE 23.05.89 L 139/19-26).

Low voltage directive regarding people, animals and goods security during the use of electrical materials which should be employed within certain voltage limits (73/23/CEE).

This conformity is presumed according to the following specifications:

- EN 50082-1 Standard 1992 Edition Immunity Generic Standard
- EN 55022 Standard B Class 1994 Edition Emission Generic Standard
- EN 5081-1 Standard 1992 Edition Emission Generic Standard

Dortmund, 28. Mai 2001

Cay-Peter Voss, Managing Director

Tintometer GmbH

Lovibond® Water Testing Schleefstraße 8-12 44287 Dortmund Tel.: +49 (0)231/94510-0 Fax: +49 (0)231/94510-30 sales@lovibond.com www.lovibond.com Germany

**Tintometer China** 

China

Room 1001, China Life Tower 16 Chaoyangmenwai Avenue, Beijing, 100020 Tel.: +86 10 85251111 App. 330 Fax: +86 10 85251001 chinaoffice@tintometer.com www.lovibond.com/zh

Lovibond House

The Tintometer Limited Sun Rise Way Amesbury, SP4 7GR Tel.: +44 (0)1980 664800 Fax: +44 (0)1980 625412 water.sales@lovibond.uk www.lovibond.com

**Tintometer South East Asia** 

Unit B-3-12, BBT One Boulevard, Lebuh Nilam 2, Bandar Bukit Tinggi, Klang, 41200, Selangor D.E Tel.: +60 (0)3 3325 2285/6 Fax: +60 (0)3 3325 2287 lovibond.asia@lovibond.com www.lovibond.com

Malaysia

Tintometer Inc.

6456 Parkland Drive Sarasota, FL 34243 Tel: 941.756.6410 Fax: 941.727.9654 sales@lovibond.us www.lovibond.us

USA

**Tintometer Brazil** 

Caixa Postal: 271 CEP: 13201-970 Jundiaí - SP Tel.: +55 (11) 3230-6410 sales@lovibond.us www.lovibond.com.br

Brazil

**Tintometer Spain** Postbox: 24047

08080 Barcelona Tel.: +34 661 606 770 sales@tintometer.es www.lovibond.com

Spain

India

Tintometer Indien Pvt. Ltd.

Door No: 7-2-C-14, 2<sup>nd</sup>, 3<sup>rd</sup> & 4<sup>th</sup> Floor Sanathnagar Industrial Estate, Hyderabad: 500018, Telangana Tel: +91 (0) 40 23883300 Toll Free: 1 800 599 3891/ 3892 indiaoffice@lovibond.in www.lovibondwater.in

Sous réserve de modifications techniques Imprimé en Allemagne 02/21 Lovibond® et Tintometer® sont des marques déposées du groupe Tintometer.



