

Photometer System MD 600 / MaxiDirect

(IT) Istruzioni d'uso

Operazione importante da eseguire prima di iniziare ad utilizzare il fotometro

Eseguire le operazione qui riportate, come descritto nelle Istruzione per l'uso e familiarizzare con il nuovo fotometro:

- Disimballare e controllare il contenuto della consegna; Istruzione per l'uso pag. 352.
- Inserire le batterie; Istruzione per l'uso pag. 300 e seg..

Eseguire le seguente impostazione nella modalità menù; Istruzione per l'uso a partire da pag. 311 e segg.:

- MODE 10: selezionare lingua
- MODE 12: impostare data e ora
- MODE 34: eseguire "cancella dati"
- MODE 69: eseguire "User m. init"; Inizializzazione del sistema dei metodi dell'operatore (Polinomio & Concentrazione)

Se necessario, disattivare/attivare altre funzione.

(DE)

Wichtige Information

Um die Qualität unserer Umwelt zu erhalten, beschützen und zu verbessern Entsorgung von elektronischen Geräten in der Europäischen Union

Aufgrund der Europäischen Verordnung 2012/19/EU darf Ihr elektronisches Gerät nicht mit dem normalen Hausmüll entsorgt werden!

Tintometer GmbH entsorgt ihr elektrisches Gerät auf eine professionelle und für die Umwelt verantwortungsvolle Weise. Dieser Service ist, **die Transportkosten nicht inbegriffen**, kostenlos. Dieser Service gilt ausschließlich für elektrische Geräte die nach dem 13.08.2005 erworben wurden. Senden Sie Ihre zu entsorgenden Tintometer Geräte frei Haus an Ihren Lieferanten.

Important Information

To Preserve, Protect and Improve the Quality of the Environment Disposal of Electrical Equipment in the European Union

Because of the European Directive 2012/19/EU your electrical instrument must not be disposed of with normal household waste!

Tintometer GmbH will dispose of your electrical instrument in a professional and environmentally responsible manner. This service, **excluding the cost of transportation** is free of charge. This service only applies to electrical instruments purchased after 13th August 2005. Send your electrical Tintometer instruments for disposal freight prepaid to your supplier.

Notice importante

Conserver, protéger et optimiser la qualité de l'environnement Élimination du matériel électrique dans l'Union Européenne

Conformément à la directive européenne n° 2012/19/UE, vous ne devez plus jeter vos instruments électriques dans les ordures ménagères ordinaires!

La société Tintometer GmbH se charge d'éliminer vos instruments électriques de façon professionnelle et dans le respect de l'environnement. Ce service, qui ne comprend pas les frais de transport, est gratuit. Ce service n'est valable que pour des instruments électriques achetés après le 13 août 2005. Nous vous prions d'envoyer vos instruments électriques Tintometer usés à vos frais à votre fournisseur.

Belangrijke informatie

Om de kwaliteit van ons leefmilieu te behouden, te verbeteren en te beschermen is voor landen binnen de Europese Unie de Europese richtlijn 2012/19/EU voor het verwijderen van elektronische apparatuur opgesteld.

Volgens deze richtlijn mag elektronische apparatuur niet met het huishoudelijk afval worden afgevoerd.

Tintometer GmbH verwijdert uw elektronisch apparaat op een professionele en milieubewuste wijze. Deze service is, **exclusief de verzendkosten**, gratis en alleen geldig voor elektrische apparatuur die na 13 augustus 2005 is gekocht. Stuur uw te verwijderen Tintometer apparatuur franco aan uw leverancier.

(ES)

Información Importante Para preservar, proteger y mejorar la calidad del medio ambiente Eliminación de equipos eléctricos en la Unión Europea

Con motivo de la Directiva Europea 2012/19/UE, ¡ningún instrumento eléctrico deberá eliminarse junto con los residuos domésticos diarios!

Tintometer GmbH se encargará de dichos instrumentos eléctricos de una manera profesional y sin dañar el medio ambiente. Este servicio, el cual escluye los gastos de transporte, es gratis y se aplicará únicamente a aquellos instrumentos eléctricos

adquiridos después del 13 de agosto de 2005. Se ruega enviar aquellos instrumentos eléctricos inservibles de Tintometer a carga pagada a su distribuidor.

IT Informazioni importanti

Conservare, proteggere e migliorare la qualità dell'ambiente Smaltimento di apparecchiature elettriche nell'Unione Europea

In base alla Direttiva europea 2012/19/UE, gli apparecchi elettrici non devono essere smaltiti insieme ai normali rifiuti domestici!

Tintometer GmbH provvederà a smaltire i vostri apparecchi elettrici in maniera professionale e responsabile verso l'ambiente. Questo servizio, **escluso il trasporto**, è completamente gratuito. Il servizio si applica agli apparecchi elettrici acquistati successivamente al 13 agosto 2005. Siete pregati di inviare gli apparecchi elettrici Tintometer divenuti inutilizzabili a trasporto pagato al vostro rivenditore.

(PT)

Informação Importante Para Preservar, Proteger e Melhorar a Qualidade do Ambiente Remoção de Equipamento Eléctrico na União Europeia

Devido à Directiva Europeia 2012/19/UE, o seu equipamento eléctrico nao deve ser removido com o lixo doméstico habitual!

A Tintometer GmbH tratará da remoção do seu equipamento eléctrico de forma profissional e responsável em termos ambientais. Este serviço, **não incluindo**

os custos de transporte, é gratuito. Este serviço só é aplicável no caso de equipamentos eléctricos comprados depois de 13 de Agosto de 2005. Por favor, envie os seus equipamentos eléctricos Tintometer que devem ser removidos ao seu fornecedor (transporte pago).

Istotna informacja Dla zachowania, ochrony oraz poprawy naszego środowiska Usuwanie urządzeń elektronicznych w Unii Europejskiej

Na podstawie Dyrektywy Parlamentu Europejskiego 2012/19/UE nie jest dozwolone usuwanie zakupionych przez Państwo urządzeń elektronicznych wraz z normalnymi odpadami z gospodarstwa domowego!

Tintometer GmbH usunie urządzenia elektrycznego Państwa w sposób profesjonalny i odpowiedzialny z punktu widzenia środowiska. Serwis ten jest, za wyjątkiem kosztów transportu, bezpłatny. Serwis ten odnosi się wyłącznie do urządzeń elektrycznych zakupionych po 13.08.2005r. Przeznaczone do usunięcia urządzenia firmy Tintometer mogą Państwo przesyłać na koszt własny do swojego dostawcy.

Wichtiger Entsorgungshinweis zu Batterien und Akkus

Jeder Verbraucher ist aufgrund der Batterieverordnung (Richtlinie 2006/66/ EG) gesetzlich zur Rückgabe aller ge- und verbrauchten Batterien bzw. Akkus verpflichtet. Die Entsorgung über den Hausmüll ist verboten. Da auch bei Produkten aus unserem Sortiment Batterien und Akkus im Lieferumgang enthalten sind, weisen wir Sie auf folgendes hin:

Verbrauchte Batterien und Akkus gehören nicht in den Hausmüll, sondern können unentgeltlich bei den öffentlichen Sammelstellen Ihrer Gemeinde und überall dort abgegeben werden, wo Batterien und Akkus der betreffenden Art verkauft werden. Weiterhin besteht für den Endverbraucher die Möglichkeit, Batterien und Akkus an den Händler, bei dem sie erworben wurden, zurückzugeben (gesetzliche Rücknahmepflicht).

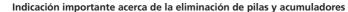
Important disposal instructions for batteries and accumulators

EC Guideline 2006/66/EC requires users to return all used and worn-out batteries and accumulators. They must not be disposed of in normal domestic waste. Because our products include batteries and accumulators in the delivery package our advice is as follows:

Used batteries and accumulators are not items of domestic waste. They must be disposed of in a proper manner. Your local authority may have a disposal facility; alternatively you can hand them in at any shop selling batteries and accumulators. You can also return them to the company which supplied them to you; the company is obliged to accept them.

Information importante pour l'élimination des piles et des accumulateurs

En vertu de la Directive européenne 2006/66/CE relative aux piles et accumulateurs, chaque utilisateur est tenu de restituer toutes les piles et tous les accumulateurs utilisés et épuisés. L'élimination avec les déchets ménagers est interdite. Etant donné que l'étendue de livraison des produits de notre gamme contient également des piles et des accumulateurs, nous vous signalons ce qui suit :


les piles et les accumulateurs utilisés ne sont pas des ordures ménagères, ils peuvent être remis sans frais aux points de collecte publics de votre municipalité et partout où sont vendus des piles et accumulateurs du type concerné. Par ailleurs, l'utilisateur final a la possibilité de remettre les piles et les accumulateurs au commerçant auprès duquel ils ont été achetés (obligation de reprise légale).

Belangrijke mededeling omtrent afvoer van batterijen en accu's

Ledere verbruiker is op basis van de richtlijn 2006/66/EG verplicht om alle gebruikte batterijen en accu's in te leveren. Het is verboden deze af te voeren via het huisvuil. Aangezien ook onze producten geleverd worden met batterijen en accu's wijzen wij u op het volgende; Lege batterijen en accu's horen niet in het huisvuil thuis. Men kan deze inleveren bij inzamelpunten van uw gemeente of overal daar waar deze verkocht worden. Tevens bestaat de mogelijkheid batterijen en accu's daar in te leveren waar u ze gekocht heeft. (wettelijke terugnameplicht)

Basado en la norma relativa a pilas/ baterías (directiva 2006/66/CE), cada consumidor, está obligado por ley, a la devolución de todas las pilas/ baterías y acumuladores usados y consumidos. Está prohibida la eliminación en la basura doméstica. Ya que en productos de nuestra gama, también se incluyen en el suministro pilas y acumuladores, le sugerimos lo siquiente:

Las pilas y acumuladores usados no pertenecen a la basura doméstica, sino que pueden ser entregados en forma gratuita en cada uno de los puntos de recolección públicos de su comunidad en los cuales se vendan pilas y acumuladores del tipo respectivo. Además, para el consumidor final existe la posibilidad de devolver las pilas y baterías recargables a los distribuidores donde se hayan adquirido (obligación legal de devolución).

Indicazioni importanti sullo smaltimento di pile e accumulatori

IT

PL

In base alla normativa concernente le batterie (Direttiva 2006/66/CE) ogni consumatore è tenuto per legge alla restituzione di tutte le batterie o accumulatori usati ed esauriti. È vietato lo smaltimento con i rifiuti domestici. Dato che anche alcuni prodotti del nostro assortimento sono provvisti di pile e accumulatori, vi diamo di seguito delle indicazioni: Pile e accumulatori esauriti non vanno smaltiti insieme ai rifiuti domestici, ma depositati gratuitamente nei punti di raccolta del proprio comune o nei punti vendita di pile e accumulatori dello stesso tipo. Inoltre il consumatore finale può portare batterie e accumulatori al rivenditore presso il quale li ha acquistati (obbligo di raccolta previsto per legge).

Instruções importantes para a eliminação residual de pilhas e acumuladores

Os utilizadores finais são legalmente responsáveis, nos termos do Regulamento relativo a pilhas e acumuladores (Directiva 2006/66/CE), pela entrega de todas as pilhas e acumuladores usados e gastos. É proibida a sua eliminação juntamente com o lixo doméstico. Uma vez que determinados produtos da nossa gama contêm pilhas e/ou acumuladores, alertamos para os seguintes aspectos:

As pilhas e acumuladores usados não podem ser eliminados com o lixo doméstico, devendo sim ser entregues, sem encargos, junto dos pontos de recolha públicos do seu município, ou em qualquer ponto de venda de pilhas e acumuladores. O utilizador final dispõe ainda da possibilidade de entregar as pilhas e/ou acumuladores no estabelecimento comerciante onde os adquiriu (dever legal de aceitar a devolução).

Istotna wskazówka dotycząca utylizacji baterii i akumulatorów

Każdy użytkownik na mocy rozporządzenia w sprawie baterii (wytyczna 2006/66/WE) jest ustawowo zobowiązany do oddawania wszystkich rozładowanych i zużytych baterii lub akumulatorów. Utylizacja wraz z odpadkami domowymi jest zabroniona. Ponieważ także w produktach z naszego asortymentu zawarte są w zakresie dostawy baterie i akumulatory, zwracamy uwagę na poniższe zasady:

zużyte baterie i akumulatory nie mogą być wyrzucane wraz z odpadkami domowymi, lecz powinny być bezpłatnie przekazywane w publicznych miejscach zbiórki wyznaczonych przez gminę lub oddawane w punktach, gdzie sprzedawane są baterie i akumulatory danego rodzaju. Poza tym użytkownik końcowy ma możliwość zwrócenia baterii i akumulatorów do przedstawiciela handlowego, u którego je nabył (ustawowy obowiązek przyjęcia).

Norme di sicurezza

Attenzione 1

I reagenti sono predisposti esclusivamente per l'anàlisi chimica e devono essere tenuti al di fuori della portata dei bambini. Alcuni dei reagenti utilizzati contengono sostanze che non sono affatto sicure dal punto di vista ambientale. E' necessario informarsi in merito al contenuto e provvedere al regolare smaltimento delle soluzioni di reagenti.

Attenzione 🔨

Prima di procedere con la prima attivazione leggere attentamente le istruzioni per l'uso. Prima di eseguire l'anàlisi leggere l'intera descrizione dei mètodi. E' necessario informarsi prima di iniziare l'anàlisi in merito ai reagenti da utilizzare consultando i fogli dei dati di sicurezza corrispondenti relativi ai materiali. Un'omissione potrebbe ferire l'operatore o provocare danni all'apparecchio.

Fogli dei dati di sicurezza: www.lovibond.com

Attenzione 1

Le tolleranze/precisioni di misurazione indicate valgono solo per l'utilizzo degli apparecchi in ambienti controllabili dal punto di vista elettromagnetico ai sensi di DIN EN 61326.

In particolare non è consentito l'uso di telefoni cellulari o di dispositivi radiotrasmittenti nelle vicinanze dell'apparecchio.

Indice

Parte 1 Metodi	7
1.1 Panoramica mètodi	
Alcalinità m (valore m, alcalinità totale)	. 14
Alcalinità m HR (valore m HR, alcalinità totale HR)	. 16
Alcalinità p (valore p)	. 18
Alluminio con compressa	
Alluminio (bustina di polvere)	
Ammònio con compressa	
Ammònio (bustina di polvere)	
Ammònio, campo inferiore (LR)	
Ammònio, campo superiore (HR)	
Azoto, totale LR (Test in cuvette)	
Azoto, totale HR (Test in cuvette)	
Biossido di cloro con compressa	
in presenza di cloro	
in assenza di cloro	
Biossido di cloro (bustina di polvere)	
in assenza di cloro	
in presenza di cloro	
Boro	
Bromo con compressa	
Bromo (bustina di polvere)	
Capacità acido Ks4,3	
Cianuro	
Clorite in presenza di cloro e biossido di cloro	
Cloro	
Cloro con compressa	
cloro libero	
cloro totale	
determinazione differenziata (libero, combinato, totale)	
Cloro HR con compressa	
cloro libero	
cloro totale	
determinazione differenziata (libero, combinato, totale)	
Cloro con reagenti liquidi	
cloro libero	
cloro totale	
determinazione differenziata (libero, combinato, totale)	
Cloro (bustina di polvere)	
cloro libero	
cloro totale	
determinazione differenziata (libero, combinato, totale)	
Cloro MR (VARIO bustina di polvere)	. 80

cloro libero	80
cloro totale	81
determinazione differenziata (libero, combinato, totale)	82
Cloro HR (bustina di polvere)	84
cloro libero	84
cloro totale	85
determinazione differenziata (libero, combinato, totale)	86
Cloro HR (KI)	88
Cloruro con compressa	90
Cloruro con reagenti liquidi	92
COD, campo inferiore (LR)	94
COD, campo medio (MR)	96
COD, campo superiore (HR)	98
Colore	100
Cromo (bustina di polvere)	102
determinazione differenziata	104
Cromo (VI)	106
Cromo totale (Cr(III) + Cr(VI))	107
CyA-TEST (Acido cianurico)	108
DEHA	110
DEHA (bustina di polvere)	112
Durezza, calcio con Calcheck compressa	
Durezza, calcio con Calcio compresse	116
Durezza, totale	
Durezza, totale HR	120
Ferro	
Ferro con compressa	124
Ferro (bustina di polvere)	
Ferro, totale TPTZ (bustina di polvere)	
Ferro, totale (Fe in Mo, bustina di polvere)	
Ferro LR con reagenti liquidi	
Ferro LR 2 con reagenti liquidi	
Ferro HR con reagenti liquidi	
Fluoruro	
Fosfato	
Fosfato, orto LR con compressa	
Fosfato, orto HR con compressa	
Fosfato, orto (bustina di polvere)	
Fosfato, orto (test in cuvette)	
Fosfato 1, orto	
Fosfato 2, orto	
Fosfato, idrolizzabili in acidi (test in cuvette)	
Fosfato, totale (test in cuvette)	
Fosfato LR con reagenti liquidi	
Fosfato HR con reagenti liquidi	168

Fosfonato	172
H ₂ O ₂ con compressa	176
H ₂ O ₂ LR con reagenti liquidi	178
H ₂ O ₂ HR con reagenti liquidi	180
Idrazina	182
Idrazina con reagente liquido	184
Idrazina	186
lodio	188
Ipoclorito di sodio	190
Manganese con compressa	192
Manganese LR (bustina di polvere)	194
Manganese HR (bustina di polvere)	196
Manganese con reagente liquido	198
Molibdato con compressa	
Molibdato LR (bustina di polvere)	202
Molibdato HR (bustina di polvere)	204
Molibdato con reagente liquido	
Nickel con compressa	208
Nitrato con compressa e reagente polvere	210
Nitrato	212
Nitrito	
Nitrito LR (bustina di polvere)	
Ossigeno, attivo	
Ossigeno, sciolto	220
Ozono	222
in presenza de cloro	22
in assenza de cloro	220
pH LR	
pH con compressa	
pH con reagente liquido	232
pH HR	
PHMB (Biguanide)	230
Polyacrylate/Poliacrilato	238
Potassio	
Rame	
determinazione differenziata (libero, combinato, totale)	24!
rame libero	
rame totale	
Rame con reagenti liquidi	
determinazione differenziata (libero, combinato, totale)	
rame libero	25
rame totale	
Rame (bustina di polvere)	
Silica con compressa	
Silica LR (bustina di polvere)	258

Silica HF	R (bustina di polvere)	260
Silica co	n reagenti liquidi e polvere	262
Solfato	con compressa	264
Solfato	(bustina di polvere)	266
Solfito		268
Solfuro.		270
Sostanz	e solide sospese	272
Tensioat	ttivi, anionici	274
Tensioat	ttivi, non ionici	276
Tensioat	ttivi, cationici	278
TOC LR		280
TOC HR		282
Torbidit	à	284
Triazole	/ Benzotriazole (bustina di polvere)	286
Urea		288
Zinco		290
Zinco co	on reagenti liquidi e polvere	292
1.2	Indicazioni importanti in merito ai metodi	294
1.2.1	Utilizzo corretto dei reagenti	
1.2.2	Pulizia delle cuvette e degli accessori impiegati per l'analisi	
1.2.3	Indicazioni tecniche operative	
1.2.4	Diluzione dei campioni di acqua	
1.2.5	Correzione in caso di aggiunta di volumi	
Parte	2 Istruzioni per l'uso	299
2.1	Attivazione	
2.1.1	Prima attivazione	
2.1.2	Mantenimento dei dati – Indicazioni importanti	
2.1.3	Sostituzione della batteria	
2.1.4	Schema strumenti	
2.2	Funzioni tasti	
2.2.1	Panoramica	303
2.2.2	Visualizzazione della data e dell'ora	
2.2.3	Count-down operatore	
2.3	Modalita di lavoro	
2.3.1	Spegnimento automatico	
2.3.2	Scelta del metodo	
2.3.2.1	Informazioni sui metodi (F1)	
2.3.2.2	Informazioni sulla forma di citazione (F2)	
2.3.3	Differenziazione	
2.3.4	Azzeramento	
2.3.5	Esecuzione dell'analisi	
2.3.6	Rispetto dei tempi di reazione (count-down)	
2.3.7	Modifica della forma di citazione	

2.3.8	Memorizzazione del risultato rilevato	308
2.3.9	Stampa del risultato rilevato	309
2.3.10	Esecuzione di ulteriori misurazioni	309
2.3.11	Scelta del nuovo metodo	310
2.3.12	Misurazione delle estinzioni	310
2.4	Impostazioni: Panoramica delle funzioni MODE	311
2.4.1	Libero per motivi tecnici	312
2.4.2	Regolazioni di base dello strumento 1	312
2.4.3	Stampa dei risultati rilevati memorizzati	316
2.4.4	Richiamo/cancellazione dei risultati rilevati memorizzati	321
2.4.5	Regolazione	326
2.4.6	Funzioni di laboratorio	334
	Profi-Mode	334
	One Time Zero	335
2.4.7	Funzioni operatore	336
	Elenco mètodi dell'operatore	336
	Mètodo di concentrazione dell'operatore	338
	Polinomio dell'operatore	340
	Cancellazione del mètodo operatore	343
	Stampa dei dati dei mètodi'dell'operatore	344
	Inizializzazione del sistema dei mètodi dell'operatore	345
2.4.8	Funzioni speciali	346
	Indice di Langelier	346
2.4.9	Regolazioni di base dello strumento 2	348
2.4.10	Funzioni/service speciale degli strumenti	349
2.5	Trasmissione dati (modulo IRiM)	350
2.5.1	Stampa dei dati	350
2.5.2	Trasmissione dati ad un PC	350
2.5.3	Aggiornamenti via Internet	350
Parte	3 Appendice	351
3.1	Apertura della confezione	
3.2	Contenuto della confezione	
3.3	Libero per motivi tecnici	
3.4	Dati tecnici	
3.5	Abbreviazioni	
3.6	Cosa fare se	
3.6.1	Indicazioni per l'utente visualizzate sul display/messaggi di errore	
3.6.2	Ulteriori problemi e relative soluzioni	
3.7	Dichiarazione di conformità CE	
١.١	Dictriarazione al Comontilia CE	

Parte 1

Mètodi

1.1 Panoramica mètodi

N°	Analisi	Reagente	Campo di misuraz.	Indicato come	Metodo	λ [nm]	OTZ	Pagina
30	Alcalinità m	compressa	5-200	mg/l CaCO₃	Acido/Indic. 1,2,5	610	√	14
31	Alcalinità m HR	compressa	5-500	mg/l CaCO₃	Acido/Indic. 1,2,5	610	✓	16
35	Alcalinità p	compressa	5-300	mg/l CaCO ₃	Acido/Indic. 1,2,5	560	✓	18
40	Alluminio T	compressa	0.01-0.3	mg/l Al	Eriocromo Cianino R ²	530	✓	20
50	Alluminio	bustina polvere	0,01-0,25	mg/l Al	Eriocromo Cianino R ²	530	-	22
60	Ammònio T	compressa	0,02-1	mg/l N	Indofenolo ^{2,3}	610	✓	24
62	Ammònio T	bustina polvere	0,01-0,8	mg/l N	Salicilato ²	660	-	26
65	Ammònio LR TT	test in cuv.	0,02-2,5	mg/l N	Salicilato ²	660	_	28
66	Ammònio HR TT	test in cuv.	1-50	mg/l N	Salicilato ²	660	-	30
280	Azoto, totale LR TT	test in cuv.	0,5-25	mg/l N	Metodo di etrazione persolfato	430	-	32
281	Azoto, totale HR TT	test in cuv.	5-150	mg/l N	Metodo di etrazione persolfato	430	-	34
120	Biossido di cloro T	compressa	0,02-11	mg/l ClO ₂	DPD Glicina ²	530	✓	38
122	Biossido di cloro PP	bustina polvere	0,04-3,8	mg/I CIO ₂	DPD 1,2	530	✓	44
85	Boro	compressa	0,1-2	mg/l B	Azomethin ³	430	✓	48
80	Bromo T	compressa	0,05-13	mg/l Br ₂	DPD ⁵	530	√	50
81	Bromo PP	bustina polvere	0,05-4,5	mg/l Br ₂	DPD 1,2	530	√	52
20	Capacità acido Ks4.3	compressa	0,1-4	mmol/l	Acido/Indicatore 1,2,5	610	✓	54
157	Cianuro	Polv. + liquido	0,01-0,5	mg/l CN	Pyridine-barbituric acid ¹	580	✓	56
100	Cloro T *	compressa	0,01-6	mg/l Cl ₂	DPD 1,2,3	530	√	62, 64
103	Cloro HR T *	compressa	0,1-10	mg/l Cl ₂	DPD 1,2,3	530	1	62, 68
101	Cloro L *	liquido	0,02-4	mg/l Cl ₂	DPD ^{1,2,3}	530	√	62, 72
110		bustina polvere	0,02-2	mg/l Cl ₂	DPD 1,2	530	1	62, 76
113	Cloro MR PP *	bustina polvere	0,02-3,5	mg/l Cl ₂	DPD 1,2	530	✓	62, 80

^{* =} libero, combinato, totale; PP = bustina polvere (Powder Pack); T = compressa (tablet); L = reagente liquido (liquid); TT = test in cuvette (Tube test); LR = campo di misurazione inferiore; MR = campo di misurazione medio; HR = campo di misurazione superiore, C = Vacu-vial® é un marchio registrato di CHEMetrics Inc.

N°	Analisi	Reagente	Campo di misuraz.	Indicato come	Metodo	λ [nm]	OTZ	Pagina
111	Cloro HR PP *	bustina polvere	0,1-8	mg/l Cl ₂	DPD 1,2	530	-	62, 84
105	Cloro HR (KI)	compressa	5-200	mg/l Cl ₂	KI/Acido ⁵	530	-	88
90	Cloruro T	compressa	0,5-25	mg/l Cl-	Nitrato di argento/ Torbidità	530	√	90
92	Cloruro L	liquido	0,5-20	mg/l Cl ⁻	Tiocianato mercurico/ Nitrato ferrico	430	✓	92
130	COD LR TT	test in cuv.	3-150	mg/l O ₂	Bicromato/H ₂ SO ₄ ¹	430	_	94
131	COD MR TT	test in cuv.	20-1500	mg/l O ₂	Bicromato/H ₂ SO ₄ ¹	610	-	96
132	COD HR TT	test in cuv.	0,2-15	g/l O ₂	Bicromato/H ₂ SO ₄ ¹	610	-	98
204	Colore	misurazio- ne diretta	0-500	unità Pt-Co	Pt-Co-Scala ^{1,2} (APHA)	430	-	100
125	Cromo PP	bustina polvere	0,02-2	mg/l Cr	1,5-Diphenyl- carbazid ^{1, 2}	530	-	102
160	CyA-TEST T	compressa	0-160	mg/l CyA	Melammina	530	✓	108
165	DEHA T	compressa + liquido	20-500	μg/l DEHA	PPST ³	560	1	110
167	DEHA PP	PP + liquido	20-500	μg/l DEHA	PPST ³	560	_	112
190	Durezza, calcio	compressa	50-900	mg/l CaCO ₃	Muresside ⁴	560	-	114
191	Durezza, calcio 2T	compressa	0-500	mg/l CaCO ₃	Muresside ⁴	560	1	116
200	Durezza, tot.	compressa	2-50	mg/l CaCO ₃	Metalloftaleina ³	560	1	118
201	Durezza, tot. HR	compressa	20-500	mg/l CaCO ₃	Metalloftaleina ³	560	✓	120
220	Ferro T	compressa	0,02-1	mg/l Fe	PPST ³	560	√	122, 124
222	Ferro PP	bustina polvere	0,02-3	mg/l Fe	1,10-Fenantrolina ³	530	1	122, 126
223	Ferro, (TPTZ) PP	bustina polvere	0,02-1,8	mg/lFe	TPTZ	580	-	122, 128
224	Ferro, (Fe in Mo) PP	bustina polvere	0,01-1,8	mg/lFe	Fe in Mo	580	-	122, 130
225	Ferro LR	liquido	0,03-2	mg/l Fe	Ferrozina/ Tioglicolato	560	1	122, 132
226	Ferro LR 2	liquido	0,03-2	mg/l Fe	Ferrozina/ Tioglicolato	560	1	122, 136
227	Ferro HR	liquido	0,1-10	mg/l Fe	Tioglicolato	530	√	122, 140
170	Fluoruro	liquido	0,05-2	mg/l F	SPADNS ²	580	✓	144

^{* =} libero, combinato, totale; PP = bustina polvere (Powder Pack); T = compressa (tablet); L = reagente liquido (liquid); TT = test in cuvette (Tube test); LR = campo di misurazione inferiore; MR = campo di misurazione medio; HR = campo di misurazione superiore, C = Vacu-vial® é un marchio registrato di CHEMetrics Inc.

N°	Analisi	Reagente	Campo di misuraz.	Indicato come	Metodo	λ [nm]	OTZ	Pagina
320	Fosfato, orto LR T	compressa	0,05-4	mg/l PO ₄	Ammònio molibdato ^{2,3}	660	✓	146, 148
321	Fosfato, orto HR T	compressa	1-80	mg/l PO ₄	Vanadomolibdato ²	430	✓	146, 150
323	Fosfato, orto PP	bustina polvere	0,06-2,5	mg/l PO ₄	Molibdato/Acido ascorbico ²	660	✓	146, 152
324	Fosfato, orto TT	test in cuv.	0,06-5	mg/l PO ₄	Molibdato/Acido ascorbico ²	660	_	146, 154
327	Fosfato 1 C, orto	Vacu-vial	5-40	mg/l PO ₄	Vanadomolibdato ²	430	_	146, 156
328	,	Vacu-vial	0,05-5	mg/l PO ₄	Stagno cloruro ²	660	-	146, 158
325	Fosfato, idr. TT	test in cuv.	0,02-1,6	mg/l P	Estrazione acido Acido ascorbico ²	660	-	146, 160
326	TT	test in cuv.	0,02-1,1	mg/l P	Acido persulfato / Acido ascorbico ²	660	-	146, 162
334	Fosfato LR L	liquido	0,1-10	mg/l PO ₄	Acido Phosphomolyb- dic/Acido ascorbico ²	660	✓	146, 164
335		liquido	5-80	mg/l PO ₄	Vanadomolibdato ²	430	✓	146, 168
316	,	bustina polvere	0-125	mg/l	Persulfato UV-Ossidazione	660	_	172
210	H ₂ O ₂ T	compressa	0,03-3	mg/l H ₂ O ₂	DPD/Catalizzatore ⁵	530	✓	176
213	H ₂ O ₂ LR L	liquido	1-50	mg/l H ₂ O ₂	Tetracloruro di titanio/acido	430	-	178
214	H ₂ O ₂ HR L	liquido	40-500	mg/l H ₂ O ₂	Tetracloruro di titanio/acido	530	-	180
205	Idrazina P	polvere	0,05-0,5	mg/l N ₂ H ₄	Aldeide 4-(Dimetol- amino)-benzoica	430	✓	182
206	Idrazina L	liquido	0,005-0,6	mg/l N ₂ H ₄	Aldeide 4-(Dimetol- amino)-benzoica	430	_	184
207	Idrazina C	Vacu-vial	0,01-0,7	mg/l N ₂ H ₄	PDMAB	430	_	186
215	Iodio T	compressa	0,05-3,6	mg/l I	DPD ⁵	530	✓	188
212	Ipoclorito di sodio	compressa	0,2-16	% w/w NaOCl	lodure di potassio ⁵	530	√	190
240	Manganese T	compressa	0,2-4	mg/l Mn	Formaldoxim	530	✓	192
242	Manganese LR PP	bustina polvere	0,01-0,7	mg/l Mn	PAN	560	-	194
243	Manganese HR PP	bustina polvere	0,1-18	mg/l Mn	Periodato oxidation ²	530	√	196
245	Manganese L	liquido	0,05-5	mg/l Mn	Formaldoxim	430	✓	198

^{* =} libero, combinato, totale; PP = bustina polvere (Powder Pack); T = compressa (tablet); L = reagente liquido (liquid); TT = test in cuvette (Tube test); LR = campo di misurazione inferiore; MR = campo di misurazione medio; HR = campo di misurazione superiore, C = Vacu-vial® é un marchio registrato di CHEMetrics Inc.

N°	Analisi	Reagente	Campo di misuraz.	Indicato come	Metodo	λ [nm]	OTZ	Pagina
250	Molibdato T	compressa	1-50	mg/l MoO ₄	Tioglicolato ⁴	430	√	200
251	Molibdato LR PP	bustina polvere	0,05-5	mg/l MoO ₄	Complesso ternario	610	1	202
252	Molibdato HR PP	bustina polvere	0,5-66	mg/l MoO ₄	Acido tioglicolico	430	✓	204
254	Molibdato HR L	liquido	1-100	mg/l MoO ₄	Tioglicolato ⁴	430	✓	206
257	Nickel T	compressa	0,1-10	mg/l Ni	Nioxime	560	✓	208
260	Nitrato LR	polvere + compressa	0,08-1	mg/l N	Zinco riduzione/ NED	530	1	210
265	Nitrato	test in cuv.	1-30	mg/l N	Acido cromotrofo	430	_	212
270	Nitrito	compressa	0,01-0,5	mg/l N	N(1-Naftietil- endiamina) ^{2,3}	560	1	214
272	Nitrito LR PP	bustina polvere	0,01-0,3	mg/l N	Diazotization	530	✓	216
290	Ossigeno, attivo	compressa	0,1-10	mg/l O ₂	DPD	530	✓	218
292	Ossigeno, sciolto	Vacu-vial	10-800	µg/l O ₂	Rhodazin D™	530	_	220
300	Ozono (DPD)	compressa	0,02-2	mg/l O ₃	DPD/Glicina ⁵	530	✓	222
329	pH LR T	compressa	5,2-6,8	_	Porpora bromo cres. 5	560	✓	228
330	рНТ	compressa	6,5-8,4	_	Rosso fenolo ⁵	560	✓	230
331	pH L	liquido	6,5-8,4	_	Rosso fenolo ⁵	560	✓	232
332	pH HR T	compressa	8,0-9,6	_	Blu di timolo ⁵	560	√	234
70	РНМВ	compressa	2-60	mg/l PHMB	Tampone/Indicatore	560	1	236
338	Polyacrylate	liquido	1-30	mg/l Polyacryl	Torbidità	660	✓	238
340	Potassio	compressa	0,7-16	mg/l K	Tetrafenilborato torbidità ⁴	430	✓	242
150	Rame *	compressa	0,05-5	mg/l Cu	Biquinoline ⁴	560	✓	244
151	Rame *	liquido + polvere	0,05-4	mg/l Cu	Bicinchoninat	560	1	248
153	Rame PP*	bustina polvere	0,05-5	mg/l Cu	Bicinchoninat	560	1	254
350	Silica T	compressa	0,05-4	mg/l SiO ₂	Silicomolibdato	660	✓	256
351	Silica LR PP	bustina polvere	0,1-1,6	mg/l SiO ₂	Eteropoli blu ²	660	-	258

^{* =} libero, combinato, totale; PP = bustina polvere (Powder Pack); T = compressa (tablet); L = reagente liquido (liquid); TT = test in cuvette (Tube test); LR = campo di misurazione inferiore; MR = campo di misurazione medio; HR = campo di misurazione superiore, C = Vacu-vial® é un marchio registrato di CHEMetrics Inc.

N°	Analisi	Reagente	Campo di misuraz.	Indicato come	Metodo	λ [nm]	OTZ	Pagina
352	Silica HR PP	bustina polvere	1-90	mg/l SiO ₂	Silicomolibdato	430	√	260
353	Silica L	liquido + polvere	0,1-8	mg/l SiO ₂	Eteropoli blu ²	660	√	262
355	Solfato T	compressa	5-100	mg/l SO ₄	Torbidità solfato di bario ²	660	✓	264
360	Solfato	bustina polvere	5-100	mg/l SO ₄	Torbidità solfato di bario ²	530	√	266
370	Solfito T	compressa	0,1-5	mg/l SO ₃	DTNB	430	✓	268
365	Solfuro T	compressa	0,04-0,5	mg/l S ⁻	DPD/Catalizzatore ^{3,4}	660	✓	270
384	Sostanze solide sospese	misurazio- ne diretta	0-750	mg/l TSS	fotometrico	660	-	272
376	Tensioattivi TT anionici	test in cuv.	0,05-2	mg/l SDSA	Blu di metilene ^{6,1}	660	Ī	274
377	Tensioattivi TT non ionici	test in cuv.	0,1-7,5	mg/l Triton®X-100	TBPE ⁶	610	ı	276
378	Tensioattivi TT cationici	test in cuv.	0,05-1,5	mg/l CTAB	Blu di disulfina ^{6,1}	610	-	278
380	TOC LR TT	test in cuv.	5,0-80,0	mg/l TOC	H ₂ SO ₄ /Persulfato/ Indicatore ⁶	610	-	280
381	TOC HR TT	test in cuv.	50-800	mg/l TOC	H ₂ SO ₄ /Persulfato/ Indicatore ⁶	610	-	282
386	Torbidità	misurazio- ne diretta	10-1000	FAU	Radiazione della luce trasmessa	530	ı	284
388	Triazole PP	bustina polvere	1-16	mg/l Benzotriazole	Decomposizione UV catalitica	430	√	286
390	Urea	compressa, liquido	0,1-2,5	mg/l Urea	Indofenolo/Ureasi	610	√	288
400	Zinco	compressa	0,02-0,9	mg/l Zn	Zincon ³	610	-	290
405	Zinco L	liquido	0,1-2,5	mg/l Zn	Zincon / EDTA	610	✓	292

^{* =} libero, combinato, totale; PP = bustina polvere (Powder Pack); T = compressa (tablet); L = reagente liquido (liquid); TT = test in cuvette (Tube test); LR = campo di misurazione inferiore; MR = campo di misurazione medio; HR = campo di misurazione superiore, C = Vacu-vial® é un marchio registrato di CHEMetrics Inc.

Le tolleranze specifiche dei sistemi di reazione Lovibond® impiegati (compresse, powder packs e test in cuvetta) sono identiche a quelle dei metodi corrispondenti indicati dalle normative americane (AWWA). ISO ecc.

Poiché tali dati sono il risultato dell'utilizzo di soluzioni standard, essi non sono di rilevanza per l'analisi effettiva dell'acqua potabile, industriale e di scarico, dato che la matrice presente degli ioni influisce considerevolmente sulla precisione del metodo. Per tale ragione evitiamo, in linea di principio, di indicare tali dati fuorvianti.

Data la diversità dei campioni è possibile rilevare tolleranze realistiche solo mediante il cosiddetto procedimento di aggiunta standard.

Ai fini di tale valutazione viene anzitutto definito il valore per il campione. Per i campioni successivi (2-4) vengono aggiunti quantitativi di sostanza maggiori, vale a dire da circa la metà al doppio del quantitativo che si prevede in base al valore rilevato (senza effetto matrice). Dai valori ottenuti (sui campioni addizionati) viene sottratto il valore rilevato per il campione originale, cosicché i valori rilevati nel campione analizzato tengono in considerazione l'effetto matrice. Confrontando i valori ottenuti è possibile rilevare il contenuto effettivo del campione originale.

Letteratura

I mètodi di prova alla base dei reagenti sono noti a livello internazionale, ed in parte rappresentano una componente di norme nazionali ed internazionali.

- 1. Procedimento unitario tedesco per l'anàlisi delle acque, delle acque di scarico e della melma
- 2. Standard Methods for the Examination of Water and Wastewater; 18th Edition, 1992
- Photometrische Analysenverfahren, Schwedt, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart 1989
- 4. Photometrische Analyse, Lange / Vejdelek, Verlag Chemie 1980
- 5. Colorimetric Chemical Analytical Methods, 9th Edition, London
- 6. adattato da Merck, per informazioni vedere la documentazione allegata

Indicazioni per la ricerca

OTZ (OneTimeZero) attivazione o disattivazione, vedi Mode 55, pagina 335

Acido cianurico -> CyA-TEST
Acido silicio -> Biossido di silicio
Alcalinità totale -> Alcalinità m
Biguanide -> PHMB

Biossido di cloro -> Diossido cloro Capacità acido -> Dimanda acida

H₂O₂ -> Perossido di idrogeno
Monocloramina -> Cloramina, mono
valore m -> Alcalinità m
valore p -> Alcalinità p

Indice di saturazione Langelier -> Funzione Mode 70

Alcalinità m = valore m = Alcalinità totale con compressa

5 – 200 mg/l CaCO₃

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere una compressa ALKA-M-PHOTOMETER ai 10 ml di campione direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato come alcalinità m in mg/l.

Annotazioni:

- 1. I concetti di alcalinità m, valore m, alcalinità totale e capacità acido Ks4.3 sono identici.
- 2. Il corretto mantenimento del volume del campione di 10 ml è determinante per la precisione del risultato dell'anàlisi.
- 3. Tabella di conversione:

	Capacità acido Ks4.3 DIN 38 409	°dH como KH*	°eH*	°fH*
1 mg/l CaCO ₃	0,02	0,056	0,07	0,1

^{*}Durezza carbonato (riferimento = anioni di bicarbonato)

Esempi di calcolo:

 $10 \text{ mg/l CaCO}_3 = 10 \text{ mg/l x } 0.056 = 0.56 \text{ °dH}$

 $10 \text{ mg/l CaCO}_{3}^{3} = 10 \text{ mg/l x 0,02} = 0.2 \text{ mmol/l Ks4.3}$

4. ▲ CaCO₃ °dH °eH

°fH

▼ °aH

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
ALKA-M-PHOTOMETER	Pastiglia / 100	513210BT

Alcalinità m HR = valore m HR = Alcalinità totale HR con compressa

5 - 500 mg/l CaCO₃

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere una compressa ALKA-M-HR PHOTOME-TER ai 10 ml di campione direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.

Count-Down 1:00 Inizio: 🕹

7. Premere il tasto [4].

Attendere 1 minuti per il tempo di reazione.

- 8. Mescolare nuovamente il campione.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

10. Premere il tasto TEST.

Nel display appare il risultato come alcalinità m HR in mg/l.

Annotazioni:

1. Per verificare il risultato del test, controllare se sul fondo della cuvetta si è formato un sottile strato giallo. In questo caso, mescolare il contenuto capovolgendo la cuvetta. In tal modo si accerta che la reazione si è conclusa. Eseguire nuovamente la misurazione e leggere il risultato del test.

2. Tabella di conversione:

	Capacità acido Ks4.3 DIN 38 409	°dH como KH*	°eH*	°fH*
1 mg/l CaCO ₃	0,02	0,056	0,07	0,1

^{*}Durezza carbonato (riferimento = anioni di bicarbonato)

Esempi di calcolo:

10 mg/l CaCO₃ = 10 mg/l x 0,056 = 0,56 °dH 10 mg/l CaCO₃ = 10 mg/l x 0,02 = 0,2 mmol/l Ks4.3

3. ▲ CaCO₃ °dH

°eH

°fH

▼ °aH

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
ALKA-M-HR PHOTOMETER	Pastiglia / 100	513240BT

Alcalinità p = valore p con compressa

5 - 300 mg/l CaCO₃

1. In una cuvetta pulita da 24 mm introdurre **10 ml di campione** e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere una compressa ALKA-P-PHOTOMETER nei 10 ml di campione direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

8. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l alcalinità p.

Annotazioni:

- 1. I concetti di alcalinità p, valore p e capacità acido Ks8.2 sono identici.
- 2. Il corretto mantenimento del volume del campione di 10 ml è determinante per la precisione del risultato dell'anàlisi.
- 3. Il mètodo presente è stato sviluppato da un processo titrimetrico. Sulla base di condizioni marginali indefinibili, le differenze rispetto al mètodo standardizzato potrebbero essere maggiori.
- 4. Tabella di conversione:

	mg/l CaCO ₃	°dH	°fH	°eH
1 mg/l CaCO ₃		0,056	0,10	0,07
1 °dH	17,8		1,78	1,25
1 °fH	10,0	0,56		0,70
1 °eH	14,3	0,80	1,43	

▼ °aH

5. Con la determinazione dell'alcalinità p ed m è possibile classificare l'alcalinità come idrossido, carbonato e carbonato di idrogeno.

La seguente differenza del caso è valida solo se:

- a) non sono presenti altri alcali e
- b) in un medesimo campione non sono contemporaneamente presenti idrossidi e carbonati di idrogeno.

Se la condizione b) non è soddisfatta, informarsi sulla base del processo tedesco di unificazione in merito all'anàlisi delle acque, delle acque di scarico e della melma "Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, D8".

- Se l'alcalinità p = 0: carbonati di idrogeno = m carbonati = 0 drossidi = 0
- Se l'alcalinità p > 0 e l'alcalinità m > 2p: carbonati di idrogeno = m - 2p carbonati = 2p idrossidi = 0
- Se l'alcalinità p > 0 e l'alcalinità m < 2p: carbonati di idrogeno = 0 carbonati = 2m - 2p idrossidi = 2p - m

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
ALKA-P-PHOTOMETER	Pastiglia / 100	513230BT

Alluminio con compressa

0,01 - 0,3 mg/l Al

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione
- Aggiungere al campione di 10 ml una compressa ALU-MINIUM No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita (sciogliere la compressa).
- Aggiungere allo stesso campione una compressa ALU-MINIUM No. 2 direttamente dall'astuccio e schiacciarla con una bacchetta pulita
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

9. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l alluminio.

Annotazioni:

- Per evitare errori dovuti ad impurità, sciacquare le cuvette e gli accessori prima dell'anàlisi con una soluzione di acido cloridrico (al 20% ca.) ed infine con acqua completamente desalinizzata.
- 2. Per ottenere risultati precisi è necessario mantenere una temperatura del campione compresa fra i 20°C ed i 25°C.
- 3. A causa della presenza di fluoruri e polifosfati i risultati dell'anàlisi potrebbero essere troppo bassi. Tale effetto non ha in generale un grande significato, purché l'acqua venga fluorata artificialmente. In tal caso trova applicazione la seguente tabella:

Fluoruro		Valore ne	l display:	alluminio	[mg/l Al]	
[mg/l F]	0,05	0,10	0,15	0,20	0,25	0,30
0,2	0,05	0,11	0,16	0,21	0,27	0,32
0,4	0,06	0,11	0,17	0,23	0,28	0,34
0,6	0,06	0,12	0,18	0,24	0,30	0,37
0,8	0,06	0,13	0,20	0,26	0,32	0,40
1,0	0,07	0,13	0,21	0,28	0,36	0,45
1,5	0,09	0,20	0,29	0,37	0,48	

Esempio: una concentrazione dell'alluminio misurata di 0,15 mg/l Al ed una concentrazione del fluoruro nota di 0,40 mg/l F determina una concentrazione dell'alluminio effettiva pari a 0,17 mg/l Al.

4. I risultati errati dovuti a ferro e manganese possono essere evitati utilizzando compresse a contenuto specifico.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack ALUMINIUM No. 1 / No. 2	Pastiglia / ognuno 100 Bacchetta compresa	517601BT
ALUMINIUM No. 1	Pastiglia / 100	515460BT
ALUMINIUM No. 2	Pastiglia / 100	515470BT

Alluminio con reagente Powder Pack (PP)

0,01 - 0,25 mg/l Al

Predisporre due cuvette pulite da 24 mm. Marcare una cuvetta come cuvetta per lo zero.

- In un dosatore da 100 mm introdurre 20 ml di campione.
- Aggiungere ai 20 ml di campione il contenuto di una bustina di polvere Vario Aluminum ECR F20 direttamente dall'astruccio
- 3. Sciogliere la polvere agitando con un'appòsito mestolo pulito.

Count-Down 1 0:30 Inizio: 🕹

4. Premere il tasto [4].

Attendere **30 secondi per il tempo di reazione**.

Passato il tempo di reazione procedere come segue:

- Aggiungere allo stesso campione il contenuto di una bustina di polvere Vario Hexamine F20 direttamente dall'astuccio.
- 6. Sciogliere la polvere agitando con un'apposito mestolo pulito.
- Mettere 1 goccia di reagente Vario Aluminum ECR Masking nella cuvetta per lo zero.
- 8. Mettere 10 ml del campione preparato nella cuvetta per lo zero con il reagente di mascheramento.
- 9. Mettere nella seconda cuvetta i rimasti 10 ml del campione preparato (cuvetta per il campione).
- 10. Chiudere la cuvetta con l'apposito coperchio.

Count-Down 2 5:00 Inizio: ₄

Premere il tasto [2].
 Attendere 5 minuti per il tempo di reazione.

Passato il tempo è necessario procedere nel modo seguente:

12. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione χ .

Predisporre Zero
Premere ZERO

- 13. Premere il tasto **ZERO**.
- 14. Estrarre la cuvetta dal pozzetto di misurazione.
- 15. Porre la cuvetta per il campione nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

16. Premere il tasto **TEST**Nel display appare il risultato in mg/l alluminio.

Annotazioni:

- Per evitare errori dovuti ad impurità, sciacquare le cuvette e gli accessori prima dell'anàlisi con una soluzione di acido cloridrico (al 20% ca.) ed infine con acqua completamente desalinizzata.
- 2. Per ottenere risultati precisi è necessario mantenere una temperatura del campione compresa fra i 20°C ed i 25°C.
- 3. A causa della presenza di fluoridi e polifosfati i risultati dell'anàlisi potrebbero essere troppo bassi. Tale effetto non ha in generale un grande significato, purché l'acqua venga fluorata artificialmente.

 In tal caso trova applicazione la sequente tabella:

Fluoruro	Valore nel display: alluminio [mg/l Al]					
[mg/l F]	0,05	0,10	0,15	0,20	0,25	0,30
0,2	0,05	0,11	0,16	0,21	0,27	0,32
0,4	0,06	0,11	0,17	0,23	0,28	0,34
0,6	0,06	0,12	0,18	0,24	0,30	0,37
0,8	0,06	0,13	0,20	0,26	0,32	0,40
1,0	0,07	0,13	0,21	0,28	0,36	0,45
1,5	0,09	0,20	0,29	0,37	0,48	

Esempio: una concentrazione di alluminio adeguata pari a 0,15 mg/l Al ed una concentrazione di fluoride nota pari a 0,40 mg/l F determinano una concentrazione di alluminio effettiva pari a 0,17 mg/l Al.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set		535000
VARIO Aluminium ECR F20	Bustina di polvere / 100	
VARIO Aluminium Hexamine F 20	Bustina di polvere / 100	
VARIO Aluminium ECR Masking Reagent	Reagente liquido / 25 ml	

Ammònio con compressa

0.02 - 1 mg/l N

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Introdurre nei 10 ml di campione una compressa di Ammonia No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Introdurre nello stesso campione **una compressa di Ammonia No. 2** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00 9. Premere il tasto **TEST**.

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come ammònio in mg/l.

Annotazioni:

- 1. E' assolutamente necessario rispettare la seguenza di introduzione delle compresse.
- 2. La compressa AMMONIA No. 1 si scioglie completamente solo dopo aver aggiunto la compressa AMMONIA No. 2.
- 3. La temperatura del campione è importante per il tempo di sviluppo del colore. Per le temperature inferiori ai 20°C il tempo di reazione è di 15 minuti.
- 4. Campioni di acqua marina:

Per i campioni di acqua marina o di acqua salmastra è necessaria la polvere condizionante di ammònio, al fine di evitare precipitazioni (intorbidamenti) durante il test. Riempire la cuvetta con il campione fino alla tacca dei 10 ml e aggiungere un cucchiaio di polvere condizionante di ammònio. Chiudere la cuvetta con l'apposito coperchio e agitare finché la polvere non si è sciolta. Procedere quindi come descritto.

5. Conversione: mg/l NH₄ = mg/l N x 1,29 mg/l NH₂ = mg/l N x 1,22

6. ▲ N NH₄ NH₃

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack AMMONIA No. 1 / No. 2	Pastiglia / ognuno 100 Bacchetta compresa	517611BT
AMMONIA No. 1	Pastiglia / 100	512580BT
AMMONIA No. 2	Pastiglia / 100	512590BT
Polvere condizionante di ammò- nio (Campioni di acqua marina)	(per 50 tests) polvere / 15 g	460170

Ammònio con reagente Powder Pack (PP)

0.01 - 0.8 mg/l N

Predisporre due cuvette pulite da 24 mm. Marcare una cuvetta come cuvetta per lo zero.

- 1. Mettere in una cuvetta pulita da 24 mm 10 ml di aqua completamente desalinizzata (cuvetta per lo zero).
- 2. Mettere in una seconda cuvetta pulita da 24 mm 10 ml di campione (cuvetta del campione).
- 3. Mettere in ciascuna cuvetta il contenuto di una bustina di polvere Vario Ammonium Salicylate direttamente dall'astuccio.
- 4. Chiudere le cuvette con l'apposito coperchio e mescolare il contenuto agitandolo.

Attendere 3 minuti per il tempo di reazione.

5. Premere il tasto [4].

Passato il tempo di reazione procedere nel modo seguente:

- 6. Mettere in ciascuna cuvetta il contenuto di una bustina di polvere Vario Ammonium Cyanurate direttamente dall'astuccio.
- 7. Chiudere le cuvette con l'apposito coperchio e mescolare il contenuto agitandolo.
- 8. Premere il tasto [4].

Attendere 15 minuti per il tempo di reazione.

Passato il tempo di reazione procedere nel modo sequente:

- 9. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione ∇ .
- 10. Premere il tasto ZERO.
- 11. Estrarre la cuvetta dal pozzetto di misurazione.
- 12. Porre la cuvetta del campione nel pozzetto di misurazione. Posizione χ .
- 13. Premere il tasto **TEST**.

Nel display appare il risultato in mg/l ammònio.

Count-Down 1 3:00 Inizio: 🕹

Count-Down 2 15:00 Inizio:

Predisporre Zero Premere ZERO

Zero accettato **Predisporre Test** Premere TEST

Annotazioni:

1. Il pH di campioni di acqua estremamente basici o acidi deve essere impostato ad un valore pari a 7, con 0,5 mol/l (1N) di acido solforico e 1 mol/l (1N) di soda caustica.

2. Interferenze:

Sostanza causa di interferenze	Limiti interferenza e pretrattamento	
Calcio	oltre 1000 mg/l CaCO ₃	
Ferro	è causa di interferenze in qualsiasi quantità; procedere con la correzione come segue: a) identificazione della presenza di ferro nel campione di acqua utilizzando un test di ferro totale b) la concentrazione di ferro rilevata viene aggiunta all'acqua desalinizzata per la preparazione della cuvetta per lo zero (vedi il punto 1). In tal modo l'interferenza originata dal ferro viene automaticamente eliminata.	
Magnesio	oltre 6000 mg/l CaCO ₃	
Nitrati	oltre 100 mg/l NO ₃ -N	
Nitriti	oltre 12 mg/l NO ₂ -N	
Fosfato	oltre 100 mg/l PO ₄ -P	
Solfato	oltre 300 mg/l SO ₄	
Solfuro	intensifica il colore	
Glicina, idrazina, colorazione del campione, intorbidamento	rara e rende la colorazione del campione preparato più intensa. L'eventuale intorbidamento e colorazione	

3. ▲ N NH₄ NH₃

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set VARIO Ammonia Salicylate F10 VARIO Ammonia Cyanurate F10	Bustina di polvere / ognuno 100 PP	535500
VARIO Ammonia Salicylate F10	Bustina di polvere / 100	531380
VARIO Ammonia Cyanurate F10	Bustina di polvere / 100	531370

Ammònio LR (campo di misurazione inferiore) test in cuvette

0.02 - 2.5 mg/l N

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Aprire una cuvetta per reagenti chiusa con tappo bianco e riempirla con 2 ml di acqua completamente desalinizzata (cuvetta per lo zero).
- Aprire un'altra cuvetta per reagenti chiusa con tappo bianco e riempirla con 2 ml di campione (cuvetta per il campione).

 Chiudere bene le cuvette con l'apposito coperchio e mescolare il contenuto agitandolo, finché il reagente non si è sciolto completamente.

Count-Down 20:00 Inizio: ⊿

6. Premere il tasto [].

Attendere 20 minuti per il tempo di reazione.

Passato il tempo di reazione procedere come segue:

7. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione λ .

Predisporre Zero Premere ZERO

- 8. Premere il tasto ZERO.
- 9. Estrarre la cuvetta dal pozzetto di misurazione.
- 10. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione $\dot{\Lambda}$.

Zero accettato Predisporre Test Premere TEST

11 Premere il tasto TEST.

Nel display appare il risultato come ammònio mg/l.

- 1. Le acque fortemente alcaline o acide, prima dell'anàlisi, devono essere impostate su un pH di ca. 7 (con 1 mol/l di acido cloridrico e 1 mol/l di soda caustica).
- 2. Il ferro compromette la determinazione e può essere escluso nel modo seguente: determinare la concentrazione di ferro totale e per la produzione della cuvetta per lo zero utilizzare uno standard di ferro della concentrazione rilevata anziché acqua distillata.
- 3. Conversione: mg/l NH₄ = mg/l N x 1,29 mg/l NH₃ = mg/l N x 1,22
- 4. ▲ N
 NH₄
 NH₃

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set	Set	535600
VARIO Ammonia Salicylate F5	Bustina di polvere / 50	
VARIO Ammonia Cyanurate F5	Bustina di polvere / 50	
VARIO Am Diluent Reagent LR	Cuvette di reazione / 50	
VARIO acqua completamente desalinizzata	100 ml	

Ammònio HR (campo di misurazione superiore) test in cuvette

1 - 50 mg/l N

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Aprire una cuvetta per reagenti chiusa con tappo bianco e riempirla con 0,1 ml di acqua completamente desalinizzata (cuvetta per lo zero).
- Aprire un'altra cuvetta per reagenti chiusa con tappo bianco e riempirla con 0,1 ml di campione (cuvetta per il campione).

 Chiudere bene le cuvette con l'apposito coperchio e mescolare il contenuto agitandolo, finché il reagente non si è sciolto completamente.

Count-Down 20:00 Inizio:

Premere il tasto [4].
 Attendere 20 minuti per il tempo di reazione.

Passato il tempo di reazione procedere come segue:

7. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione $\underline{\mathbf{A}}$.

Predisporre Zero Premere ZERO

- 8. Premere il tasto ZERO.
- 9. Estrarre la cuvetta dal pozzetto di misurazione.

Zero accettato Predisporre Test Premere TEST

11. Premere il tasto **TEST.**

Nel display appare il risultato come ammònio in mg/l.

- 1. Le acque fortemente alcaline o acide, prima dell'anàlisi, devono essere impostate su un pH di ca. 7 (con 1 mol/l di acido cloridrico e 1 mol/l di soda caustica)
- In presenza di cloro il campione deve essere trattato con tiosolfato di sodio.
 In 0,3 mg/l Cl₂ in 1 litro di campione d'acqua si aggiunge una goccia di una soluzione di tiosolfato di sodio 0,1 mol/l.
- 3. Il ferro compromette la determinazione e può essere escluso nel modo seguente: determinare la concentrazione di ferro totale e per la produzione della cuvetta per lo zero utilizzare uno standard di ferro della concentrazione rilevata anziché acqua distillata. mg/l NH₄ = mg/l N x 1,29 mg/l NH₂ = mg/l N x 1,22
- 4. **A** N
 - ▼ NH₄

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
VARIO Ammonia Salicylate F5 VARIO Ammonia Cyanurate F5 VARIO Am Diluent Reagent HR VARIO acqua completamente desalinizzata	Set Bustina di polvere / 50 Bustina di polvere / 50 Cuvette di reazione / 50 100 mll	535650

Azoto, totale LR (campo di misurazione inferiore) test in cuvette

0,5 - 25 mg/l N

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Aprire due cuvette per la decomposizione TN Hydroxide LR ed aggiungere il contenuto di una bustina di polvere Vario TN Persulfate Rqt. in ciascuna (Nota 2, 3).
- 2. In una delle due cuvette aggiungere **2 ml di acqua completamente desalinizzata** (campione zero, Nota 4, 5).

- 3. Nell'altra cuvetta aggiungere **2 ml di campione**.
- 4. Chiudere le cuvette con l'apposito coperchio e mescolare il contenuto agitandolo forte (min. 30 secondi, Nota 6).
- Far decomporre il contenuto delle cuvette per 30 minuti a 100°C nel termoreattore preriscaldato (Nota 7).
- In seguito alla decomposizione estrarre le cuvette dal termoreattore. (ATTENZIONE: le cuvette sono surriscaldate). Lasciar raffreddare le cuvette a temperatura ambiente.
- Aprire le cuvette raffreddate ed aggiungere il contenuto di una bustina di polvere Vario TN Reagent A in ciascuna (Nota 2).
- 8. Chiudere le cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo le cuvette stesse (min. 15 secondi).

Count-Down 1 3:00 Inizio: ₄

 Premere il tasto [.]. Attendere 3 minuti per il tempo di reazione. Passato il tempo di reazione procedere come segue:

- Aprire le cuvette per la decomposizione ed aggiungere il contenuto di una bustina di polvere Vario TN Reagent B in ciascuna (Nota 2).
- 11. Chiudere le cuvette con l'apposito coperchio e mescolare il contenuto capovolgendo le cuvette stesse (min. 15 secondi. Nota 8).

Count-Down 2 2:00 Inizio: 🚽

- 12. Premere il tasto [[...]]. Attendere **2 minuti per il tempo di reazione**. Passato il tempo di reazione procedere come segue:
- Aprire due cuvette TN Acid LR/HR (Reagent C) e mettere in una delle due cuvette 2 ml del campione zero preparato decomposto (cuvetta di prova).
- Aggiungere all'altra cuvetta TN Acid LR/HR 2 ml del campione zero preparato decomposto (cuvetta di prova).
- Chiudere le cuvette con l'apposito coperchio e mesco-lare il contenuto capovolgendo le cuvette stesse (10 x, Nota 9). (ATTENZIONE: le cuvette sono surriscaldate)
- 16. Porre la cuvetta di prova nel pozzetto di misurazione. Posizione Λ .

Predisporre Zero Premere ZERO

Count-Down 5:00

17. Premere il tasto **ZERO**.

Attendere **5 minuti per il tempo di reazione**. Passato il tempo di reazione viene effettuata automaticamente la misurazione.

- 18. Estrarre la cuvetta dal pozzetto di misurazione.
- 19. Porre la cuvetta di prova (Nota 10) nel pozzetto di misurazione. Posizione λ .

Zero accettato Predisporre Test Premere TEST

20. Premere il tasto TEST.

Nel display appare il risultato come azoto in mg/l.

Annotazioni e Reagente: vedi pagina 36

Azoto, totale HR (campo di misurazione superiore) test in cuvette

5 - 150 mg/l N

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Aprire due cuvette per la decomposizione TN Hydroxide HR ed aggiungere il contenuto di una bustina di polvere Vario TN Persulfate Rgt. in ciascuna (Nota 2, 3).
- In una delle due cuvette preparate aggiungere 0,5 ml di acqua completamente desalinizzata (campione zero, Nota 4, 5).

- 3. Nell'altra cuvetta aggiungere **0,5 ml di campione**.
- Chiudere le cuvette con l'apposito coperchio e mescolare il contenuto agitandolo forte (min. 30 secondi, Nota 6).
- Far decomporre il contenuto delle cuvette per 30 minuti a 100°C nel termoreattore preriscaldato (Nota 7).
- In seguito alla decomposizione estrarre le cuvette dal termoreattore. (ATTENZIONE: le cuvette sono surriscaldate). Lasciar raffreddare le cuvette a temperatura ambiente.
- Aprire le cuvette raffreddate ed aggiungere il contenuto di una bustina di polvere Vario TN Reagent A in ciascuna (Nota 2).
- Chiudere la cuvette con l'apposito coperchio e mescolare il contenuto capovolgendo le cuvette stesse (min. 15 secondi).

Count-Down 1 3:00 Inizio: 🚽

 Premere il tasto [.]. Attendere 3 minuti per il tempo di reazione. Passato il tempo di reazione procedere come segue:

- Aprire le cuvette per la decomposizione ed aggiungere il contenuto di una bustina di polvere Vario TN Reagent B in ciascuna (Nota 2).
- 11. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (min. 15 secondi, Nota 8).

Count-Down 2 2:00 Inizio:

- 12. Premere il tasto []. Attendere 2 minuti per il tempo di reazione. Passato il tempo di reazione procedere come seque:
- Aprire due cuvette TN Acid LR/HR (Reagent C) e mettere in una delle due cuvette 2 ml del campione zero preparato decomposto (cuvetta di prova).
- Aggiungere all'altra cuvetta TN Acid LR/HR 2 ml del campione zero preparato decomposto (cuvetta di prova).
- Chiudere le cuvette con l'apposito coperchio e mescolare il contenuto capovolgendo le cuvette stesse (10 volte, Nota 9). (ATTENZIONE: le cuvette sono surriscaldate)
- 16. Porre la cuvetta di prova nel pozzetto di misurazione. Posizione λ .

Predisporre Zero Premere ZERO

Count-Down 5:00

17. Premere il tasto ZERO.

Attendere **5 minuti per il tempo di reazione**. Passato il tempo di reazione viene effettuata automaticamente la misurazione

- 18. Estrarre la cuvetta dal pozzetto di misurazione.
- 19. Porre la cuvetta di prova (Annotazione 10) nel pozzetto di misurazione. Posizione λ .

Zero accettato Predisporre Test Premere TEST

Premere il tasto TEST.
 Nel display appare il risultato come azoto in mg/l.

Annotazioni e Reagente: vedi pagina 36

Annotazioni:

- 1. E' necessario adottare misure di sicurezza adeguate ed una buona tecnologia di laboratorio durante l'intero procedimento.
- 2. Per introdurre il reagente utilizzare un imbuto.
- 3. Il reagente persolfato non deve raggiungere la filettatura delle cuvette. Per rimuovere il reagente persolfato eventualmente versato o spruzzato, pulire a fondo la filettatura delle cuvette con un panno pulito.
- 4. Dosare i volumi per il campione ed il valore di prova con pipette piene idonee della classe A.
- 5. Per ciascuna composizione del campione è sufficiente una cuvetta di prova.
- 6. Probabilmente il reagente non si scioglierà completamente.
- 7. Le cuvette devono essere estratte dal reattore dopo esattamente 30 minuti.
- 8. Il reagente non si scioglie completamente.
- 9. Tenere la cuvetta diritta con il coperchio in alto. Girare quindi la cuvetta ed attendere, finché l'intera soluzione non è fluita verso il coperchio. Riportare quindi la cuvetta nella posizione diritta ed attendere finché la soluzione non è tornata nel fondo dalla cuvetta. L'intero processo è un giro; 10 giri = ca. 30 secondi.
- 10.Se i campioni misurati sono stati preparati con lo stesso lotto di reagenti, la cella zero (conservata al buio) può essere utilizzato per 7 giorni.
- 11. Elevate quantità di composti organici privi di azoto contenuti in alcuni campioni possono compromettere l'efficacia della decomposizione in quanto potrebbero utilizzare parte del reagente persolfato. I campioni per i quali si sa che contengono elevate quantità di composti organici devono essere diluiti e di nuovo decomposti e misurati per verificare l'efficacia della decomposizione.
- 12. Ambito di applicazione: per acqua, acque di scarico e acqua marina
- 13.Problemi:

Interferenze che determinano una modifica del 10% della concentrazione. I bromuri superiori a 60 mg/l ed i cloruri superiori a 1000 mg/l producono interferenze positive.

TN = Nitrogeno totale = Azoto totale

 NH_{Δ}

▼ NH₃

Azoto, totale LR (campo di misurazione inferiore) test in cuvette

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set	Set	535550
VARIO TN HYDROX LR Cuvette	cuvette per la decomposi-	
VARIO PERSULFATE Reagente	zione / 50	
VARIO TN Reagente A	Bustina di polvere / 50	
VARIO TN Reagente B	Bustina di polvere / 50	
VARIO TN ACID LR/HR Cuvette	Bustina di polvere / 50	
VARIO acqua completamente desali-	Cuvette di reazione / 50	
nizzata	100 ml	

Azoto, totale HR (campo di misurazione superiore) test in cuvette

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set	Set	535560
VARIO TN HYDROX HR Cuvette	cuvette per la decomposi-	
VARIO PERSULFATE Reagente	zione / 50	
VARIO TN Reagente A	Bustina di polvere / 50	
VARIO TN Reagente B	Bustina di polvere / 50	
VARIO TN ACID LR/HR Cuvette	Bustina di polvere / 50	
VARIO acqua completamente desali-	Cuvette di reazione / 50	
nizzata	100 ml	

Biossido di cloro con compressa

0,02 - 11 mg/l ClO₂

Diossido cloro

>> oltre a Cl

Nel display appare la seguente possibilità di scelta:

>> oltre a Cl

per la determinazione di biossido di cloro oltre al cloro

>> senza Cl

per la determinazione di biossido di cloro in assenza di cloro

Con i tasti freccia $[\![\Delta]\!]$ e $[\![\nabla]\!]$ selezionare la determinazione desiderata e confermare con $[\![\mathcal{J}\!]]$.

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti per la casa (per es. detersivo per stoviglie) contengono agenti di riduzione, nella determinazione del biossido di cloro si possono avere risultati inferiori. Per escludere tali errori di misurazione gli apparecchi di vetro devono essere privati del cloro depositato. A tale scopo gli apparecchi in vetro vengono conservati per un'ora in una soluzione di ipoclorito di sodio (0,1 g/l) e quindi risciacquati abbondantemente con acqua completamente desalinizzata.
- 2. Nella predisposizione del campione è necessario evitare i gas di scarico del biossido di cloro, per es. pipettando o agitando la cuvetta. L'anàlisi deve avvenire immediatamente dopo il prelievo del campione.
- 3. Lo sviluppo del colore DPD avviene con un pH compreso tra 6,2 e 6,5. La compressa del reagente contiene quindi un tampone per l'impostazione del pH. Le acque fortemente alcaline o acide devono tuttavia essere portate in un campo del pH compreso fra 6 e 7 prima dell'anàlisi (con 0,5 mol/l di acido solforico o 1 mol/l di soda caustica).
- 4. Concentrazioni di biossido di cloro superiori a 19 mg/l possono portare a risultati nell'ambito del campo di misurazione fino a 0 mg/l. In tal caso il campione di acqua deve essere diluito con acqua priva di biossido di cloro. 10 ml del campione diluito vengono mescolati con il reagente e la misurazione va ripetuta (test di plausibilità).
- 5. Se in diversi risultati del test viene visualizzato ???, vedi pag. 356.
- 6. Tutti i mezzi di ossidazione presenti nei campioni reagiscono come il biossido di cloro, fattore che determina risultati plurimi.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
DPD No. 1	Pastiglia / 100	511050BT
GLYCINE	Pastiglia / 100	512170BT

Biossido di cloro, oltre a cloro

0,02 - 11 mg/l CIO₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione.
- 2. Aggiungere **una compressa GLYCINE** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 3. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non sarà sciolta.
- Riempire una seconda cuvetta pulita con 10 ml di campione e chiudere con l'apposito coperchio.
- 5. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 6. Premere il tasto ZERO.
- Estrarre la cuvetta dal pozzetto di misurazione e svuotare.
- 8. Aggiungere **una compressa DPD No. 1** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Versare il contenuto della prima cuvetta (soluzione di Glycine) nella cuvetta predisposta (punto 8).
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non sarà sciolta.
- 11. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre T1 Premere TEST

12. Premere il tasto TEST.

- Estrarre la cuvetta dal pozzetto di misurazione. Pulire accuratamente la cuvetta ed il relativo coperchio e versare alcune gocce di campione.
- Aggiungere una compressa DPD No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 15. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non sarà sciolta.
- 17. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

T1 accettato Predisporre T2 Premere TEST

- 18 Premere il tasto **TEST**
- 19. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere allo stesso campione una compressa DPD No. 3 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non sarà sciolta.
- 22. Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

T2 accettato Predisporre T3 Premere TEST

23. Premere il tasto **TEST**. Attendere **2 minuti p**

Attendere **2 minuti per il tempo di reazione**.

Passato il tempo di reazione viene effettuata automati-

Count-Down 2:00

Nel display appare il risultato in:

biossido di cloro in mg/l CIO,

camente la misurazione.

mg/l de cloro ligado mg/l cloro combinato mg/l cloro totale

*,** mg/l ClO₂

*,** mg/l Cl lib.

*,** mg/l Cl comb.

*,** mg/l Cl tot.

(Annotazioni vedi pagina successiva)

Annotazioni (Biossido di cloro in presenza di cloro):

- Il fattore per il calcolo del biossido di cloro (indicazione display) nel biossido di cloro in unità di cloro è pari a 2,6315. mg/l ClO₂ [Cl] = mg/l ClO₂ · 2,6315 L'indicazione del biossido di cloro in unità di cloro ClO₂ [Cl] si basa sulla legislazione sulle piscine in conformità alla norma DIN 19643.
- 2. Il contenuto di cloro totale viene indicato comprensivo del biossido di cloro in unità di cloro. Il contenuto di cloro totale effettivo risulta dalla somma del contenuto di cloro libero e legato.
- 3. Vedere anche pagina 39.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 3	Pastiglia / 100	511080BT
GLYCINE	Pastiglia / 100	512170BT

Biossido di cloro, in assenza di cloro

0,02 - 11 mg/l ClO₂

1. In una cuvetta pulita da 24 mm introdurre 10 ml di **campione** e chiudere con l'apposito coperchio.

2. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotare fino a far rimanere poche gocce.
- 5. Aggiungere **una compressa DPD No. 1** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Zero accettato **Predisporre Test Premere TEST**

9. Premere il tasto TEST.

mg/l ClO

Nel display appare il risultato in: biossido di cloro in mg/l de ClO,

Annotazioni:

vedi pagina 39

Biossido di cloro assenza di cloro con reagente in Powder Pack (PP)

0,04 - 3,8 mg/l CIO₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere Chlorine FREE-DPD / F10 direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Zero accettato Predisporre Test Premere TEST

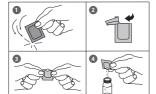
8. Premere il tasto TEST.

Nel display appare il risultato in mg/l biossido di cloro.

Annotazioni:

Vedi pagina 46

Biossido di cloro oltre a cloro con reagente in Powder Pack (PP)


0,04 - 3,8 mg/l ClO₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Introdurre nei 10 ml di campione una compressa di GLYCINE direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finchè la compressa non si sarà sciolta.

- Aggiungere nel campione pretrattato il contenuto di una bustina di polvere Chlorine FREE-DPD / F10 direttamente dall'astuccio.
- 8. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Zero accettato Predisporre Test Premere TEST

10 Premere il tasto TEST.

Nel display appare il risultato in mg/l biossido di cloro.

Annotazioni:

Vedi pagina 46

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti per la casa (per es. detersivo per stoviglie) contengono agenti di riduzione, nella determinazione del biossido di cloro si possono avere risultati inferiori. Per escludere tali errori di misurazione gli apparecchi di vetro devono essere privati del cloro depositato. A tale scopo gli apparecchi in vetro vengono conservati per un'ora in una soluzione di ipoclorito di sodio (0,1 g/l) e quindi risciacquati abbondantemente con acqua completamente desalinizzata.
- Nella predisposizione del campione è necessario evitare i gas di scarico del biossido di cloro, per es. pipettando o agitando la cuvetta. L'anàlisi deve avvenire immediatamente dopo il prelievo del campione.
- 3. Lo sviluppo del colore DPD avviene con un pH compreso tra 6,2 e 6,5. La compressa del reagente contiene quindi un tampone per l'impostazione del pH. Le acque fortemente alcaline o acide devono tuttavia essere portate in un campo del pH compreso fra 6 e 7 prima dell'anàlisi (con 0,5 mol/l di acido solforico o 1 mol/l di soda caustica).
- 4. Concentrazioni di biossido di cloro superiori a 3,8 mg/l possono portare a risultati nell'ambito del campo di misurazione fino a 0 mg/l. In tal caso il campione di acqua deve essere diluito con acqua priva di biossido di cloro. 10 ml del campione diluito vengono mescolati con il reagente e la misurazione va ripetuta (test di plausibilità).
- 5. Tutti i mezzi di ossidazione presenti nei campioni reagiscono come il biossido di cloro, fattore che determina risultati plurimi.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Clorine Free-DPD/F10	Bustina di polvere / 100	530100
GLYCINE	Pastiglia / 100	512170BT

Boro con compressa

0,1 - 2 mg/l B

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa BORON No. 1 direttamente dall'astuccio, quindi schiacciarla e far sciogliere con una bacchetta pulita.
- Aggiungere allo stesso campione una compressa BORON No. 2 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 20:00 9. Premere il tasto **TEST**.

Attendere 20 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l boro.

- 1. E' assolutamente necessario rispettare la sequenza di introduzione delle compresse.
- 2. La soluzione campione di acqua deve avere un pH compreso fra 6 e 7.
- 3. Eventuali problemi vengono risolti con il composto delle compresse (EDTA).
- 4. Lo sviluppo del colore è condizionato dalla temperatura. La temperatura del campione deve essere pari a 20°C $\pm 1^{\circ}\text{C}$.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set Bor No. 1/ No. 2	Pastiglia / ognuno 100 Bacchetta compresa	517681BT
BORON No. 1	Pastiglia / 100	515790
BORON No. 2	Pastiglia / 100	515800BT

Bromo con compressa

0,05 - 13 mg/l Br₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la **cuvetta** dal pozzetto di misurazione e svuotare **fino a far rimanere poche gocce**.
- Aggiungere una compressa DPD No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita (annotazioni 5).
- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

9 Premere il tasto TEST.

Nel display appare il risultato in mg/l bromo.

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti per la casa (per es. detersivo per stoviglie) contengono agenti di riduzione, nella determinazione del bromo si possono avere risultati inferiori. Per escludere tali errori di misurazione gli apparecchi di vetro devono essere privati del cloro depositato. A tale scopo gli apparecchi in vetro vengono conservati per un'ora in una soluzione di ipoclorito di sodio (0,1 g/l) e quindi risciacquati abbondantemente con acqua completamente desalinizzata.
- Nella predisposizione del campione è necessario evitare i gas di scarico del bromo, per es. pipettando o agitando la cuvetta. L'anàlisi deve avvenire immediatamente dopo il prelievo del campione.
- 3. Lo sviluppo del colore DPD avviene con un pH compreso tra 6,2 e 6,5. La compressa del reagente contiene quindi un tampone per l'impostazione del pH. Le acque fortemente alcaline o acide devono tuttavia essere portate in un campo del pH compreso fra 6 e 7 prima dell'anàlisi (con 0,5 mol/l di acido solforico o 1 mol/l di soda caustica).
- 4. Concentrazioni di bromo superiori a 22 mg/l possono portare a risultati nell'ambito del campo di misurazione fino a 0 mg/l. In tal caso il campione di acqua deve essere diluito con acqua priva di bromo. 10 ml del campione diluito vengono mescolati con il reagente e la misurazione va ripetuta (test di plausibilità).
- 5. A seconda della dose di bromo, possono esistere composti di bromo che sono solo parzialmente o per nulla coperta dalla pastiglia DPD No.1. In questi casi, si utilizza la pastiglia DPD No.3 ulteriormente e permettere un tempo di reazione di 2 minuti. Si prega di fare riferimento anche alle istruzioni del produttore del bromo che utilizzano.
- Tutti i mezzi di ossidazione presenti nei campioni reagiscono come il bromo, fattore che determina risultati plurimi.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 3	Pastiglia / 100	511080BT

Bromo con reagente in Powder Pack (PP)

0,05 - 4,5 mg/l Br₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere Chlorine TOTAL-DPD / F10 direttamente dall'astuccio (annotazioni 5).
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

Count-Down 3:00

8. Premere il tasto **TEST.**

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l bromo.

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti per la casa (per es. detersivo per stoviglie) contengono agenti di riduzione, nella determinazione del bromo si possono avere risultati inferiori. Per escludere tali errori di misurazione gli apparecchi di vetro devono essere privati del cloro depositato. A tale scopo gli apparecchi in vetro vengono conservati per un'ora in una soluzione di ipoclorito di sodio (0,1 g/l) e quindi risciacquati abbondantemente con acqua completamente desalinizzata.
- Nella predisposizione del campione è necessario evitare i gas di scarico del bromo, per es. pipettando o agitando la cuvetta. L'anàlisi deve avvenire immediatamente dopo il prelievo del campione.
- 3. Lo sviluppo del colore DPD avviene con un pH compreso tra 6,2 e 6,5. La compressa del reagente contiene quindi un tampone per l'impostazione del pH. Le acque fortemente alcaline o acide devono tuttavia essere portate in un campo del pH compreso fra 6 e 7 prima dell'anàlisi (con 0,5 mol/l di acido solforico o 1 mol/l di soda caustica).
- 4. Concentrazioni di bromo superiori a 4,5 mg/l possono portare a risultati nell'ambito del campo di misurazione fino a 0 mg/l. In tal caso il campione di acqua deve essere diluito con acqua priva di bromo. 10 ml del campione diluito vengono mescolati con il reagente e la misurazione va ripetuta (test di plausibilità).
- 5. Inoltre, per alcuni prodotti bromo, la determinazione può essere effettuata con cloro libero DPD / bustina F10. Si prega di fare riferimento anche alle istruzioni del produttore del bromo che utilizzano.
- Tutti i mezzi di ossidazione presenti nei campioni reagiscono come il bromo, fattore che determina risultati plurimi.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Chlorine Total-DPD/F10	Bustina di polvere / 100	530120
Clorine Free-DPD/F10	Bustina di polvere / 100	530100

Capacità acido Ks4.3 con compressa

0.1 - 4 mmol/l

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere una compressa ALKA-M-PHOTOMETER direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- Porre la cuvetta nel pozzetto di misurazione. Posizione X.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato come Ks4.3 in mmol/l.

- 1. I concetti di alcalinità m, valore m, alcalinità totale e capacità acido Ks4.3 sono identici.
- 2. Il corretto mantenimento del volume del campione di 10 ml è determinante per la precisione del risultato dell'anàlisi.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
ALKA-M-PHOTOMETER	Pastiglia / 100	513210BT

Cianuro con reagente polvere e reagente liquido

0,01 - 0,5 mg/l CN

Ø 24 mm

- 1. In una cuvetta pulita da 24 mm introdurre **2 ml di campione** e **8 ml di acqua completamente desalinizzata** e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere al campione preparato due misurini rasi di n. 4 (bianco) Cyanide-11, chiudere con l'apposito coperchio e mescolare il contenuto agitandolo la cuvetta.
- Aggiungere due misurini rasi di n. 4 (bianco) Cyanide-12, chiudere con l'apposito coperchio e mescolare il contenuto agitandolo la cuvetta.
- 7. Tenere la buretta in verticale e premendo lentamente far cadere delle gocce della stessa grandezza nella cuvetta:

3 gocce Cyanide-13

- 8. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 9. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00 10. Premere il tasto TEST.

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l cianuro.

- 1. Vengono rilevati solo il cianuro libero e quelli che possono essere distrutti con il cloro.
- In caso di presenza di tiocianato, composti di metalli pesanti, solfuro, coloranti o ammine aromatiche è necessario separare il cianuro tramite distillazione prima della determinazione.
- 3. Conservare i reagenti sotto chiave ad una temperatura compresa fra + 15°C e + 25°.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
SET: Cyanid-11/ -12 / -13	Test / 200 (polvere, Reagente liquido)	2418875

Clorite in presenza di cloro e biossido di cloro

0,01 - 6 mg/l Cl₃

Con il metodo della glicina viene anzitutto determinato il contenuto di biossido di cloro, quindi il cloro libero e combinato, e infine il cloro totale compreso il clorito. In base ai diversi valori rilevati viene successivamente calcolato il contenuto di clorito.

Cloro

>> diff lib. tot.

Nel display appare la seguente possibilità di scelta:

>> lib.

selezionare per la determinazione di cloro libero

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione.
- Aggiungere una compressa GLYCINE direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 3. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non sarà sciolta.
- 4. Riempire una seconda cuvetta pulita con 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 6 Premere il tasto ZERO.
- 7. Estrarre la **cuvetta** dal pozzetto di misurazione e **svuotare.**
- 8. Aggiungere **una compressa DPD No. 1** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.

- Versare il contenuto della prima cuvetta (soluzione di Glycine) nella cuvetta predisposta (punto 8).
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non sarà sciolta.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

12. Premere il tasto TEST.

Registrare il risultato del test visualizzato (G).

- Estrarre la cuvetta dal pozzetto di misurazione. Pulire accuratamente la cuvetta ed il relativo coperchio e versare alcune gocce di campione.
- 14. Aggiungere **una compressa DPD No. 1** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 15. Riempire la cuvetta con il campione fino alla tacca 10 ml
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non sarà sciolta.
- 17. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

18. Premere il tasto TEST.

Registrare il risultato del test visualizzato (A).

19. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere allo stesso campione una compressa DPD No. 3 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non sarà sciolta.
- 22. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- 23. Attendere 2 minuti per il tempo di reazione.

Zero accettato Predisporre Test Premere TEST

24. Premere il tasto TEST.

Registrare il risultato del test visualizzato (C).

- 25. Estrarre la cuvetta dal pozzetto di misurazione.
- 26. Introdurre nello stesso campione una compressa di DPD ACIDIFYING direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 27. Attendere **2 minuti per il tempo di reazione.**
- Introdurre nello stesso campione una compressa di DPD NEUTRALISING direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 29. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finchè la compressa non si sarà sciolta
- 30. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

31. Premere il tasto TEST.

Registrare il risultato del test visualizzato (D).

Calcolazione:

mg/l Biossido di cloro = risultante G x 1,9

mg/l Cloro libero = risultante A – risultante G mg/l Cloro combinato = risultante C – risultante A

mg/l Clorite = risultante D – (risultante C + 4×10^{-4} x risultante G)

- Nel calcolo di parametri non direttamente determinabili derivanti da singoli valori rilevati, è necessario tenere in considerazione la propagazione degli errori, sulla base delle possibili tolleranze, dei singoli metodi.
- 2. Vedi anche annotazioni Cloro, pagina 63.


Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set DPD No. 1 / No. 3	Pastiglia / ognuno 100 Bacchetta compresa	517711BT
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 3	Pastiglia / 100	511080BT
GLYCINE	Pastiglia / 100	512170BT
DPD ACIDIFYING	Pastiglia / 100	512120
DPD NEUTRALISING	Pastiglia / 100	511020BT

Cloro con reagenti liquidi 0,02 – 4 mg/l Cl₂

Cloro >>	diff lib. tot.	Nel display appare la seguente possibilità di scelta:
>>	diff	per la determinazione differenziata di cloro libero, combinato e totale
>>	lib.	per la determinazione di cloro libero
>>	tot.	per la determinazione di cloro totale

Con i tasti freccia [A] e [V] selezionare la determinazione desiderata e confermare con [J].

Annotazioni:

1 Pulizia delle cuvette:

Poiché molti detergenti per la casa (per es. detersivo per stoviglie) contengono agenti di riduzione, nella determinazione del cloro si possono avere risultati inferiori. Per escludere tali errori di misurazione gli apparecchi di vetro devono essere privati del cloro depositato. A tale scopo gli apparecchi in vetro vengono conservati per un'ora in una soluzione di ipoclorito di sodio (0,1 g/l) e quindi risciacquati abbondantemente con acqua completamente desalinizzata.

- 2. Per la singola determinazione di cloro libero e cloro totale è sensato utilizzare un'apposita serie di provette (vedi EN ISO 7393-2, comma 5.3).
- 3. Nella predisposizione del campione è necessario evitare i gas di scarico del cloro, per es. pipettando o agitando la cuvetta. L'anàlisi deve avvenire immediatamente dopo il prelievo del campione.
- 4. Lo sviluppo del colore DPD avviene con un pH compreso tra 6,2 e 6,5. I reagenti contengono quindi un tampone per l'impostazione del pH. Le acque fortemente alcaline o acide devono tuttavia essere portate in un campo del pH compreso fra 6 e 7 prima dell'anàlisi (con 0,5 mol/l di acido solforico o 1 mol/l di soda caustica).
- 5. Concentrazioni superiori a
 - 10 mg/l di cloro nell'utilizzo delle compresse (metodo 100)
 - 4 mg/l di cloro nell'utilizzo dei reagenti liquidi (metodo 101)
 - 2 mg/l di cloro nell'utilizzo di Powder Pack (metodo 110)
 - 8 mg/l di cloro nell'utilizzo di Powder Pack (metodo 111)
 - 8 mg/l di cloro nell'utilizzo di Powder Pack (metodo 113)

possono portare a risultati entro un campo di misurazione fino a 0 mg/l. In tal caso il campione di acqua deve essere diluito con acqua priva di cloro. 10 ml del campione diluito vengono mescolati con il reagente e la misurazione va ripetuta (test di plausibilità).

- 6. Torbidità (condizionano misurazioni errate):
 - Nei campioni con elevato contenuto di calcio* e/o elevata conduttività* con l'utilizzo delle pastiglie può essere provocato un intorbidamento del campione determinando quindi una misurazione errata. In tal caso, in alternativa, è necessario utilizzare la compressa del reagente DPD No. 1 High Calcium e la pastiglia DPD No. 3 High Calcium. * non è possibile fornire valori precisi, poiché la torbidità dipende dal tipo e dalla composizione dell'acqua utilizzata per il campione.
- 7. Se in diversi risultati del test viene visualizzato ??? , vedi pag. 356.
- 8. Tutti i mezzi di ossidazione presenti nei campioni reagiscono come il cloro, fattore che determina risultati plurimi.

Cloro, libero con compressa

0,01 - 6 mg/l Cl₂

- 1. In una cuvetta pulita da 24 mm introdurre **10 ml di** campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotare fino a far rimanere poche gocce.
- Aggiungere una compressa DPD No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

9. Premere il tasto TEST.

Nel display appare il risultato in mg/l cloro libero.

Annotazioni:

vedi pagina 63

Cloro, totale con compressa

0,01 - 6 mg/l Cl₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la **cuvetta** dal pozzetto di misurazione e **svuotare fino a far rimanere poche gocce.**
- Aggiungere una compressa DPD No. 1 ed una compressa DPD No. 3 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Riempire la cuvetta con il campione fino alla tacca 10 ml.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00 9. Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l cloro totale.

Annotazioni:

vedi pagina 63

Cloro, determinazione differenziata con compressa

0,01 - 6 mg/l Cl₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la **cuvetta** dal pozzetto di misurazione e **svuotare fino a far rimanere poche gocce.**
- 5. Aggiungere **una compressa DPD No. 1** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre T1 Premere TEST

- 9. Premere il tasto TEST.
- 10. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere allo stesso campione una compressa DPD No. 3 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 12. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.

13. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

T1 accettato Predisporre T2 Premere TEST

Count-Down 2:00 14. Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in:

*,** mg/l lib. Cl *,** mg/l comb. Cl

*,** mg/l tot. Cl

mg/l cloro libero mg/l cloro combinato mg/l cloro totale

Annotazioni: vedi pagina 63

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack DPD No. 1 / No. 3	Pastiglia / ognuno 100 Bacchetta compresa	517711BT
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 3	Pastiglia / 100	511080BT
Combi-Pack DPD No. 1 HIGH CALCIUM / DPD No. 3 HIGH CALCIUM	Pastiglia / ognuno 100 Bacchetta compresa	517781BT
DPD No. 1 HIGH CALCIUM	Pastiglia / 100	515740BT
DPD No. 3 HIGH CALCIUM	Pastiglia / 100	515730BT

Cloro HR, libero con compressa

0,1 - 10 mg/l Cl₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotare fino a far rimanere poche gocce.
- Aggiungere una compressa DPD No. 1 HR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

9. Premere il tasto TEST.

Nel display appare il risultato in mg/l cloro libero.

Annotazioni:

vedi pagina 63

Cloro HR, totale con compressa

0,1 - 10 mg/l Cl₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la **cuvetta** dal pozzetto di misurazione e **svuo- tare fino a far rimanere poche gocce.**
- Aggiungere una compressa DPD No. 1 HR ed una compressa DPD No. 3 HR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00 9. Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l cloro totale.

Annotazioni:

vedi pagina 63

Cloro HR, determinazione differenziata con compressa

0,1 - 10 mg/l Cl₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotare fino a far rimanere poche gocce.
- Aggiungere una compressa DPD No. 1 HR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre T1 Premere TEST

- 9. Premere il tasto TEST.
- 10. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere allo stesso campione una compressa DPD No. 3 HR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 12. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.

13. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

T1 accettato Predisporre T2 Premere TEST

Count-Down 2:00 14. Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in:

*,** mg/l lib. Cl *,** mg/l comb. Cl *,** mg/l tot. Cl

mg/l cloro libero mg/l cloro combinato mg/l cloro totale

Annotazioni: vedi pagina 63

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
DPD No. 1 HR	Pastiglia / 100	511500BT
DPD No. 3 HR	Pastiglia / 100	511590BT

Cloro, libero con reagenti liquidi

 $0.02 - 4 \text{ mg/l Cl}_{2}$

Predisporre Zero

Premere ZERO

- 1. In una cuvetta pulita da 24 mm introdurre 10 ml di **campione** e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione X.
- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotarla.
- 5. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

6 gocce di DPD 1 soluzione tampone

2 gocce di DPD 1 soluzione reagente

- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato **Predisporre Test Premere TEST**

9. Premere il tasto TEST.

Nel display appare il risultato in mg/l cloro libero.

Annotazioni (cloro libero e totale):

1. Vedi anche pagina 63 e 75

Cloro, totale con reagenti liquidi

 $0.02 - 4 \text{ mg/l Cl}_{2}$

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la **cuvetta** dal pozzetto di misurazione e **svuotarla.**
- 5. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella provetta:

6 gocce di DPD 1 soluzione tampone 2 gocce di DPD 1 soluzione reagente 3 gocce di DPD 3 soluzione

- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00 9. Premere il tasto **TEST.**

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l cloro totale.

Cloro, determinazione differenziata con reagenti liquidi

 $0.02 - 4 \text{ mg/l Cl}_{2}$

- 1. In una cuvetta pulita da 24 mm introdurre **10 ml di campione** e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- Estrarre la cuvetta dal pozzetto di misurazione e svuotarla.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

6 gocce di DPD 1 soluzione tampone

2 gocce di DPD 1 soluzione reagente

- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre T1 Premere TEST

- 9. Premere il tasto TEST.
- 10. Estrarre la cuvetta dal pozzetto di misurazione.

- 11. Aggiungere allo stesso campione **3 gocce di DPD 3** soluzione.
- 12. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 13. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

T1 accettato Predisporre T2 Premere TEST

Count-Down 2:00 14. Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in:

mg/l cloro libero mg/l cloro combinato mg/l cloro totale

*,** mg/l lib. Cl *,** mg/l comb. Cl *,** mg/l tot. Cl

Annotazioni:

- 1. Richiudere i flaconi contagocce con il tappo dello stesso colore immediatamente dopo
- 2. Conservare il set di reagenti in un luogo fresco, ad una temperatura compresa fra +6°C e +10°C.
- 3. Vedi anche pagina 63
- 4. Nei campioni con elevato contenuto di calcio* e/o elevata conduttività* può essere provocato un intorbidamento del campione determinando quindi una misurazione errata. In tal caso, in alternativa, è necessario utilizzare la compressa del reagente DPD No. 1 High Calcium e la pastiglia DPD No. 3 High Calcium. (Cod. art.: vedi Reagente "Cloro con compressa").
 - * non è possibile fornire valori precisi, poiché la torbidità dipende dal tipo e dalla composizione dell'acqua utilizzata per il campione.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set DPD No. 1 soluzione tampone DPD No. 1 soluzione reagente DPD No. 3 soluzione	(per 300 tests) 3 x Reagente liquido / 15 ml 1 x Reagente liquido / 15 ml 2 x Reagente liquido / 15 ml	471056
DPD No. 1 soluzione tampone	Reagente liquido / 15 ml	471010
DPD No. 1 soluzione reagente	Reagente liquido / 15 ml	471020
DPD No. 3 soluzione	Reagente liquido / 15 ml	471030

Cloro, libero con reagente in Powder Pack (PP)

 $0.02 - 2 \text{ mg/l Cl}_{2}$

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere Chlorine FREE-DPD / F10 direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione \overline{X} .

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in mg/l cloro libero.

Annotazioni:

Vedi pagina 63

Cloro, totale con reagente in Powder Pack (PP)

0,02 - 2 mg/l Cl₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere Chlorine TOTAL-DPD / F10 direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

Count-Down 3:00

8. Premere il tasto TEST.

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l cloro totale.

Annotazioni:

Vedi pagina 63

Cloro, determinazione differenziata con reagente in Powder Pack (PP)

 $0.02 - 2 \text{ mg/l Cl}_{2}$

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere Chlorine FREE-DPD / F10 direttamente dall'astuccio.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre T1 Premere TEST

- 8. Premere il tasto TEST.
- Estrarre la cuvetta dal pozzetto di misurazione, pulire accuratamente la cuvetta ed il relativo coperchio e riempire con 10 ml di campione.
- Aggiungere il contenuto di una bustina di polvere Chlorine TOTAL-DPD / F10 direttamente dall'astuccio.
- 11. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).

T1 accettato Predisporre T2 Premere TEST

Count-Down 3:00

- 12. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- 13. Premere il tasto TEST.

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in:

mg/l cloro libero mg/l cloro combinato mg/l cloro totale

*,** mg/l lib. Cl *,** mg/l comb. Cl *,** mg/l tot. Cl

Annotazioni: Vedi pagina 63

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Clorine Free-DPD/F10	Bustina di polvere / 100	530100
Chlorine Total-DPD/F10	Bustina di polvere / 100	530120

Cloro MR, libero con reagente in Powder Pack (PP)

 $0.02 - 3.5 \text{ mg/l Cl}_{2}$

- 1. In una cuvetta pulita da 24 mm introdurre **10 ml di** campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere VARIO Chlorine FREE-DPD / F10 (marcatura di colore blu ____) direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in mg/l cloro libero.

Annotazioni:

Vedi pagina 63

Cloro MR, totale con reagente in Powder Pack (PP)

 $0.02 - 3.5 \text{ mg/l Cl}_{2}$

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere VARIO Chlorine TOTAL-DPD / F10 (marcatura di colore blu ______) direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione \overline{X} .

Zero accettato Predisporre Test Premere TEST

Count-Down 3:00 8. Premere il tasto TEST.

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l cloro totale.

Annotazioni:

Vedi pagina 63

Cloro MR, determinazione differenziata con reagente in Powder Pack (PP)

0,02 - 3,5 mg/l Cl₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere VARIO Chlorine FREE-DPD / F10 (marcatura di colore blu ____) direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Zero accettato Predisporre T1 Premere TEST

- 8. Premere il tasto TEST.
- Estrarre la cuvetta dal pozzetto di misurazione, pulire accuratamente la cuvetta ed il relativo coperchio e riempire con 10 ml di campione.
- Aggiungere il contenuto di una bustina di polvere VARIO Chlorine TOTAL-DPD / F10 (marcatura di colore blu _____) direttamente dall'astuccio.

11. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (20 sec.).

12. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

T1 accettato Predisporre T2 Premere TEST

Count-Down 3:00 13. Premere il tasto TEST.

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in:

mg/l cloro libero mg/l cloro combinato mg/l cloro totale

*,** mg/l lib. Cl *,** mg/l comb. Cl *,** mg/l tot. Cl

Annotazioni: Vedi pagina 63

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
VARIO Clorine Free-DPD/F10 (marcatura di colore blu)	Bustina di polvere / 100	530180
VARIO Chlorine Total-DPD/F10 (marcatura di colore blu)	Bustina di polvere / 100	530190

Cloro HR, libero con reagente in Powder Pack (PP) Plastica cuvetta (tipo 3), 11 10 mm

0,1 - 8 mg/l Cl₂

- In una cuvetta pulita da 10 mm introdurre 5 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 5 ml il contenuto di due bustina di polvere Chlorine Free-DPD / F10 direttamente dall'astuccio.
- 6. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo (20 sec.).
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in mg/l cloro libero.

Annotazioni:

Vedi pagina 63

Cloro HR, totale con reagente in Powder Pack (PP) Plastica cuvetta (tipo 3), ⊔ 10 mm

0,1 - 8 mg/l Cl₂

- In una cuvetta pulita da 10 mm introdurre 5 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 5 ml il contenuto di due bustina di polvere Chlorine TOTAL-DPD/F10 direttamente dall'astuccio.
- 6. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo (20 sec.).
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

Count-Down 3:00

8. Premere il tasto TEST.

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l cloro totale.

Annotazioni:

Vedi pagina 63

Cloro HR, determinazione differenziata con reagente in Powder Pack (PP)

Plastica cuvetta (tipo 3),

□ 10 mm

0,1 - 8 mg/l Cl₂

- In una cuvetta pulita da 10 mm introdurre 5 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

3. Premere il tasto ZERO.

- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere al campione di 5 ml il contenuto di due bustina di polvere Chlorine Free-DPD/F10 direttamente dall'astuccio.
- 6. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo (20 sec.).
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre T1 Premere TEST

- 8. Premere il tasto TEST.
- Estrarre la cuvetta dal pozzetto di misurazione, pulire accuratamente la cuvetta ed il relativo coperchio e riempire con 5 ml di campione.
- Aggiungere al campione di 5 ml il contenuto di due bustina di polvere Chlorine Free-DPD/F10 direttamente dall'astuccio.

- 11. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo (20 sec.).
- 12. Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

T1 accettato Predisporre T2 Premere TEST

Count-Down 3:00 13. Premere il tasto **TEST**.

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in:

mg/l cloro libero mg/l cloro combinato mg/l cloro totale

*,** mg/l lib. Cl *,** mg/l comb. Cl *,** mg/l tot. Cl

Annotazioni:

Vedi pagina 63

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Clorine Free-DPD/F10	Bustina di polvere / 100	530100
Chlorine Total-DPD/F10	Bustina di polvere / 100	530120

Cloro HR (KI) con compressa

5 - 200 mg/l Cl₂

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- In una cuvetta pulita da 16 mm introdurre 8 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere al campione di 8 ml una compressa CHLORINE HR (KI) direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Aggiungere allo stesso campione una compressa ACIDIFYING GP direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √.

Zero accettato Predisporre Test Premere TEST

9. Premere il tasto TEST.

Nel display appare il risultato in mg/l cloro.

Annotazioni:

1. Tutti i mezzi di ossidazione presenti nei campioni reagiscono come il cloro, fattore che determina risultati plurimi.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack ACIDIFYING GP/ CHLORINE HR (KI)	Pastiglia / ognuno 100 Bacchetta compresa	517721BT
CHLORINE HR (KI)	Pastiglia / 100	513000BT
ACIDIFYING GP	Pastiglia / 100	515480BT

Cloruro con compressa

 $0.5 - 25 \text{ mg/l Cl}^{-}$

- 1. In una cuvetta pulita da 24 mm introdurre **10 ml di** campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Introdurre nei 10 ml di campione una compressa di CHLORIDE T1 direttamente dall'astuccio, schiacciarla con una bacchetta pulita e farla sciogliere.
- Introdurre nello stesso campione una compressa di CHLORIDE T2 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finchè le compresse non si sono sciolte (Annotazione 1).
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

9. Premere il tasto **TEST.**

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l cloruro.

Annotazioni:

- 1. Singole particelle non possono essere ricondotte alla presenza di cloruro. Il cloruro provoca un intorbidamento molto finemente distribuito con aspetto lattescente. Forte turbolenze provocate rimescolando o agitando energicamente potrebbero provocare la formazione di flocculato di grandi dimensioni, che può portare a risultati bassi.
- 2. Concentrazioni più elevate di elettroliti e composti organici hanno effetti differenti sulla reazione di precipitazione.
- 3. Gli ioni che formano anche precipitati con il nitrato d'argento in un mezzo pulito, come ad es. bromuro, ioduro e tiocianato, sono causa di interferenze.
- 4. Prima dell'anàlisi le acque fortemente alcaline dovrebbero essere neutralizzate eventualmente con acido nitrico.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack CHLORIDE T1 / T2	Pastiglia / ognuno 100 Bacchetta compresa	517741BT
CHLORIDE T1	Pastiglia / 100	515910BT
CHLORIDE T2	Pastiglia / 100	515920BT

Cloruro con reagenti liquidi

 $0.5 - 20 \text{ mg/l Cl}^{-}$

Ø 24 mm

Predisporre Zero Premere ZERO

- 1. In una cuvetta pulita da 24 mm introdurre 10 ml di cam**pione** e chiudere fortemente con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .
- 3 Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- 5. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

20 gocce KS251 (Chloride Reagenz A)

- 6. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 7. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

20 gocce KS253 (Chloride Reagenz B)

- 8. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 9. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato **Predisporre Test** Premere TEST

Count-Down 5:00

10. Premere il tasto **TEST**.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione

Nel display appare il risultato in mg/l cloruro.

Annotazioni:

- 1. Singole particelle non possono essere ricondotte alla presenza di cloruro. Il cloruro provoca un intorbidamento molto finemente distribuito con aspetto lattescente. Forte turbolenze provocate rimescolando o agitando energicamente potrebbero provocare la formazione di flocculato di grandi dimensioni, che può portare a risultati bassi.
- 2. Conversione: mg/l NaCl = mg/l Cl⁻ x 1,65

3. ♠ Cl^{*} NaCl

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS251 (Chloride Reagenz A)	Reagente liquido / 65 ml	56L025165
KS253 (Chloride Reagenz B)	Reagente liquido / 65 ml	56L025365

COD LR (campo di misurazione inferiore) test in cuvette

3 - 150 mg/l O₂

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Aprire una cuvetta per reagenti con tappo bianco e riempirla con 2 ml di acqua completamente desalinizzata (cuvetta per lo zero (Annotazione 1)).
- Aprire un'altra cuvetta per reagenti con tappo bianco e riempirla con 2 ml di campione (cuvetta per il campione).
- Chiudere le cuvette con il relativo tappo a vite. Mescolare il contenuto capovolgendo le cuvette con cautela. (ATTENZIONE: sviluppo di calore)
- 4. Far decomporre il contenuto delle cuvette per **2 ore a 150°C** nel termoreattore preriscaldato.

5. (ATTENZIONE: le cuvette scottano)

Prelevare le cuvette dal gruppo di riscaldamento e lasciar raffreddare a 60°C o meno. Miscelare attentamente il contenuto capovolgendo più volte le cuvette ancora calde. Lasciare quindi raffreddare le cuvette a temperatura ambiente e procedere solo allora con la misurazione (Annotazione 2).

6. Porre la cuvetta per lo zero (Annotazioni 3, 4) nel pozzetto di misurazione. Posizione ↓.

Predisporre Zero Premere ZERO

- 7. Premere il tasto **ZERO**.
- 8. Estrarre la cuvetta dal pozzetto di misurazione.
- 9. Porre la cuvetta per il campione (Annotazioni 3, 4) nel pozzetto di misurazione. Posizione λ .

Zero accettato Predisporre Test Premere TEST

10. Premere il tasto TEST.

Nel display appare il risultato in mg/l COD.

Annotazioni:

- 1. Marcare la cuvetta per lo zero in quanto tale. La cuvetta per lo zero, se riposta al buio, rimane stabile e può essere impiegata per misurazioni con cuvette dello stesso batch.
- 2. Le cuvette non devono essere introdotte nel pozzetto calde. Far raffreddare per almeno 45 minuti in ambiente ben areato. I valori di misurazione più stabili vengono rilevati quando le cuvette vengono lasciate riposare una notte.
- 3. I materiali in sospensione nella cuvetta portano ad errori nella misurazione. E' quindi importante introdurre con attenzione le cuvette nel pozzetto poiché, a seconda del mètodo, si forma un precipitato nel fondo delle cuvette.
- Le pareti esterne delle cuvette devono essere pulite ed asciugate prima di iniziare l'anàlisi. Eventuali impronte delle dita o gocce d'acqua sulla cuvetta portano a misurazioni errate.
- 5. E' possibile misurare campioni il cui contenuto di cloruro non superi 1000 mg/l.
- 6. In casi eccezionali le componenti per le quali la capacità di ossidazione del reagente non è sufficiente possono portare a risultati inferiori.

Reagente / Acc	essori	Forma reagente/Quantità	Cod. art.
CSB VARIO LR	3 - 150 mg/l	1 Set (25 tests)	2420720

COD MR (campo di misurazione medio) test in cuvette

20 - 1500 mg/l O₂

Impiegare adattatore per cuvette rotonde 16 mm \emptyset .

- Aprire una cuvetta per reagenti chiusa con tappo bianco e riempirla con 2 ml di acqua completamente desalinizzata (cuvetta per lo zero (Annotazione 1)).
- Aprire un'altra cuvetta per reagenti chiusa con tappo bianco e riempirla con 2 ml di campione (cuvetta per il campione).
- 3. Chiudere le cuvette con il relativo tappo a vite. Mescolare il contenuto capovolgendo le cuvette con cautela. (ATTENZIONE: sviluppo di calore)
- Far decomporre il contenuto delle cuvette per 2 ore a 150°C nel termoreattore preriscaldato.

5. (ATTENZIONE: le cuvette scottano)

Prelevare le cuvette dal gruppo di riscaldamento e lasciar raffreddare a 60°C o meno. Miscelare attentamente il contenuto capovolgendo più volte le cuvette ancora calde. Lasciare quindi raffreddare le cuvette a temperatura ambiente e procedere solo allora con la misurazione (Annotazione 2).

6. Porre la cuvetta per lo zero (Annotazioni 3, 4) nel pozzetto di misurazione. Posizione ↓.

Predisporre Zero Premere ZERO

- 7. Premere il tasto **ZERO.**
- 8. Estrarre la cuvetta dal pozzetto di misurazione.
- 9. Porre la cuvetta per il campione (Annotazioni 3, 4) nel pozzetto di misurazione. Posizione λ .

Zero accettato Predisporre Test Premere TEST

10. Premere il tasto TEST.

Nel display appare il risultato in mg/l COD.

Annotazioni:

- 1. Marcare la cuvetta per lo zero in quanto tale. La cuvetta per lo zero, se riposta al buio, rimane stabile e può essere impiegata per misurazioni con cuvette dello stesso batch.
- 2. Le cuvette non devono essere introdotte nel pozzetto calde. Far raffreddare per almeno 45 minuti in ambiente ben areato. I valori di misurazione più stabili vengono rilevati quando le cuvette vengono lasciate riposare una notte.
- 3. I materiali in sospensione nella cuvetta portano ad errori nella misurazione. E' quindi importante introdurre con attenzione le cuvette nel pozzetto poiché, a seconda del mètodo, si forma un precipitato nel fondo delle cuvette.
- 4. Le pareti esterne delle cuvette devono essere pulite ed asciugate prima di iniziare l'anàlisi. Eventuali impronte delle dita o gocce d'acqua sulla cuvetta portano a misurazioni errate.
- 5. E'possibile misurare campioni il cui contenuto di cloruro non superi 1000 mg/l.
- 6. In casi eccezionali le componenti per le quali la capacità di ossidazione del reagente non è sufficiente possono portare a risultati inferiori.
- 7. Per i campioni con un COD inferiore a 100 mg/l si consiglia di utilizzare il test COD LR.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
CSB VARIO MR 20 - 1500 mg/l	1 Set (25 tests)	2420721

COD HR (campo di misurazione superiore) test in cuvette

 $0.2 - 15 \text{ g/l } O_2 (\triangleq 200 - 15000 \text{ mg/l } O_2)$

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Aprire una cuvetta per reagenti chiusa con tappo bianco e riempirla con 0,2 ml di acqua completamente desalinizzata (cuvetta per lo zero (Annotazione 1)).
- Aprire un'altra cuvetta per reagenti chiusa con tappo bianco e riempirla con 0,2 ml di campione (cuvetta per il campione).
- Chiudere le cuvette con il relativo tappo a vite. Mescolare il contenuto capovolgendo le cuvette con cautela. (ATTENZIONE: sviluppo di calore)
- 4. Far decomporre il contenuto delle cuvette per **2 ore a 150°C** nel termoreattore preriscaldato.

5. (ATTENZIONE: le cuvette scottano)

Prelevare le cuvette dal gruppo di riscaldamento e lasciar raffreddare a 60°C o meno. Miscelare attentamente il contenuto capovolgendo più volte le cuvette ancora calde. Lasciare quindi raffreddare le cuvette a temperatura ambiente e procedere solo allora con la misurazione (Annotazione 2).

6. Porre la cuvetta per lo zero (Annotazioni 3, 4) nel pozzetto di misurazione. Posizione $\frac{1}{4}$.

Predisporre Zero Premere ZERO

- 7 Premere il tasto **ZERO**
- 8. Estrarre la cuvetta dal pozzetto di misurazione.
- 9. Porre la cuvetta per il campione (Annotazioni 3, 4) nel pozzetto di misurazione. Posizione λ .

Zero accettato Predisporre Test Premere TEST

10. Premere il tasto TEST.

Nel display appare il risultato in **g/l** COD.

Annotazioni:

- 1. Marcare la cuvetta per lo zero in quanto tale. La cuvetta per lo zero, se riposta al buio, rimane stabile e può essere impiegata per misurazioni con cuvette dello stesso batch.
- 2. Le cuvette non devono essere introdotte nel pozzetto calde. Far raffreddare per almeno 45 minuti in ambiente ben areato. I valori di misurazione più stabili vengono rilevati quando le cuvette vengono lasciate riposare una notte.
- 3. I materiali in sospensione nella cuvetta portano ad errori nella misurazione. E' quindi importante introdurre con attenzione le cuvette nel pozzetto poiché, a seconda del mètodo, si forma un precipitato nel fondo delle cuvette.
- Le pareti esterne delle cuvette devono essere pulite ed asciugate prima di iniziare l'anàlisi. Eventuali impronte delle dita o gocce d'acqua sulla cuvetta portano a misurazioni errate.
- 5. E' possibile misurare campioni il cui contenuto di cloruro non superi 10.000 mg/l.
- 6. In casi eccezionali le componenti per le quali la capacità di ossidazione del reagente non è sufficiente possono portare a risultati inferiori.
- 7. Per i campioni con un COD inferiore a 1 g/l si consiglia di utilizzare la serie di cuvette COD MR e per i campioni inferiori a 0,1 g/l la serie di cuvette COD LR se si desidera una maggiore precisione.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
CSB VARIO HR 200 - 15000 mg/l	1 Set (25 tests)	2420722

Colore, indelebile e apparente (metodo standard APHA platino-cobalto)

0 - 500 unità Pt-Co

Preparazione del campione (Annotazione 4):

Punto A

Filtrare circa **50 ml di acqua desalinizzata** con un filtro a membrana con pori di $0.45 \mu m$ di diametro.

Gettare il filtrato e filtrare altri ca. 50 ml di acqua desalinizzata.

Conservare questo filtrato per la taratura a zero.

Punto B

Filtrare circa **50 ml del campione di acqua** con lo stesso filtro.Conservare questo filtrato per la misurazione del test.

- 1. Introdurre l'acqua desalinizzata (del punto A) filtrata in una cuvetta pulita da 24 mm e chiudere con il coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotarla completamente.
- 5. Risciacquare e riempire la cuvetta con il campione di acqua filtrato (del punto B).
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Zero accettato Predisporre Test Premere TEST

7 Premere il tasto **TEST**

Nel display appare il risultato come unitá Pt-Co.

Annotazioni:

- Originariamente questa scala cromatica è stata sviluppata da A. Hazen come scala di riferimento visiva.
 - E' quindi necessario verificare che il massimo dell'estinzione del campione di acqua sia compreso nell'ambito dell'intervallo 420 nm 470 nm, poiché questo metodo è idoneo solo per i campioni di acqua di colorazione che va dal giallo al giallo-marrone. Eventualmente sarà necessario decidere osservando visivamente il campione di acqua.
- Il metodo è calibrato sulla base di quanto stabilito dagli "Standard Methods for the Examination of Water and Wastewater" (vedere anche EN ISO 7887:1994).
 Unità colorimetrica 1 Pt Co [^] 1 mg/l platino come ione cloroplatinato
- 3. Il limite di rilevamento stimato per questo metodo è pari a 15 mg/l Pt.
- 4. Il concetto di colore può essere definito "indelebile" e "apparente". Con colore apparente si intende il colore di una soluzione che non viene generato solo da sostanze disciolte nel campione, ma anche dalle sostanze sospese. Le istruzioni descrivono la definizione del colore indelebile attraverso il filtraggio del campione d'acqua. Per la definizione del colore apparente viene utilizzata sia l'acqua desalinizzata non filtrata che un campione di acqua non filtrato.
- 5. Prelievo campione, conservazione ed immagazzinamento: Riempire un contenitore in plastica o in vetro pulito con il campione di acqua e procedere con l'anàlisi nel più breve tempo possibile. Qualora ciò non fosse possibile, riempire il contenitore con acqua campione fino al margine e chiudere con cura. Non mescolare il campione ed evitare il contatto prolungato con l'aria. Il campione può essere conservato a 4°C al buio per 24 ore; prima di procedere con la misurazione, portarlo a temperatura ambiente.

Cromo con reagente in Powder Pack (PP)

0,02 - 2 mg/l Cr

Nel display appare la seguente possibilità di scelta:

>> diff

per la determinazione differenziata di cromo (VI), cromo (III) e cromo totale

>> Cr (VI)

per la determinazione di cromo (VI)

>> Cr (III + VI)

per la determinazione di cromo totale (somma Cr (III) + Cr (VI))

Con i tasti freccia [A] e [V] selezionare la determinazione desiderata e confermare con [L].

Annotazioni:

1. Se in diversi risultati del test viene visualizzato ???? , vedi pag. 356.

Cromo, determinazione differenziata con reagente in Powder Pack (PP)

0.02 - 2 mg/l Cr

Decomposizione:

- In una cuvetta pulita da 16 mm introdurre 10 ml di campione.
- Aggiungere il contenuto di una bustina di polvere PERSULERGT FOR CR direttamente dall'astuccio.
- 3. Chiudere la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- Far decomporre il contenuto delle cuvette per 120 minuti a 100°C nel termoreattore preriscaldato.
- Dopo la decomposizione rimuovere la cuvetta dal termoreattore.

(ATTENZIONE: La cuvetta raggiunge temperature elevate!)

Capovolgere la cuvetta e portarla a temperatura ambiente.

Svolgimento della misurazione:

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Porre la cuvetta preparata nel pozzetto di misurazione. Posizione √
- 7. Premere il tasto **ZERO**.
- 8. Estrarre la cuvetta dal pozzetto di misurazione.
- Mettere nel campione pretrattato il contenuto di una bustina di polvere CHROMIUM HEXAVALENT direttamente dall'astuccio.
- Chiudere la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- 11. Porre la cuvetta nel pozzetto di misurazione. Posizione λ
- 12. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione.

Predisporre Zero Premere ZERO

Zero accettato Predisporre T1 Premere TEST

Count-Down 5:00

Passato il tempo di reazione procedere nel modo sequente.

- Mettere in una seconda cuvetta pulita da 16 mm
 ml di campione.
- Aggiungere il contenuto di una bustina di polvere CHROMIUM HEXAVALENT direttamente dall'astuccio.
- 15. Chiudere la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.

T1 accettato Predisporre T2 Premere TEST

Count-Down 5:00 17. Premere il tasto **TEST**.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione procedere nel modo sequente.

Nel display appare il risultato in:

*,** mg/l Cr (VI)

*,** mg/l Cr (III)

*,** mg/l Cr tot.

mg/l Cr (VI) ma/l Cr (III)

mg/l Cr Cromo totale

Annotazioni:

- Svolgendo i punti 1 12 viene determinata la concentrazione del cromo totale, e con i punti 13 – 17 la concentrazione di Cromo(VI). La concentrazione di Cromo (III) è costituita dalla differenza.
- 2. Il pH del campione di acqua deve essere compreso fra 3 e 9.
- 3. Per le interferenze causate da metalli e da sostanze riducenti, soprattutto con acque fortemente contaminate (per es. acque di scarico grigio, alcune acque di scarico chimiche), vedere DIN 38 405 D 24 e Standard Methods of Water and Wastewater, 20th Edition; 1998.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
PERSULF.RGT FOR CR	Bustina di polvere / 100	537300
CHROMIUM HEXAVALENT	Bustina di polvere / 100	537310

Cromo (VI) con reagente in Powder Pack (PP)

0.02 - 2 mg/l Cr

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- In una cuvetta pulita da 16 mm introdurre 10 ml di campione.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione

 √
- 3. Premere il tasto ZERO.

Predisporre Zero Premere ZERO

- _____
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere il contenuto di una bustina di polvere CHROMIUM HEXAVALENT direttamente dall' astuccio.
- 6. Chiudere la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione

 √
- 8. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione.

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

Passato il tempo di reazione procedere nel modo seguente.

Nel display appare il risultato in cromo (VI).

Annotazioni:

vedi pagina precedenza

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
PERSULF.RGT FOR CR	Bustina di polvere / 100	537300
CHROMIUM HEXAVALENT	Bustina di polvere / 100	537310

Cromo totale (Cr(III) + Cr(VI)) con reagente in Powder Pack (PP)

0.02 - 2 mg/l Cr

Decomposizione:

- In una cuvetta pulita da 16 mm introdurre 10 ml di campione.
- Aggiungere il contenuto di una bustina di polvere PERSULE.RGT FOR CR direttamente dall'astuccio.
- 3. Chiudere la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- Far decomporre il contenuto delle cuvette per 120 minuti a 100°C nel termoreattore preriscaldato.
- Dopo la decomposizione rimuovere la cuvetta dal termoreattore.

(ATTENZIONE: La cuvetta raggiunge temperature elevate!)

Capovolgere la cuvetta e portarla a temperatura ambiente.

Svolgimento della misurazione:

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Porre la cuvetta preparata nel pozzetto di misurazione. Posizione ↓
- Premere il tasto ZERO.
- 8. Estrarre la cuvetta dal pozzetto di misurazione.
- Mettere nel campione pretrattato il contenuto di una bustina di polvere CHROMIUM HEXAVALENT direttamente dall'astuccio.
- 10. Chiudere la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- 11. Porre la cuvetta nel pozzetto di misurazione. Posizione λ
- 12. Premere il tasto **TEST**.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione procedere nel modo seguente.

Nel display appare il risultato in cromo totale.

Predisporre Zero Premere ZERO

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

CyA-TEST (Acido cianurico) con compressa

0 - 160 mg/l CyA

 In una cuvetta pulita da 24 mm introdurre 5 ml di campione e 5 ml di acqua completamente desalinizzata (annotazione 1) e chiudere con l'apposito coperchio.

Ø 24 mm

2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere una compressa CyA-TEST nel campione preparato direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta (annotazioni 2, 3).
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in mg/l acido cianurico.

Annotazioni:

- 1. Acqua completamente desalinizzata o acqua di rubinetto priva di acido cianurico.
- 2. L'acido cianurico provoca una torbidità finemente distribuita con aspetto del latte. Particelle singole non sono causate dalla presenza d' acido cianurico.
- 3. Sciogliere la compressa completamente (agitare per ca. 1 minuto). Particelle non-dissolte possono causare i risultati errati.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
CyA-TEST	Pastiglia / 100	511370BT

DEHA (N,N-dietilidrossilammina) con compressa e reagente liquido

 $0.02 - 0.5 \text{ mg/l DEHA} / 20 - 500 \mu\text{g/l DEHA}$

Ø 24 mm

Predisporre Zero Premere ZERO

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio (Annotazione 2).
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.
- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- 5. Tenere la buretta in verticale e premendo lentamente far cadere delle gocce della stessa grandezza nella cuvetta:

6 gocce (0,25ml) di soluzione DEHA

- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Aggiungere allo stesso campione una compressa DEHA direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 9. Porre la cuvetta nel pozzetto di misurazione (Annotazione 4). Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00 10 Premere il tasto **TEST**

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in µg/l DEHA.

Annotazioni:

- 1. Ambito di applicazione: determinazione di residui di anticorrosivo (legante dell'ossigeno) nell'acqua di alimentazione della caldaia oppure nella condensa.
- Per evitare errori dovuti a sedimenti di ferro, prima dell'anàlisi pulire la strumentazione in vetro con una soluzione di acido cloridrico (diluito a ca. il 20%) ed infine con acqua completamente desalinizzata.
- 3. Poiché la reazione è condizionata dalla temperatura è necessario mantenere una temperatura pari a 20°C ± 2°C.
- 4. Per tutto il corso dello sviluppo del colore porre la cuvetta del campione nel pozzetto di misurazione o al buio. (Se la soluzione di reagente viene esposta alla luce UV (luce solare) i valori rilevati saranno superiori.)
- 5. Problemi:
 - Il ferro (II) crea problemi in tutte le quantità
 Per la determinazione della concentrazione di ferro (II) il test viene ripetuto senza
 l'aggiunta della soluzione DEHA. Se la concentrazione è superiore a 20 µg/l il valore
 indicato del risultato viene sottratto alla determinazione della DEHA.
 - Le sostanze che riducono il ferro (III) provocano interferenze. Le sostanze che complessano fortemente il ferro possono essere di disturbo.
 - Sostanze che, a partire dalla concentrazione indicata, possono essere di disturb

Borato (come Na ₂ B ₄ O ₇)	500 mg/l
Cobalto	0,025 mg/l
Rame	8,0 mg/l
Durezza (come CaCO ₃)	1000 mg/l
Lignosulfonato	0,05 mg/l
Manganese	0,8 mg/l
Molibdeno	80 mg/l
Nichelio	0,8 mg/l
Fosfato	10 mg/l
Fosfonati	10 mg/l
Solfato	1000 mg/l
Zinco	50 mg/l

6. E' possibile modificare l'unità di misura da mg/l in µg/l.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
DEHA solution ca. 60 Tests	Reagente liquido / 15 ml	461185
DEHA solution ca. 400 Tests	Reagente liquido / 100 ml	461181
DEHA	Pastiglia / 100	513220BT

DEHA (N,N-dietilidrossilammina) con Powder Pack e reagente liquido

 $0.02 - 0.5 \text{ mg/l DEHA} / 20 - 500 \mu\text{g/l DEHA}$

Predisporre due cuvette pulite da 24 mm (Annotazione 2). Marcare una cuvetta come cuvetta per lo zero.

- Mettere in una cuvetta pulita da 24 mm 10 ml di acqua completamente desalinizzata (cuvetta per lo zero).
- 2. Mettere in una seconda cuvetta pulita da 24 mm **10 ml di campione** (cuvetta del campione).
- Mettere in ciascuna cuvetta il contenuto di una bustina di polvere Vario OXYSCAV 1 Rgt direttamente dall'astuccio.
- 4. Chiudere le cuvette con il relativo coperchio e mescolare il contenuto agitandolo.
- Mettere in ciascuna cuvetta 0,20 ml di soluzione VARIO DEHA 2 Rgt (Annotazione 4).
- 6. Chiudere le cuvette con il relativo coperchio e mescolare il contenuto agitandolo.

Count-Down 10:00 Inizio: 🚽

7. Premere il tasto [』].

Attendere **10 minuti per il tempo di reazione** (Annotazione 5).

Passato il tempo di reazione procedere come segue.

8. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione χ .

Predisporre Zero Premere ZERO

- 9. Premere il tasto **ZERO**.
- 10. Estrarre la cuvetta dal pozzetto di misurazione.
- 11. Porre la cuvetta del campione nel pozzetto di misurazione. Posizione χ .

Zero accettato Predisporre Test Premere TEST

12. Premere il tasto **TEST**.

Nel display appare il risultato in µg/l DEHA.

Annotazioni:

- 1. Ambito di applicazione: determinazione di residui di anticorrosivo (legante dell'ossigeno) nell'acqua di alimentazione della caldaia oppure nella condensa.
- Per evitare errori dovuti a sedimenti di ferro, prima dell'anàlisi pulire la strumentazione in vetro con una soluzione di acido cloridrico (diluito a ca. il 20%) ed infine con acqua completamente desalinizzata.
- 3. Poiché la reazione è condizionata dalla temperatura è necessario mantenere una temperatura pari a 25°C ± 3°C.
- 4. Dosare i volumi con apposita pipetta della classe A.
- 5. Per tutto il corso dello sviluppo del colore porre la cuvetta per lo zero e quella del campione al buio. L'effetto della luce UV (luce solare) durante lo sviluppo del colore determina valori superiori.

6. Problemi:

- Il ferro (II) causa problemi in tutte le quantità
 Per la determinazione della concentrazione di ferro (II) il test viene ripetuto senza l'aggiunta della soluzione VARIO DEHA Rgt. 2. Se la concentrazione è superiore a 20 ug/l il valore indicato del risultato viene sottratto alla determinazione della DEHA.
- Le sostanze che riducono il ferro (III) provocano interferenze. Le sostanze che complessano fortemente il ferro possono essere di disturbo.
- Sostanze che, a partire dalla concentrazione indicata, possono essere di disturbo:

Borato (come Na ₂ B ₄ O ₇)	500 mg/l
Cobalto	0,025 mg/l
Rame	8,0 mg/l
Durezza (come CaCO ₃)	1000 mg/l
Lignosulfonato	0,05 mg/l
Manganese	0,8 mg/l
Molibdeno	80 mg/l
Nichelio	0,8 mg/l
Fosfato	10 mg/l
Fosfonati	10 mg/l
Solfato	1000 mg/l
Zinco	50 mg/l

7. E' possibile modificare l'unità di misura da mg/l in µg/l.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
VARIO OXYSCAV 1 Rgt	Set (100 Tests) Bustina di polvere / 200 Reagente liquido / 100 ml	536000

Durezza, calcio con compressa

50 - 900 mg/l CaCO₃

- 1. In una cuvetta pulita da 24 mm introdurre **10 ml di** acqua completamente desalinizzata.
- Ai 10 ml di acqua completamente desalinizzata aggiungere una compressa CALCHECK direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 3. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 4. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

Count-Down 2:00

5. Premere il tasto ZERO.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

- 6. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere alla cuvetta preparata 2 ml di campione.
 Attenzione: la cuvetta è colma
- 8. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (5x).
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Zero accettato Predisporre Test Premere TEST

10. Premere il tasto TEST.

Nel display appare il risultato come durezza calcio in mg/l.

Annotazioni:

- 1. Le acque fortemente alcaline o acide, prima dell'anàlisi, devono essere regolate ad un pH compreso fra 4 e 10 (con 1 mol/l di acido cloridrico e 1 mol/l di soda caustica).
- 2. Il procedimento, nel campo di misurazione superiore, opererà con tolleranze più ampie rispetto al campo di misurazione inferiore. Per la diluizione dei campioni operare in modo tale che la misurazione venga effettuata nel terzo inferiore del campo di misurazione.
- 3. Il mètodo presente è stato sviluppato da un processo titrimetrico per la determinazione del calcio. Sulla base di condizioni marginali indefinibili, le differenze rispetto al mètodo standardizzato potrebbero essere maggiori.
- 4. E' opportuno utilizzare cuvette speciali (volumi maggiori di riempimento).

5. A CaCO₃ °dH °eH °fH

Reagente / Accessori Forma reagente/Quantità		Cod. art.
CALCHECK	Pastiglia / 100	515650

Durezza, calcio 2T con compressa

0 - 500 mg/l CaCO₃

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere una compressa di CALCIO H No. 1 ai 10 ml di campione direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Aggiungere una compressa di CALCIO H No. 2 ailo stesso campione direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si sarà sciolta completamente.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

Premere il tasto TEST.
 Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come durezza calcio in mg/l.

Annotazioni:

- 1. Per ottimizzare la modalità di misurazione si puo determinare con Mode 40 un valore del bianco del metodo riferito al batch. Ulteriori informazioni in pagina 326.
- Prima dell'analisi, il pH delle acque fortemente alcaline o acide deve essere fatto rientrare in un intervallo compreso fra 4 e 10 (con acido cloridrico 1 molare o soda caustica 1 molare)
- 3. E' necessario accertarsi che il volume del campione sia esattamente pari a 10 ml per la precisione del risultato dell'analisi.
- 4. Il presente metodo è stato elaborato con metodo titrimetrico. A causa delle condizioni marginali impossibili da definire, le eventuali differenze rispetto al metodo standardizzato possono essere considerevoli.
- 5. Nell'intervallo di misurazione ampio il processo opera con tolleranze più elevate rispetto all'intervallo di misurazione ridotto. Per la diluizione dei campioni procedere sempre in modo tale che la misurazione venga eseguita nel terzo inferiore dell'intervallo di misurazione.

6 Interferenze:

- Una durezza del magnesio non superiore a 200 mg/l non è causa di interferenze.
- Una concentrazione di ferro superiore a 10 mg/l potrebbe essere la causa di risultati più bassi.
- Una concentrazione di zinco superiore a 5 mg/l potrebbe essere la causa di risultati più elevati.
- 7. ▲ CaCO₃ °dH °eH •fH •aH

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack CALCIO H No. 1 / No. 2	Pastiglia / ognuno 100 Bacchetta compresa	517761BT

Durezza, totale con compressa

2 - 50 mg/l CaCO₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Introdurre nei 10 ml di campione una compressa HARDCHECK P direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione \overline{X} .

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

8. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come durezza totale in mg/l.

Annotazioni:

- 1. Le acque fortemente alcaline o acide, prima dell'anàlisi, devono essere regolate ad un pH compreso fra 4 e 10 (con 1 mol/l di acido cloridrico e 1 mol/l di soda caustica).
- 2. Tabella di conversione:

	mg/l CaCO₃	°dH	°fH	°eH
1 mg/l CaCO ₃		0,056	0,10	0,07
1 °dH	17,8		1,78	1,25
1 °fH	10,0	0,56		0,70
1 °eH	14,3	0,80	1,43	

3. CaCO₃ °dH °eH °fH •aH

Reagente / Accessori	Forma reagente/Quantità	Cod. art.	
HARDCHECK P	Pastiglia / 100	515660BT	

Durezza, totale HR con compressa

20 - 500 mg/l CaCO₂

- 1. In una cuvetta pulita da 24 mm introdurre 1 ml di campione e 9 ml acqua completamente desalinizzata chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- 5. Introdurre nei 10 ml di campione una compressa HARDCHECK P direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si sarà sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Zero accettato **Predisporre Test Premere TEST**

Count-Down 5:00

8. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come durezza totale in mg/l.

Annotazioni:

- 1. Le acque fortemente alcaline o acide, prima dell'anàlisi, devono essere regolate ad un pH compreso fra 4 e 10 (con 1 mol/l di acido cloridrico e 1 mol/l di soda caustica).
- 2. Tabella di conversione:

	mg/l CaCO₃	°dH	°fH	°eH
1 mg/l CaCO ₃		0,056	0,10	0,07
1 °dH	17,8		1,78	1,25
1 °fH	10,0	0,56		0,70
1 °eH	14,3	0,80	1,43	

3. A CaCO₃ °dH °eH °fH •aH

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
HARDCHECK P	Pastiglia / 100	515660BT

0.02 - 1 mg/l Fe

Determinazione del ferro complessivamente sciolto Fe^{2+} e Fe^{3+} *

2 2 Ferro con reagente in Powder Pack (PP)

0.02 - 3 mg/l Fe

Determinazione del ferro complessivamente sciolto e della maggior parte delle forme del ferro non sciolto *

2 3 Ferro, totale con reagente in Powder Pack (PP)

0,02 – 1,8 mg/l Fe

Determinazione del ferro complessivamente sciolto e della maggior parte delle forme del ferro non sciolto; la maggior parte degli ossidi di ferro vengono rilevati senza decomposizione *

2 4 Ferro, totale (Fe in Mo) con reagente in Powder Pack (PP)

0,01 - 1,80 mg/l Fe

Determinazione del ferro complessivamente sciolto e delle forme del ferro non sciolto in presenza di alte concentrazioni di molibidato.

2 2 5 Ferro LR con reagente liquido

0.03 - 2 mg/l Fe

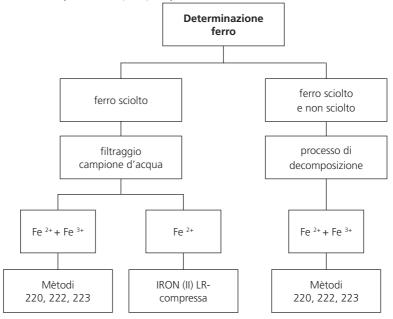
Determinazione del ferro solubile totale (Fe^{2+/3+}) in presenza di agenti complessanti (es. molibdato) *

2 2 6 Ferro LR 2 con reagente liquido

 $0.03 - 2 \text{ mg/l Fe}^{2+} \text{ e Fe}^{3+}$

Determinazione del ferro solubile totale (Fe^{2+} e Fe^{3+}) in presenza di agenti complessanti (es. molibdato) *

Ferro HR con reagente liquido


0,1 - 10 mg/l Fe

Determinazione del ferro solubile totale (Fe^{2+/3+}) in presenza di agenti complessanti (es. molibdato) *

* Tali dati si riferiscono all'anàlisi diretta del campione senza decomposizione.

Per ulteriori informazioni fare riferimento alle Note relative ai singoli mètodi di test.

Annotazioni (Mètodi 220, 222, 223):

Processo di decomposizione per la determinazione del ferro complessivamente sciolto e non sciolto:

- 1. Introdurre in 100 ml di campione di acqua 1 ml di acido solforico concentrato e si scalda per 10 minuti fino all'ebollizione e finché non si è sciolto tutto completamente. Dopo il raffreddamento si imposta il pH del campione con una soluzione di ammoniaca su un valore di 3–5 e si riempie sul volume del campione originale di 100 ml con acqua completamente desalinizzata. 10 ml del campione così trattato vengono impiegati per l'anàlisi successiva. Il resto del procedimento è quello descritto per il reagente di volta in volta utilizzato
- 2. Le acque che sono state trattate con composti organici, come sostanze di protezione dalla corrosione ecc., devono essere eventualmente ossidate per distruggere i complessi di ferro. A tale scopo un campione di 100 ml viene mischiato con 1 ml di acido solforico concentrato e 1 ml di acido nitrico concentrato e fatto evaporare per la metà. Dopo il raffreddamento si procede come già descritto.

Ferro (Annotazione 1) con compressa

0.02 - 1 mg/l Fe

1. In una cuvetta pulita da 24 mm introdurre **10 ml di** campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Introdurre nei 10 ml di campione una compressa di IRON LR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto, finché la compressa non si sarà sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00 8. Premere il tasto **TEST.**

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l ferro.

Annotazioni:

- 1. Con questo mètodo viene effettuata la determinazione di ${\sf Fe^{2+}}$ e ${\sf Fe^{3+}}$ completamente sciolto.
- 2. Per la determinazione di Fe²⁺ viene impiegata la compressa IRON (II) LR, come precedentemente descritto, anziché la compressa IRON LR.
- 3. Per la determinazione del ferro sciolto e non sciolto è necessario il processo di decomposizione, descrizione vedi pagina 123.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.	
IRON LR	Pastiglia / 100	515370BT	
IRON (II) LR	Pastiglia / 100	515420BT	

Ferro (Annotazione 1) con reagente in Powder Pack (PP)

0.02 - 3 mg/l Fe

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere il contenuto di una bustina di polvere Vario Ferro F10 nei 10 ml di campione direttamente dall'astuccio.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (Annotazione 4).
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 3:00 8. Premere il tasto TEST.

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l ferro.

Annotazioni:

- 1. Con questo mètodo vengono definite tutte le forme di ferro sciolto e la maggior parte delle forme di ferro non sciolto.
- 2. Prima dell'anàlisi, per l'ossido di ferro è necessaria una decomposizione debole, forte o Digesdahl (processo di decomposizione in ambiente acido vedere pagina 123).
- 3. Prima dell'anàlisi, il pH delle acque fortemente alcaline o acide dovrebbe essere impostato su un valore compreso fra 3 e 5.
- 4. La precisione non viene compromessa se la polvere non è completamente sciolta.
- 5. Per i campioni che contengono rùggine visibile è necessario attendere almeno 5 minuti.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
VARIO Ferro F10	Bustina di polvere / 100	530560

Ferro, totale (TPTZ, Annotazione 1) con reagente in Powder Pack (PP)

0,02 - 1,8 mg/l Fe

Predisporre due cuvette pulite da 24 mm. Marcare una cuvetta come cuvetta per lo zero.

- Mettere in una cuvetta pulita da 24 mm 10 ml di acqua completamente desalinizzata (cuvetta per lo zero).
- Mettere in una seconda cuvetta pulita da 24 mm 10 ml di campione (cuvetta del campione).
- Mettere in ciascuna cuvetta il contenuto di una bustina di polvere Vario IRON TPTZ F10 direttamente dall'astuccio.
- 4. Chiudere le cuvette con l'apposito coperchio e mescolare il contenuto agitandolo (30 sec.).

Count-Down 3:00 Inizio: ⊿

5. Premere il tasto [4].

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione procedere nel modo seguente.

6. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 7. Premere il tasto **ZERO**.
- 8. Estrarre la cuvetta dal pozzetto di misurazione.
- 9. Porre la cuvetta del campione nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

10. Premere il tasto **TEST**.

Nel display appare il risultato in mg/l ferro.

Annotazioni:

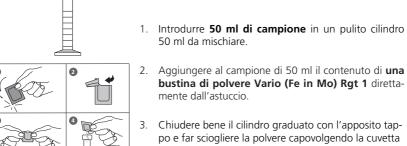
- 1. Per la determinazione del ferro totale è necessaria una decomposizione. Il reagente TPTZ rileva la maggior parte degli ossidi di ferro senza decomposizione.
- Lavare tutta la strumentazione in vetro da laboratorio prima dell'anàlisi con una soluzione diluita di acido cloridrico e quindi con acqua completamente desalinizzata per rimuovere eventuali sedimenti di ferro che potrebbero determinare risultati lievemente maggiori.
- 3. Le acque fortemente alcaline o acide, prima dell'anàlisi, devono essere portate ad un pH compreso fra 3 e 8 (con 0,5 mol/l acido solforico e 1 mol/l soluzione di soda caustica).
- 4. Problemi:

Qualora si verifichino problemi la formazione di colore era rallentata o si è venuto a formare un precipitato.

I dati si riferiscono ad uno standard con concentrazione di ferro pari a 0,5 mg/l. Le seguenti sostanze non creano problemi fino alla concentrazione indicata:

Sostanza	nessun problema fino a
Cadmio	4,0 mg/l
Cromo ⁽³⁺⁾	0,25 mg/l
Cromo (6+)	1,2 mg/l
Cianuro	2,8 mg/l
Cobalto	0,05 mg/l
Rame	0,6 mg/l
Manganese	50 mg/l
Molibdeno	4,0 mg/l
Nichelio	1,0 mg/l
Ione nitrito	0,8 mg/l
Mercurio	0,4 mg/l

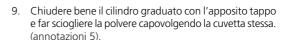
Reagente / Accessori	Forma reagente/Quantità	Cod. art.
VARIO IRON TPTZ F10	Bustina di polvere / 100	530550



Ferro, totale (Fe in Mo) in presenza di Molibdato con reagente in Powder Pack (PP)


0.01 - 1.80 mg/l Fe

- 1. Introdurre **50 ml di campione** in un pulito cilindro 50 ml da mischiare
- bustina di polvere Vario (Fe in Mo) Rgt 1 direttamente dall'astuccio.
- 3. Chiudere bene il cilindro graduato con l'apposito tappo e far sciogliere la polvere capovolgendo la cuvetta stessa.



- 4. Predisporre due cuvette pulite da 24 mm. Marcare una cuvetta come cuvetta per lo zero.
- 5. Mettere 10 ml del campione preparato nella cuvetta per lo zero (campione di zero).

- 10. Premere il tasto [4]. Attendere 3 minuti per il tempo di reazione.
- 11. Passato il tempo di reazione procedere come segue: Aggiungere in una seconda cuvetta preparata da 24 mm (punto 4) 10 ml di campione (cuvetta del campione).
- 12. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione \tilde{X} .

Count-Down 1 3:00 Inizio:

Predisporre Zero	
Premere ZERO	

- 13. Premere il tasto **ZERO**.
- 14. Estrarre la cuvetta dal pozzetto di misurazione.
- 15. Porre la **cuvetta del campione** nel pozzetto di misurazione. Posizione X.

Zero accettato
Predisporre Test
Premere TEST

15. Premere il tasto TEST.

Nel display appare il risultato in mg/l Fe.

Note:

- 1. Lavare tutti gli oggetti in vetro con detergente. Sciacquare con acqua di rubinetto, risciacquare con una soluzione di acido cloridrico 1:1. Sciacquare una terza volta con acqua deionizzata di elevata qualità. Queste fasi rimuoveranno i depositi che possono creare risultati leggermente elevati.
- Qualora il campione contenga 100 mg/l o più di molibdato (MoO₄²⁻), leggere subito il campione dopo lo zero dello strumento.
- Per ottenere un risultato più accurato, determinare il valore del bianco del reagente per ogni nuovo lotto di reagenti. Seguire la procedura utilizzando acqua deionizzata invece del campione. Sottrarre il valore di bianco del reagente dai risultati finali.
- 4. Dopo aver aggiunto il reagente, un PH del campione inferiore a 3 o superiore a 4 può inibire la formazione del colore, causare che il colore sviluppato svanisca facilmente o si intorbidisca. Regolare il PH del campione tra 3 e 8 nel cilindro graduato prima di aggiungere reagente:
 - Aggiungere a gocce su una quantità applicabile di acido senza ferro o base tipo soluzione di acido solforico 1 N o soluzione di idrossido di sodio 1 N.
- Eseguire una correzione del volume qualora siano usati volumi significanti di acido o base
- 6. Un colore blu indicherà la presenza eventuale di ferro nel campione. Una piccola quantità di reagente non disciolto non influenzerà i risultati del test.

Raccolta e conservazione del campione:

- Raccogliere i campioni in bottiglie di plastica o vetro pulite con acido cloridrico 6 N (1:1) e sciacquati con acqua deionizzata.
- Per conservare i campioni per l'analisi successiva, regolare il pH del campione a meno di 2 con acido cloridrico concentrato (circa 2 ml per litro). Non occorre aggiungere acido se il campione è testato subito.
- Per misurare solo il ferro disciolto, filtrare il campione attraverso un filtro di 0,45 micron
 o un mezzo equivalente immediatamente dopo la raccolta e prima dell'acidificazione.
- Mantenere i campioni conservati a temperatura ambiente per un massimo di 6 mesi.
- Prima dell'analisi, regolare il pH a 3-5 con una soluzione di idrossido di sodio 5 N. Non superare il pH 5 per impedire la precipitazione del ferro.
- Correggere il risultato del test per la diluizione causata dalle aggiunte di volume.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set		536010
VARIO (Fe in Mo) Rgt 1	Bustina di polvere / 100	
VARIO (Fe in Mo) Rgt 2	Bustina di polvere / 100	

Ferro LR con reagenti liquidi

 $0.03 - 2 \text{ mg/l Fe}^{2+/3+}$

Qualora sia necessario determinare il ferro totale disciolto, filtrare il campione prima della di procedere (larghezza pori 0,45µm). In caso contrario, verranno rilevate anche le particelle di ferro e il ferro sospeso.

- 1. In una cuvetta pulita da 24 mm introdurre **10 ml di campione** e chiudere fortemente con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

3. Premere il tasto ZERO.

- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS61 (ferrozina/Tioglicolato)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00 8. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione. (Annotazione 1).

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l ferro.

Annotazioni:

- 1. Se nel campione sono presenti forti complessanti, i tempi di reazione devono essere aumentati, finché non sono visibili ulteriori sviluppi del colore. Complessi di ferro molto forti non vengono tuttavia rilevati nella misurazione. In questo caso è necessario distruggere gli agenti complessanti mediante ossidazione tramite acido/persolfato e ottenere un pH 6 9 con la neutralizzazione (per la procedura vedere pag. 134).
- 2. Per la determinazione del ferro disciolto e sospeso totale, far bollire il campione con acido/persolfato. Neutralizzare, quindi, e raggiungere un pH compreso fra 6 e 9 e ripristinare il volume originale con acqua desalinizzata (per il metodo vedere pag. 134).
- 3. Un'elevata concentrazione di molibdato genera, in caso di utilizzo di KS61 (ferrozina/ tioglicolato), un colore giallo intenso. In questo caso è necessario un valore del bianco della sostanza chimica:
 - Predisporre due cuvette pulite da 24 mm.
 - Marcare una cuvetta come cuvetta per lo zero.
 - Aggiungere in una cuvetta pulita da 24 mm 10 ml di aqua completamente desalinizzata (cuvetta per lo zero).
 - Mettere 10 goccia di reagente KS63 (tioglicolato) nella cuvetta.
 - Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
 - Porre la cuvetta per lo zero nel pozzetto di misurazione.
 Posizione √X.
 - Premere il tasto ZERO.
 - Estrarre la cuvetta dal pozzetto di misurazione.
 - Aggiungere in una seconda cuvetta pulita da 24 mm 10 ml di campione (cuvetta del campione).
 - Procedere come descritto al **punto 5**, pagina 132.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS61 (Ferrozine/ Thioglycolate)	Reagente liquido / 65 ml	56L006165
KS63 (Thioglycolate Reagent)	Reagente liquido / 65 ml	56L006365
KP962 (Ammonium Persulphate Powder)	Polvere	56P096240
KS135 (Phenolphthalein Substitute Indi- kator	Reagente liquido / 65 ml	56L013565
KS144 (Calcium Hardness Puffer)	Reagente liquido / 65 ml	56L014465
Misurino	0,5 g Misurino	385340

Ferro, totale LR con reagenti liquidi

 $0.03 - 2 \text{ mg/l Fe}^{2+/3+}$

Ø 24 mm

Determinazione del ferro totale

Il ferro totale è composto da ferro disciolto, complessato e sospeso. Il campione non deve essere filtrato prima della misurazione. Per garantire l'omogeneizzazione del campione, è necessario distribuire le particelle che si sono depositate agitando con energia immediatamente prima del prelievo del campione. Per la determinazione del ferro solubile totale (compresi i composti di ferro complessi) è necessario filtrare il campione.

Gli strumenti ed i reagenti necessari per la determinazione del ferro totale non sono compresi nella fornitura standard.

- 1. Introdurre **50 ml di campione omogeneizzato** in un matraccio Erlenmeyer da 100 ml.
- Aggiungere al campione 5 ml di acido cloridrico 1:1 ed una misurino KP962 (Ammonium Persulphate Powder).
- 3. Far bollire il campione per 20 minuti. Conservare almeno 25 ml di campione; eventualmente ripristinare il volume con acqua desalinizzata.
- 4. Portarla la cuvetta a temperatura ambiente.
- 5. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:
 - 1 gocce KS135 Phenolphthalein Substitute Indicatore
- Aggiungere allo stesso campione KS144 Calcium Hardness Puffer in gocce fino ad ottenere una colorazione rosa tenue – rossa. (Attenzione: agitare il campione dopo aver aggiunto ogni goccia!)

- 7. Ripristinare il volume di 50 ml con acqua desalinizzata.
- 8. Aggiungere in una cuvetta pulita da 24 mm **10 ml di aqua completamente desalinizzata** e chiudere fortemente con l'apposito coperchio.
- 9. Porre la cuvetta del campione nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 10. Premere il tasto ZERO.
- 11. Estrarre la cuvetta dal pozzetto di misurazione.
- 12. Svuotare la cuvetta e riempirla con **10 ml di campione pronto**.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS61 (ferrozina/tioglicolato)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 15. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

16. Premere il tasto **TEST**.

Attendere 5 minuti per il tempo di reazione.

(Annotazione 1).

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato del ferro totale in mg/l o, se si utilizza un campione filtrato, del ferro disciolto totale in mg/l.

Ferro LR 2 con reagenti liquidi

 $0.03 - 2 \text{ mg/l Fe}^{2+} \text{ e Fe}^{3+}$

Oualora sia necessario determinare il ferro totale disciolto. distinguendo tra Fe²⁺ e Fe³⁺, filtrare il campione prima della rilevazione (larghezza pori 0,45 µm). In caso contrario, verranno rilevate anche le particelle di ferro e il ferro sospeso.

- 1. In una cuvetta pulita da 24 mm introdurre 10 ml di cam**pione** e chiudere fortemente con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- 3 Premere il tasto ZERO.

Predisporre Zero Premere ZERO

- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- 5. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS60 (Acetate Buffer)

- 6. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 7. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS63 (Thioglycolate) (Annotazioni 1)

- 8. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 9. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS65 (Ferrozine)

- 10. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 11. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

1.1 Mètodi

12 Premere il tasto **TEST**

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

Attendere 5 minuti per il tempo di reazione.

(Annotazione 2).

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Sul display appare il risultato in mg/l $Fe^{2+/3+}$ oppure, se la fase 7 è stata omessa, Fe^{2+} .

$$Fe^{3+} = Fe^{2+/3+} - Fe^{2+}$$

- 1. Per la determinazione del Fe²⁺ disciolto, omettere la fase 7.
- 2. Se nel campione sono presenti forti complessanti, i tempi di reazione devono essere aumentati, finché non sono visibili ulteriori sviluppi del colore. Complessi di ferro molto forti non vengono tuttavia rilevati nella misurazione. In questo caso è necessario distruggere gli agenti complessanti mediante ossidazione tramite acido/persolfato e ottenere un pH 6 9 con la neutralizzazione (per la procedura vedere pag. 138).
- 3. Per la determinazione del ferro disciolto e sospeso totale, far bollire il campione con acido/persolfato. Neutralizzare, quindi, e raggiungere un pH compreso fra 6 e 9 e ripristinare il volume originale con acqua desalinizzata (per il metodo vedere pag. 138).
- 4. Un'elevata concentrazione di molibdato genera, in caso di utilizzo di KS63 (Thioglycolate) un colore giallo intenso. In questo caso è necessario un valore del bianco della sostanza chimica:
 - Predisporre due cuvette pulite da 24 mm.
 - Marcare una cuvetta come cuvetta per lo zero.
 - Aggiungere in una cuvetta pulita da 24 mm **10 ml di aqua completamente desalinizzata** (cuvetta per lo zero).
 - Mettere 10 goccia di reagente KS63 (tioglicolato) nella cuvetta.
 - Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
 - Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione $\overline{\chi}$.
 - Premere il tasto **ZERO.**
 - Estrarre la cuvetta dal pozzetto di misurazione.
 - Aggiungere in una seconda cuvetta pulita da 24 mm 10 ml di campione (cuvetta del campione).
- 5. Procedere come descritto al **punto 5**, pagina 136).

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS60 – Acetate Buffer	Reagente liquido / 65 ml	56L006065
KS63 – Thioglycolate Reagent	Reagente liquido / 65 ml	56L006365
KS65 – Ferrozine Reagent	Reagente liquido / 65 ml	56L006565
KP962 (Ammonium Persulphate Powder)	Polvere	56P096240
KS135 (Phenolphthalein Substitute Indi- kator	Reagente liquido / 65 ml	56L013565
KS144 (Calcium Hardness Puffer)	Reagente liquido / 65 ml	56L014465
Misurino	0,5 g Misurino	385340

Ferro, totale LR 2 con reagenti liquidi

 $0.03 - 2 \text{ mg/l Fe}^{2+/3+}$

Determinazione del ferro totale

Il ferro totale è composto da ferro disciolto, complessato e sospeso. Il campione non deve essere filtrato prima della misurazione. Per garantire l'omogeneizzazione del campione, è necessario distribuire le particelle che si sono depositate agitando con energia immediatamente prima del prelievo del campione. Per la determinazione del ferro solubile totale (compresi i composti di ferro complessi) è necessario filtrare il campione.

Gli strumenti ed i reagenti necessari per la determinazione del ferro totale non sono compresi nella fornitura standard.

- Introdurre 50 ml di campione omogeneizzato in un matraccio Erlenmeyer da 100 ml.
- Aggiungere al campione 5 ml di acido cloridrico 1:1 ed una misurino KP962 (Ammonium Persulphate Powder).
- 3. Far bollire il campione per **20 minuti**. Conservare almeno 25 ml di campione; eventualmente ripristinare il volume con acqua desalinizzata.
- 4. Portarla la cuvetta a temperatura ambiente.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

1 gocce KS135 Phenolphthalein Substitute Indicatore

- Aggiungere allo stesso campione KS144 Calcium Hardness Puffer in gocce fino ad ottenere una colorazione rosa tenue – rossa. (Attenzione: agitare il campione dopo aver aggiunto ogni goccia!)
- 7. Ripristinare il volume di 50 ml con acqua desalinizzata.
- 8. Aggiungere in una cuvetta pulita da 24 mm **10 ml di aqua completamente desalinizzata** e chiudere fortemente con l'apposito coperchio.

Predisporre Zero Premere ZERO

- Porre la cuvetta del campione nel pozzetto di misurazione. Posizione X.
- 10. Premere il tasto **ZERO**.
- 11. Estrarre la cuvetta dal pozzetto di misurazione.
- Svuotare la cuvetta e riempirla con 10 ml di campione pronto.
- 13. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS60 (Acetate Buffer)

- 14. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 15. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS63 (Thioglycolate) (Annotazione 1, pagina 137)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 17. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS65 (Ferrozine)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 19. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

20. Premere il tasto **TEST**.

Attendere 5 minuti per il tempo di reazione.

(Annotazione 2, pagina 137).

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato del ferro totale in mg/l o, se si utilizza un campione filtrato, del ferro disciolto totale in mg/l.

Ferro HR con reagenti liquidi

 $0.1 - 10 \text{ mg/l Fe}^{2+/3+}$

Qualora sia necessario determinare il ferro totale disciolto, filtrare il campione prima della di procedere (larghezza pori 0,45 μ m). In caso contrario, verranno rilevate anche le particelle di ferro e il ferro sospeso.

- 1. In una cuvetta pulita da 24 mm introdurre **10 ml di campione** e chiudere fortemente con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS63 (Thioglycolate)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa. Attendere finché il colore violetto svanisce, quindi procedere.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS160 (Total Hardness Buffer)

- 8. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 9. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 15:00 10. Premere il tasto TEST.

Attendere 15 minuti per il tempo di reazione. (Annotazione 1).

Passato il tempo di reazione viene effettuata automaticamente la misurazione

Nel display appare il risultato in mg/l ferro.

- 1. Se nel campione sono presenti forti complessanti, i tempi di reazione devono essere aumentati, finché non sono visibili ulteriori sviluppi del colore. Complessi di ferro molto forti non vengono tuttavia rilevati nella misurazione. In questo caso è necessario distruggere gli agenti complessanti mediante ossidazione tramite acido/persolfato e ottenere un pH 6 9 con la neutralizzazione (per la procedura vedere pag. 142).
- 2. Per la determinazione del ferro disciolto e sospeso totale, far bollire il campione con acido/persolfato. Neutralizzare, quindi, e raggiungere un pH compreso fra 6 e 9 e ripristinare il volume originale con acqua desalinizzata (per il metodo vedere paq. 142).

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS160 – Total Hardness Buffer	Reagente liquido / 65 ml	56L016065
KS63 – Thioglycolate Reagent	Reagente liquido / 65 ml	56L006365
KP962 (Ammonium Persulphate Powder)	Polvere	56P096240
KS144 (Calcium Hardness Puffer)	Reagente liquido / 65 ml	56L014465
Misurino	0,5 g Misurino	385340

Ferro, totale HR con reagenti liquidi

 $0,1 - 10 \text{ mg/l Fe}^{2+/3+}$

Determinazione del ferro totale

Il ferro totale è composto da ferro disciolto, complessato e sospeso. Il campione non deve essere filtrato prima della misurazione. Per garantire l'omogeneizzazione del campione, è necessario distribuire le particelle che si sono depositate agitando con energia immediatamente prima del prelievo del campione. Per la determinazione del ferro solubile totale (compresi i composti di ferro complessi) è necessario filtrare il campione.

Gli strumenti ed i reagenti necessari per la determinazione del ferro totale non sono compresi nella fornitura standard.

- Introdurre 50 ml di campione omogeneizzato in un matraccio Erlenmeyer da 100 ml.
- Aggiungere al campione 5 ml di acido cloridrico 1:1 ed una misurino KP962 (Ammonium Persulphate Powder).
- 3. Far bollire il campione per **20 minuti**. Conservare almeno 25 ml di campione; eventualmente ripristinare il volume con acqua desalinizzata.
- 4. Portarla la cuvetta a temperatura ambiente.
- Aggiungere al campione 2 gocce di KS144 (Calcium Hardness Buffer), finché non appare una soluzione neutra o leggermente alcalina. Dopo ogni aggiunta agitare il campione. Misurare ad intervalli regolari il valore pH con un pH-metro o un'astina di misurazione pH, per evitare un'aggiunta eccessiva della soluzione tampone.
- 6. Ripristinare il volume di 50 ml con acqua desalinizzata.
- Aggiungere in una cuvetta pulita da 24 mm 10 ml di aqua completamente desalinizzata e chiudere fortemente con l'apposito coperchio.

8. Porre la cuvetta del campione nel pozzetto di misurazione. Posizione $\overline{\lambda}$.

Predisporre Zero Premere ZERO

- 9. Premere il tasto **ZERO**.
- 10. Estrarre la cuvetta dal pozzetto di misurazione.
- Svuotare la cuvetta e riempirla con 10 ml di campione pronto.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS63 (Thioglycolate)

- 13. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 14. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS160 (Total Hardness Buffer)

- 15. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 16. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Zero accettato Predisporre Test Premere TEST

Count-Down 15:00

17. Premere il tasto **TEST**.

Attendere 15 minuti per il tempo di reazione. (Annotazione 1, pagina 141).

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato del ferro totale in mg/l o, se si utilizza un campione filtrato, del ferro disciolto totale in mg/l.

Fluoruro con reagente liquido

0.05 - 2 mg/l F

Osservare l'annotazioni!

- In una cuvetta pulita da 24 mm introdurre esatto 10 ml di campione (Annotazione 4) e chiudere con Γapposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- 5. Nel campione da 10 ml mettere **esattamente 2 ml di reagente SPADNS** (Annotazione 4).

Attenzione: La cuvetta è colma! (Annotazione 8!)

- 6. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in mg/l fluoruro.

- 1. Per la regolazione e la misurazione del campione è necessario impiegare lo stesso batch di soluzione del reagente SPADNS. Regolare lo strumento per ogni nuovo batch di soluzione del reagente SPADNS (cfr. Standard Methods 20th, 1998, APHA, AWWA, WEF 4500 F D., pag. 4-82). La procedura è descritta nel Capitolo 2.4.5 "Regolazione Fluoruro metodo 170" a pagina 328.
- 2. Per la regolazione e la misurazione, la taratura a zero ed il test vanno eseguiti con la stessa cuvetta, poiché le cuvette presentano ridotte tolleranze l'una rispetto all'altra.
- 3. Le soluzioni per la taratura ed i campioni di acqua da misurare devono avere la stessa temperatura (± 1°C).
- 4. Il risultato dell'anàlisi dipende essenzialmente dal volume esatto del campione e del reagente. Dosare il volume del campione e del reagente esclusivamente con una pipetta volumetrica da 10 ml o 2 ml (Classe A).
- 5. La precisione diminuisce se il fluoruro presente è superiore a 1,2 mg/l. Sebbene i risultati per la maggior parte delle applicazioni siano sufficientemente precisi, è possibile avere una maggiore precisione se, prima dell'utilizzo, il campione viene diluito 1:1 ed il risultato moltiplicato per 2.
- La soluzione del reagente SPADNS contiene arsenito. Le concentrazioni di cloro inferiori a 5 mg/l non interferiscono.
- 7. I campioni di acqua marina e di acqua di scarico vanno distillati.
- 8. E' opportuno utilizzare cuvette speciali (volumi maggiori di riempimento).

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
SPADNS Reagente	Reagente liquido / 250 ml	467481
Fluoruro Standard	Solutione / 30 ml	205630

Fosfato, LR con reagenti liquidi

0,1 - 10 mg/l PO,

Determinazione di ioni ortofosfati + fosfati inorganici condensati + fosfati composti organicamente

Fosfato, HR con reagenti liquidi

5 - 80 mg/l PO₄

Determinazione di ioni ortofosfati + fosfati inorganici condensati + fosfati composti organicamente

Per ulteriori informazioni fare eventualmente riferimento alle note del mètodo in questione.

Annotazioni:

Il colore blu che si viene a creare con i mètodi **320, 323, 324, 325** e **326** è il risultato della reazione del reagente con ioni ortofosfati. I fosfati presenti in forma organica e inorganica condensata (metafosfati, pirofosfati e polifosfati) devono essere quindi trasformati in ioni ortofosfati prima dell'anàlisi. Il pretrattamento del campione con acido e calore crea le condizioni per l'idrolisi delle forme inorganiche condensate. I fosfati composti organicamente vengono trasformati in ioni ortofosfati tramite il riscaldamento con acido e persolfato.

E' possibile calcolare la quantità di fosfato composto organicamente: mg/l fosfati organici = mg/l fosfato, totale – mg/l fosfato, idrolizzabile in acido

Nel mètodo **321** e **327**, in una soluzione acida, gli ioni ortofosfati formano con il reagente vanadato-molibdato un complesso di colore giallo.

Indicazioni per i testi in cuvetta ed i test con reagente in Powder Pack: 323, 324, 325, 326

- 1. Ambiti di applicazione: acqua, acqua di scarico, acqua marina.
- 2. I campioni fortemente tamponati o quelli con valori pH estremi, prima dell'anàlisi, devono essere portati entro un ambito compreso tra 6 e 7 (con 1 mol/l acido cloridrico e 1 mol/l liscivia di soda).

Interferenze a nartire da:

3. Problemi:

Sostanza di disturbo

Eventuali intorbidamenti consistenti possono provocare risultati variabili del test.

Jostaniza di distanbo	miterierenze a partire
Acido solfidrico	in tutte le quantità
Alluminio	oltre 200 mg/l
Arsenato	in tutte le quantità
Biossido di silicio (acido silicico)	oltre 50 mg/l
Cromo	oltre 100 mg/l
Ferro	oltre 100 mg/l
Nichelio	oltre 300 mg/l
Rame	oltre 10 mg/l
Silicato	oltre 10 mg/l
Zinco	oltre 80 mg/l

Fosfato LR, orto con compressa

 $0.05 - 4 \text{ mg/l PO}_{4}$

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere una compressa PHOSPHATE No. 1 LR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Aggiungere allo stesso campione una compressa PHOSPHATE No. 2 LR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00 9 Premere il tasto **TEST**.

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione

Nel display appare il risultato come ortofosfato in mg/l.

Annotazioni:

- 1. Reagiscono esclusivamente gli ioni di ortofosfato.
- 2. E' assolutamente necessario rispettare la sequenza di introduzione delle compresse.
- 3. Il campione di acqua deve avere un pH compreso fra 6 e 7.
- 4. Problemi:

Concentrazioni superiori di Cu, Ni, Cr (III), V (V) e W (VI) creano problemi data la loro colorazione. I silicati non creano problemi (mascherazione con acido citrico nella compressa).

- 5. Vedi anche pag. 147.
- 6. Conversioni: $mg/l P = mg/l PO_4 \times 0.33$ $mg/l P_2O_3 = mg/l PO_4 \times 0.75$
- 7. ▲ PO₄
 P
 P₂O₅

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack PHOSPHATE No. 1 / No. 2 LR	Pastiglia / ognuno 100 Bacchetta compresa	517651BT
PHOSPHATE No. 1 LR	Pastiglia / 100	513040BT
PHOSPHATE No. 2 LR	Pastiglia / 100	513050BT

Fosfato HR, orto con compressa

 $1 - 80 \text{ mg/l PO}_{4}$ (Annotazione 1)

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

2. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa PHOSPHATE HR P1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Aggiungere allo stesso campione una compressa PHOSPHATE HR P2 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa finché le compresse non si sono sciolte.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00

9. Premere il tasto **TEST**.

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come ortofosfato in mg/l.

- 1. Nei campioni con un contenuto di fosfato inferiore a 5 mg/l PO_4 si suggerisce di eseguire l'anàlisi con un mètodo con un intervallo di misurazione inferiore; per es. mètodo n. 320 "Fosfato, orto LR con compressa".
- 2. Reagiscono solo ioni ortofosfati.
- 3. Vedi anche pag. 147.
- 4. Conversioni: $mg/l P = mg/l PO_4 \times 0,33$ $mg/l P_2O_5 = mg/l PO_4 \times 0,75$
- 5. ▲ PO₄
 P
 P₂O₅

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set PHOSPHATE HR P 1 / P 2	Pastiglia / ognuno 100 Bacchetta compresa	517661BT
PHOSPHATE HR P1	Pastiglia / 100	515810BT
PHOSPHATE HR P2	Pastiglia / 100	515820BT

Fosfato, orto con reagente in Powder Pack (PP)

0,06 - 2,5 mg/l PO,

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere ai 10 ml di campione il contenuto di una bustina di polvere VARIO Phos 3 F10 direttamente dall'astuccio.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (10–15 sec., Annotazione 1).
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

8. Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come ortofosfato in mg/l.

- 1. Il reagente non si scioglie completamente.
- 2. Vedi anche pag. 147.
- 3. Conversioni: $mg/l P = mg/l PO_4 \times 0.33$ $mg/l P_2O_5 = mg/l PO_4 \times 0.75$
- 4. ▲ PO₄
 P
 P₂O₅

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set VARIO PHOS 3 F10	Bustina di polvere / 2 x 50 VARIO PHOSPHATE RGT. F10	531550

Fosfato, orto test in cuvette

 $0.06 - 5 \text{ mg/l PO}_{4}$

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Aprire una cuvetta PO₄-P Dilution con tappo bianco ed introdurvi 5 ml di campione.
- Chiudere con cura la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √.

Predisporre Zero Premere ZERO

- 4. Premere il tasto **ZERO**.
- 5. Estrarre la cuvetta dal pozzetto di misurazione.
- Mettere nella cuvetta il contenuto di una bustina di polvere VARIO Phos 3 F10 direttamente dall'astuccio (Annotazione 1).
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (10–15 sec., Annotazione 2)
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione Δ .

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00 9. Premere il tasto TEST.

Attendere **2 minuti per il tempo di reazione**.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come ortofosfato in mg/l.

- 1. Per introdurre il reagente utilizzare un imbuto.
- 2. Il reagente non si scioglie completamente.
- 3. Vedi anche pag. 147.
- 4. Conversioni: mg/l P = mg/l PO $_4$ x 0,33 mg/l P $_2$ O $_5$ = mg/l PO $_4$ x 0,75
- 5. ▲ PO₄
 P
 P₂O₅

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set:	Set	535200
VARIO Dilution Vial	Cuvette di reazione / 50	
VARIO PHOSPHATE RGT F10 PP	Bustina di polvere / 50	
VARIO aqua completamente desalinizzata	100 ml	

Fosfato 1, orto con Vacu-vials® K-8503 (vedi **Annotazione**)

 $5 - 40 \text{ mg/l PO}_4$

Impiegare adattatore per cuvette rotonde 13 mm Ø.

1. Porre l'ampolla per lo zero in dotazione nel pozzetto di misurazione

Predisporre Zero Premere ZERO

- 3. Estrarre l'ampolla dal pozzetto di misurazione.
- 4. Riempire il bicchiere per l'anàlisi fino alla tacca dei 25 ml con il campione.
- 5. Posizionare un'ampolla Vacu-vial® nel contenitore per i campioni.

Rompere la punta dell'ampolla premendo quest'ultima contro la parete del contenitore per i campioni.

Il campione di acqua riempie l'ampolla. Nell'ampolla rimane un volume ridotto di gas inerte.

- 6. Capovolgere l'ampolla ripetutamente in modo che la bolla d'aria passa da un'estremità all'altra. Dopo asciugare l'ampolla esternamente.
- 7. Porre l'ampolla nel pozzetto di misurazione.

Zero accettato **Predisporre Test** Premere TEST

Count-Down 5:00

8. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in ortofosfato in mg/l.

- Con questo metodo si tratta di un prodotto CHEMetrics. Il campo di misurazione indicato in questo fotometro e le lunghezze d'onde utilizzate possono però discostarsi dai valori CHEMetrics.
- 2. Prima di eseguire il test leggere assolutamente le istruzioni originali per operare ed il foglio dei dati di sicurezza allegato al kit per il test (MSDS disponibile anche nel sito internet www.chemetrics.com).
- 3. Vacu-vials® è un marchio registrato della Ditta CHEMetrics, Inc. / Calverton, U.S.A.
- 4. Reagiscono esclusivamente ioni ortofosfato.
- 5. I solfuri, tiosolfati e tiocianati producono risultati del test inferiori.
- 6. ▲ PO₄
 P
 P₂O₅

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Vacu-vials® / CHEMetrics K-8503	Test-Kit / 30	380460

Fosfato 2, orto con Vacu-vials® K-8513 (vedi Annotazione)

0,05 - 5 mg/l PO₄

Impiegare adattatore per cuvette rotonde 13 mm Ø.

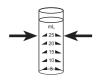
- Porre l'ampolla per lo zero in dotazione nel pozzetto di misurazione.
- 2. Premere il tasto ZERO.
- 3. Estrarre l'ampolla dal pozzetto di misurazione.
- 4. Riempire il bicchiere per l'anàlisi fino alla tacca dei 25 ml con il campione.
- Tenere la buretta in verticale e premendo lentamente far cadere delle gocce della stessa grandezza nel bicchiere per l'anàlisi:

2 gocce di attivatore A-8500

- Chiudere il bicchiere per l'anàlisi con il coperchio e mescolare il contenuto capovolgendo il bicchiere.
- Posizionare un'ampolla Vacu-vial® nel contenitore per i campioni.

Rompere la punta dell'ampolla premendo quest'ultima contro la parete del contenitore per i campioni.

Il campione di acqua riempie l'ampolla. Nell'ampolla rimane un volume ridotto di gas inerte.


- 8. Capovolgere l'ampolla ripetutamente in modo che la bolla d'aria passa da un'estremità all'altra. Dopo asciugare l'ampolla esternamente.
- 9. Porre l'ampolla nel pozzetto di misurazione.
- 10. Premere il tasto TEST.

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in ortofosfato in mg/l.

Predisporre Zero Premere ZERO

Zero accettato Predisporre Test Premere TEST

Count-Down 3:00

- Con questo metodo si tratta di un prodotto CHEMetrics. Il campo di misurazione indicato in questo fotometro e le lunghezze d'onde utilizzate possono però discostarsi dai valori CHEMetrics.
- 2. Prima di eseguire il test leggere assolutamente le istruzioni originali per operare ed il foglio dei dati di sicurezza allegato al kit per il test (MSDS disponibile anche nel sito internet www.chemetrics.com).
- 3. Vacu-vials® è un marchio registrato della Ditta CHEMetrics, Inc. / Calverton, U.S.A.
- 4. Reagiscono esclusivamente ioni ortofosfato.
- 5. I solfuri, tiosolfati e tiocianati producono risultati del test inferiori.
- 6. ▲ PO₄
 P
 P₂O₅

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Vacu-vials® / CHEMetrics K-8513	Test-Kit / 30	380480

Fosfati, idrolizzabili in acidi test in cuvette

 $0.02 - 1.6 \text{ mg/l P} (\triangleq 0.06 - 5 \text{ mg/l PO}_{3})$

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Aprire una cuvetta per la decomposizione PO₄-P Acid Reagent con tappo bianco ed introdurvi 5 ml di campione.
- Chiudere con cura la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Far decomporre il contenuto delle cuvette per 30 minuti a 100°C nel termoreattore preriscaldato.
- In seguito alla decomposizione estrarre le cuvette dal termoreattore. (ATTENZIONE: le cuvette sono surriscaldate). Lasciar raffreddare le cuvette a temperatura ambiente.
- Aprire le cuvette raffreddate ed aggiungere 2 ml di soluzione di idrossido di sodio 1,00 N.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √.

Predisporre Zero Premere ZERO

- 8. Premere il tasto ZERO.
- 9. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere alla cuvetta il contenuto di una bustina di polvere VARIO Phos 3 F10 direttamete dall'astuccio (Annotazione 2)
- 11. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (10–15 sec., Annotazione 3)

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

Premere il tasto TEST.
 Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come fosfato idrolizzabile in acido in mg/l.

- 1. E' necessario adottare misure di sicurezza adeguate ed una buona tecnologia di laboratorio durante l'intero procedimento.
- 2. Per introdurre il reagente utilizzare un imbuto.
- 3. Il reagente non si scioglie completamente.
- 4. Vedi anche pag. 147.
- 5. Conversioni: $mg/l PO_4 = mg/l P \times 3,07$ $mg/l P_2O_5 = mg/l P \times 2,29$

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set:	Set	535250
VARIO Acid Reagent Vial	Cuvette di reazione / 50	
VARIO PHOSPHATE RGT F10 PP	Bustina di polvere / 50	
VARIO Potassium F10 Persulfate	Bustina di polvere / 50	
VARIO Sodium Hydroxide 1,54 N	Solutione / 100 ml	
VARIO aqua completamente desalinizzata	100 ml	
VARIO Sodium Hydroxide 1,00 N	Solutione / 100 ml	

Fosfato, totale test in cuvette

 $0.02 - 1.1 \text{ mg/l P} (\triangleq 0.06 - 3.5 \text{ mg/l PO}_{1})$

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- Aprire una cuvetta per la decomposizione con tappo bianco PO_a-P Acid Reagent ed introdurvi 5 ml di campione.
- Aggiungere il contenuto di una bustina di polvere Vario Potassium Persulfate F10 (persolfato di potassio) direttamente dall'astuccio (Annotazione 2).
- 3. Chiudere con cura la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Far decomporre il contenuto delle cuvette per 30 minuti a 100°C nel termoreattore preriscaldato.
- In seguito alla decomposizione estrarre le cuvette dal termoreattore. (ATTENZIONE: le cuvette sono surriscaldate). Lasciar raffreddare le cuvette a temperatura ambiente
- Aprire le cuvette raffreddate ed aggiungere 2 ml di soluzione di idrossido di sodio 1,54 N.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 9. Premere il tasto ZERO.
- 10. Estrarre la cuvetta dal pozzetto di misurazione.
- Mettere nella cuvetta il contenuto di una bustina di polvere Vario Phos 3 F10 direttamente dall'astuccio (Annotazione 2).
- 12. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa (10–15 sec., Annotazione 3).
- 13. Porre la cuvetta nel pozzetto di misurazione. Posizione λ .
- Premere il tasto TEST.
 Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come fosfato totale in mg/l.

Predisporre Zero Premere ZERO

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

- 1. E' necessario adottare misure di sicurezza adeguate ed una buona tecnologia di laboratorio durante l'intero procedimento.
- 2. Per introdurre il reagente utilizzare un imbuto.
- 3. Il reagente non si scioglie completamente.
- 4. Vedi anche pag. 147.
- 5. Conversioni:
- 6. mg/l $PO_4 = mg/l P \times 3,07$ mg/l $P_2O_5 = mg/l P \times 2,29$

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set: VARIO Acid Reagent Vial VARIO PHOSPHATE RGT F10 PP VARIO Potassium F10 Persulfate VARIO Sodium Hydroxide 1,54 N	Set Cuvette di reazione / 50 Bustina di polvere / 50 Bustina di polvere / 50 Solutione / 100 ml	535210
VARIO Potassium F10 Persulfate	Bustina di polvere / 50	

Fosfato LR con reagenti liquidi

0,1 - 10 mg/l PO₄

Questo metodo è idoneo per la determinazione di ortofosfati nell'acqua delle caldaie e nelle condutture dell'acqua potabile. Pertanto, il campione deve essere filtrato prima dell'analisi per rimuovere fosfati sospesi, non solubili. E' opportuno utilizzare un filtro GF/C.

Distaccare le due metà del portafiltro e inserire un filtro GF/C nella sede appositamente prevista. Riavvitare insieme le due metà del portafiltro.

Attenzione: verificare il corretto posizionamento dell'anello di tenuta durante l'avvitamento!

- In una siringa pulita da 20 mm introdurre circa 14 ml di campione.
- 2. Fissare l'unità di filtrazione della siringa e svuotarla fino alla tacca dei 10 ml
- Introdurre 10 ml di campione in una cuvetta pulita da 24 mm dall'unità di filtrazione predisposta e chiudere con il tappo della cuvetta.
- 4. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 5. Premere il tasto **ZERO**.
- 6. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

50 gocce KS80 (CRP)

8. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.

- Aggiungere al campione un cucchiaio dosatore di KP119 (Ascorbic Acid) (Annotazione 1).
- 10. Chiudere bene la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.
- 11. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00 Premere il tasto TEST.
 Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come fosfato in mg/l.

- 1. Per il corretto dosaggio, utilizzare il cucchiaio dosatore fornito con i reagenti.
- 2. Per l'analisi dei polifosfati e del fosfato totale è necessaria anzitutto una decomposizione (vedi pag. 166).
- 3. Reagenti e accessori disponibili su richiesta.
- 4. Conversioni: $mg/l P = mg/l PO_4 \times 0.33$ $mg/l P_2O_5 = mg/l PO_4 \times 0.75$
- 5. ▲ P PO₄ P₂O₅

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS80 – CRP Reagent KP119 – Ascorbic Acid	Reagente liquido / 2 x 65 ml Polvere / 20 g	56L008065 56P011920
Per digestione: KS278 (50% Sulphuric Acid) KS135 (Phenolphthalein Substitute In- dikator) KS144 (Calcium Hardness Buffer) KP962 (Ammonium Persulfate Powder)	Reagente liquido / 65 ml Reagente liquido / 65 ml Reagente liquido / 65 ml Polvere / 20 g	56L027865 56L013565 56L014465 56P096240

Polifosfati con reagenti liquidi

0,1 - 10 mg/l PO₄

Questo test rileva il contenuto di fosfati inorganici totali. Il contenuto di polifosfati si determina dalla differenza fra fosfati inorganici totali e ortofosfati.

- In una beuta pulita da 100 ml introdurre 50 ml di campione omogeneizzato.
- 2. Aggiungere al campione **15 gocce di KS278 (acido solforico 50%)**.
- 3. Far bollire il campione per 20 minuti. Conservare almeno 25 ml di campione; eventualmente ripristinare il volume con acqua desalinizzata.
- 4. Capovolgere il matraccio Erlenmeyer e far raffreddare a temperatura ambiente.
- 5. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nel matraccio Erlenmeyer:
 - 2 gocce KS135 (Phenolphthalein Substitute Indikator)
- Aggiungere KS144 (Calcium Hardness Puffer) in gocce allo stesso campione, fino ad ottenere una colorazione leggermente rosata. (Attenzione: agitare il campione dopo aver aggiunto ogni goccia!)
- 7. Ripristinare il volume di 50 ml con acqua desalinizzata.
- 8. Procedere come descritto al **punto 3**, pagina 164.

Nel display appare il risultato in mg/l Fosfato totale inorganica (ortofosfato e poli fosfato).

Fosfato totale con reagenti liquidi

0,1 - 10 mg/l PO₄

Questo test determina tutti i composti di fosforo presenti nel campione, compresi gli ortofosfati, i polifosfati ed i composti di fosforo organici.

- In una beuta pulita da 100 ml introdurre 50 ml di campione omogeneizzato.
- Introdurre nei campione preparato una misurino di KP962 (Ammonium Persulfate Powder).
- Aggiungere al campione 15 gocce di KS278 (acido solforico 50%).
- 4. Far bollire il campione per 20 minuti. Conservare almeno 25 ml di campione; eventualmente ripristinare il volume con acqua desalinizzata.
- 5. Capovolgere il matraccio Erlenmeyer e far raffreddare a temperatura ambiente.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nel matraccio Erlenmeyer:
 - 2 gocce KS135 (Phenolphthalein Substitute Indikator)
- Aggiungere KS144 (Calcium Hardness Puffer) in gocce allo stesso campione, fino ad ottenere una colorazione leggermente rosata. (Attenzione: agitare il campione dopo aver aggiunto ogni goccia!)
- 8. Ripristinare il volume di 50 ml con acqua desalinizzata.
- 9. Procedere come descritto al **punto 3**, pagina 164.

Nel display appare il risultato in mg/l Fosfato totale.

MD600 11f 02/2024

Fosfato HR con reagenti liquidi

5 - 80 mg/l PO₄

Questo metodo è idoneo per la determinazione di ortofosfati nell'acqua delle caldaie e nelle condutture dell'acqua potabile. Pertanto, il campione deve essere filtrato prima dell'analisi per rimuovere fosfati sospesi, non solubili. E' opportuno utilizzare un filtro GF/C.

Distaccare le due metà del portafiltro e inserire un filtro GF/C nella sede appositamente prevista. Riavvitare insieme le due metà del portafiltro.

Attenzione: verificare il corretto posizionamento dell'anello di tenuta durante l'avvitamento!

- In una siringa pulita da 20 mm introdurre circa 14 ml di campione.
- 2. Fissare l'unità di filtrazione della siringa e svuotarla fino alla tacca dei 10 ml
- Introdurre 10 ml di campione in una cuvetta pulita da 24 mm dall'unità di filtrazione predisposta e chiudere con il tappo della cuvetta.
- 4. Porre la cuvetta nel pozzetto di misurazione. Posizione \overline{X} .

Predisporre Zero Premere ZERO

- 5 Premere il tasto **ZERO**
- 6. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

25 gocce KS228 (Ammonium Molybdate)

8. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.

- Aggiungere allo stesso campione 25 gocce di KS229 (Ammonium Metavanadate).
- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 11. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00 12. Premere il tasto **TEST**. Attendere **10 minuti per il tempo di reazione**.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come fosfato in mg/l.

- 1. Per l'analisi dei polifosfati e del fosfato totale è necessaria anzitutto una decomposizione (vedi pag. 170).
- 2. Reagenti e accessori disponibili su richiesta.
- 3. Conversioni: mg/l P = mg/l PO₄ x 0,33 mg/l P₂O₅ = mg/l PO₄ x 0,75
- 4. ▲ P
 PO₄
 P,O₅

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS228 (Ammonium Molybdate) KS229 (Ammonium Metavanadate)	Reagente liquido / 65 ml Reagente liquido / 65 ml	56L022865 56L022965
Per digestione: KS278 (50% Sulphuric Acid) KS135 (Phenolphthalein Substitute In- dikator) KS144 (Calcium Hardness Puffer) KP962 (Ammonium Persulfate Powder)	Reagente liquido / 65 ml Reagente liquido / 65 ml Reagente liquido / 65 ml Polvere / 20 g	56L027865 56L013565 56L014465 56P096240

Polifosfati con reagenti liquidi

5 - 80 mg/l PO₄

Questo test rileva il contenuto di fosfati inorganici totali. Il contenuto di polifosfati si determina dalla differenza fra fosfati inorganici totali e ortofosfati.

- In una beuta pulita da 100 ml introdurre 50 ml di campione omogeneizzato.
- 2. Aggiungere al campione **15 gocce di KS278 (acido solforico 50%)**.
- 3. Far bollire il campione per 20 minuti. Conservare almeno 25 ml di campione; eventualmente ripristinare il volume con acqua desalinizzata.
- 4. Capovolgere il matraccio Erlenmeyer e far raffreddare a temperatura ambiente.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nel matraccio Erlenmeyer:
 - 2 gocce KS135 (Phenolphthalein Substitute Indikator)
- Aggiungere KS144 (Calcium Hardness Puffer) in gocce allo stesso campione, fino ad ottenere una colorazione leggermente rosata. (Attenzione: agitare il campione dopo aver aggiunto ogni goccia!)
- 7. Ripristinare il volume di 50 ml con acqua desalinizzata.
- 8. Procedere come descritto al **punto 3**, pagina 168.

Nel display appare il risultato in mg/l Fosfato totale inorganica (ortofosfato e poli fosfato).

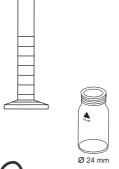
Fosfato totale con reagenti liquidi

5 - 80 mg/l PO₄

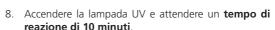
Questo test determina tutti i composti di fosforo presenti nel campione, compresi gli ortofosfati, i polifosfati ed i composti di fosforo organici.

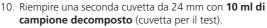
- In una beuta pulita da 100 ml introdurre 50 ml di campione omogeneizzato.
- 2. Introdurre nei campione preparato una misurino di KP962 (Ammonium Persulfate Powder).
- Aggiungere al campione 15 gocce di KS278 (acido solforico 50%).
- 4. Far bollire il campione per 20 minuti. Conservare almeno 25 ml di campione; eventualmente ripristinare il volume con acqua desalinizzata.
- 5. Capovolgere il matraccio Erlenmeyer e far raffreddare a temperatura ambiente.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nel matraccio Erlenmeyer:
 - 2 gocce KS135 (Phenolphthalein Substitute Indikator)
- Aggiungere KS144 (Calcium Hardness Puffer) in gocce allo stesso campione, fino ad ottenere una colorazione leggermente rosata. (Attenzione: agitare il campione dopo aver aggiunto ogni goccia!)
- 8. Ripristinare il volume di 50 ml con acqua desalinizzata.
- 9. Procedere come descritto al **punto 3**, pagina 168.

Nel display appare il risultato in mg/l Fosfato totale.



Fosfonato Metodo di ossidazione UV con reagente in Powder Pack (PP)


0 – 125 mg/l (vedi Tabella 1)


- 1. Selezionare il volume di campione idoneo della Tabella 1 (vedi pagina successiva).
- 2. Introdurre il volume di campione selezionato in un cilindro graduato da 50 ml pulito. Se necessario riempire con acqua desalinizzata fino a 50 ml e mescolare.
- 3. Riempire una cuvetta pulita da 24 mm fino alla tacca dei 10 ml con il **campione preparato** (cuvetta per lo zero).

- 4. Introdurre nella cuvetta di decomposizione 25 ml del campione preparato.
- 5. Aggiungere ai 25 ml di campione il contenuto di una bustina di polvere Vario Potassium Persulfate F10 direttamente dall'astuccio
- 6. Chiudere il contenitore di decomposizione con il tappo e disciogliere la polvere agitando.
- 7. Tenere la lampada UV nel campione (nota 3, 4, 5). Attenzione: indossare occhiali di protezione dai raggi UV!

- 11. Aggiungere in ogni cuvetta (cuvetta per lo zero e cuvetta per il test) il contenuto di una bustina di polvere Vario Phosphate Rgt. F10 direttamente dall'astuccio.
- 12. Chiudere le cuvette con l'apposito tappo e mescolare il contenuto capovolgendolo (30 sec.) (nota 6).

Predisporre Zero Premere ZERO

Count-Down 2:00

- 13. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- 14. Premere il tasto ZERO.

Attendere 2 minuti per il tempo di reazione (nota 7).

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

- 15. Estrarre la cuvetta dal pozzetto di misurazione.
- 16. Porre la cuvetta per il test nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

17. Premere il tasto TEST.

Nel display appare il risultato in mg/L PO₄3-.

Per il calcolo della concentrazione effettiva di fosfonato, il risultato visualizzato deve essere moltiplicato per il fattore di diluizione corrispondente indicato nella Tabella 1.

Per mantenere la concentrazione attiva di fosfonato, la concentrazione effettiva di fosfonato deve essere moltiplicata per il fattore di conversione specifico della sostanza indicato nella Tabella 2

Annotazioni:

- Risciacquare tutti i dispositivi in vetro prima dell'analisi con l'acido cloridrico diluito (1:1), dopodiché risciacquare con acqua desalinizzata. Non è ammesso l'utilizzo di detergenti a base di fosfati.
- Durante la decomposizione ai raggi UV i fosfonati vengono trasformati in ortofosfati.
 Tale processo si completa generalmente in 10 minuti. Campioni con una forte presenza organica o una lampada UV debole possono tuttavia provocare una conversione incompleta.
- 3. Lampada UV disponibile a richiesta.
- 4. Durante il funzionamento della lampada UV, è necessario indossare appositi occhiali di protezione
- 5. Per l'utilizzo della lampada UV è necessario rispettare le istruzioni del fabbricante. Non toccare la superficie della lampada UV. Eventuali impronte corrodono il vetro. Pulire la lampada UV fra le misurazioni con un panno morbido pulito.
- 6. Il reagente non si scioglie completamente.
- 7.1 tempi di reazione indicati di 2 minuti si riferiscono ad una temperatura del campione superiore a 15°C. Se la temperatura del campione è inferiore a 15°C è opportuno attendere un tempo di reazione di 4 minuti.

Tabelle e Reagente: vedi pagina successiva

Tabella 1:

intervallo di misurazione previsto (mg/L di fosfonato)	Volume campione in ml	Fattore
0 – 2,5	50	0,1
0 – 5,0	25	0,2
0 – 12,5	10	0,5
0 – 25	5	1,0
0 – 125	1	5,0

Tabella 2:

Tipo fosfonato	Fattore di conversione per la concentrazione attiva di fosfonato
PBTC	2,840
NTP	1,050
HEDPA	1,085
EDTMPA	1,148
HMDTMPA	1,295
DETPMPA	1,207
HPA	1,490

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set		535220
VARIO Potassium F10 Persulfate	Bustina di polvere / 100	
VARIO PHOSPHATE RGT F10 PP	Bustina di polvere / 200	

I valori limite indicati si riducono con volumi di campione crescenti. Esempio: con un volume di campione di 5 ml il valore limite per il ferro è di 200 mg/L. Se si utilizza un volume di campione di 10 ml, il valore limite scende a 100 mg/L.

Tabella 3:

Sostanze causa di interferenze	Valore limite con un volume di 5 ml
Alluminio	100 mg/l
Arsenate	interferisce in tutte le concentrazioni
Benzotriazole	10 mg/l
Idrogencarbonato	1000 mg/l
Bromuro	100 mg/l
Calcio	5000 mg/l
Acido trans-1,2-diaminocicloesano- N,N,N',N'-tetraacetico mono idrato	100 mg/l
Cloruro	5000 mg/l
Cromati	100 mg/l
Rame	100 mg/l
Cianuro	100 mg/l; la decomposizione ai raggi UV deve essere prolungata fino a 30 minuti
Diethanoldithiocarbamate	50 mg/l
EDTA	100 mg/l
Ferro	200 mg/l
Nitrato	200 mg/l
Acido nitrilotriacetico	250 mg/l
Ortofosfati	15 mg/l
Fosfito ed organofosfato	reagiscono quantitativamente; Metafosfati e polifosfati non interferiscono
Silica	500 mg/l
Silicati	100 mg/l
Solfato	2000 mg/l
Solfuri	interferisce in tutte le concentrazioni
Solfito	100 mg/l
Tiourea	10 mg/l
i campioni fortemente tamponati o fortemente alcalini/acidi	può superare la capacità di tamponamento dei reagenti e rendere necessario un pretrattamento del campione

H₂O₂ (Perossido di idrogeno) con compressa

 $0.03 - 3 \text{ mg/l H}_2O_2$

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotare **fino a far rimanere poche gocce.**
- Aggiungere una compressa HYDROGENPEROXIDE LR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

9 Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l H₂O₂.

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti per la casa (per es. detersivo per stoviglie) contengono agenti di riduzione, nella determinazione del perossido di idrogeno si possono avere risultati inferiori. Per escludere tali errori di misurazione gli apparecchi di vetro devono essere privati del cloro depositato. A tale scopo gli apparecchi in vetro vengono conservati per un'ora in una soluzione di ipoclorito di sodio (0,1 g/l) e quindi risciacquati abbondantemente con acqua completamente desalinizzata.
- 2. Nella predisposizione del campione è necessario evitare i gas di scarico del perossido di idrogeno, per es. pipettando o agitando la cuvetta. L'anàlisi deve avvenire immediatamente dopo il prelievo del campione.
- 3. Lo sviluppo del colore DPD avviene con un pH compreso tra 6,2 e 6,5. La compressa del reagente contiene quindi un tampone per l'impostazione del pH. Le acque fortemente alcaline o acide devono tuttavia essere portate in un campo del pH compreso fra 6 e 7 prima dell'anàlisi (con 0.5 mol/l di acido solforico o 1 mol/l di soda caustica).
- 4. Concentrazioni di perossido di idrogeno superiori a 5 mg/l possono portare a risultati nell'ambito del campo di misurazione fino a 0 mg/l. In tal caso il campione di acqua deve essere diluito con acqua priva di perossido di idrogeno. 10 ml del campione diluito vengono mescolati con il reagente e la misurazione va ripetuta (test di plausibilità).
- 5. Tutti i mezzi di ossidazione presenti nei campioni reagiscono come il perossido di idrogeno, fattore che determina risultati plurimi.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Hydrogenperoxide LR	Pastiglia / 100	512380BT

H₂O₂ (Perossido di idrogeno) LR con reagenti liquidi

 $1 - 50 \text{ mg/l H}_{2}O_{2}$

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- In una cuvetta pulita da 16 mm introdurre 10 ml di campione e chiudere fortemente con l'apposito coperchio. (Nota 1, 2)
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Mantener la botella cuentagotas en posición vertical y presionarla ligeramente para añadir gotas de igual tamaño a la anteriormente preparada cubeta:

6 gocce di soluzione H₂O₂

- 6. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto **TEST**.

Nel display appare il risultato in mg/l H₂O₂.

- 1. La determinazione del perossido di idrogeno avviene come acidi perossititanici dalla colorazione giallo-arancione in una sostanza fortemente acida. Nei campioni neutri o debolmente alcalini (~pH 10) l'acido presente nel reagente è sufficiente a produrre una sostanza idonea alla determinazione. In presenza di campioni fortemente alcalini (pH > 10), prima della determinazione è necessario procedere con un'acidificazione per evitare che i risultati siano inferiori rispetto alla realtà. Ciò è possibile diluendo il campione con ad es. acido solforico al 5% in rapporto 1:1.
 - A differenza di molte altre reazioni cromatiche, in presenza di perossido di idrogeno si produce una colorazione stabile nel lungo periodo che può essere misurata anche dopo 24 h. Le particelle presenti nella soluzione di campione e la torbidità alterano l'analisi e devono essere anzitutto eliminate. Ciò può avvenire mediante centrifugazione oppure, più semplicemente, tramite filtrazione della soluzione del campione. Anche nel caso di soluzioni colorate è necessario tenere in considerazione la possibile alterazione del risultato.
- 2. Ossidanti come ad es. cloro, bromo, diossodo di cloro e ozono non interferiscono sulla determinazione. Un'eventuale colorazione propria dell'acqua altera l'analisi. In questo caso è possibile procedere come segue:
 - In una cuvetta pulita da 16 mm introdurre 10 ml di campione e realizzare la calibratura zero (vedi "funzionamento").
 - Quindi, misurare la soluzione del campione senza aggiungere il reagente in gocce (risultante B).
 - Infine, misurare la stessa soluzione del campione aggiungendo il reagente in gocce (risultante A).
 - Calcolazione: mg/l H₂O₂ = risultante A risultante B
- 3. Attenzione: Il reagente di rilevamento contiene acido solforico al 25%. Si consiglia di indossare un idoneo equipaggiamento di protezione (occhiali/guanti).

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
H ₂ O ₂ soluzione	Reagente liquido / 15 ml	424991

H₂O₂ (Perossido di idrogeno) HR con reagenti liquidi

40 - 500 mg/l H₂O₂

Impiegare adattatore per cuvette rotonde 16 mm Ø.

- In una cuvetta pulita da 16 mm introdurre 10 ml di campione e chiudere fortemente con l'apposito coperchio. (Nota 1, 2)
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Mantener la botella cuentagotas en posición vertical y presionarla ligeramente para añadir gotas de igual tamaño a la anteriormente preparada cubeta:

6 gocce di soluzione H₂O₂

- 6. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in mg/l H₂O₂.

- 1. La determinazione del perossido di idrogeno avviene come acidi perossititanici dalla colorazione giallo-arancione in una sostanza fortemente acida. Nei campioni neutri o debolmente alcalini (~pH 10) l'acido presente nel reagente è sufficiente a produrre una sostanza idonea alla determinazione. In presenza di campioni fortemente alcalini (pH > 10), prima della determinazione è necessario procedere con un'acidificazione per evitare che i risultati siano inferiori rispetto alla realtà. Ciò è possibile diluendo il campione con ad es. acido solforico al 5% in rapporto 1:1.
 - A differenza di molte altre reazioni cromatiche, in presenza di perossido di idrogeno si produce una colorazione stabile nel lungo periodo che può essere misurata anche dopo 24 h. Le particelle presenti nella soluzione di campione e la torbidità alterano l'analisi e devono essere anzitutto eliminate. Ciò può avvenire mediante centrifugazione oppure, più semplicemente, tramite filtrazione della soluzione del campione. Anche nel caso di soluzioni colorate è necessario tenere in considerazione la possibile alterazione del risultato.
- 2. Ossidanti come ad es. cloro, bromo, diossodo di cloro e ozono non interferiscono sulla determinazione. Un'eventuale colorazione propria dell'acqua altera l'analisi. In questo caso è possibile procedere come segue:
 - In una cuvetta pulita da 16 mm introdurre 10 ml di campione e realizzare la calibratura zero (vedi "funzionamento").
 - Quindi, misurare la soluzione del campione senza aggiungere il reagente in gocce (risultante B).
 - Infine, misurare la stessa soluzione del campione aggiungendo il reagente in gocce (risultante A).
 - Calcolazione: mg/l H₂O₂ = risultante A risultante B
- 3. Attenzione: Il reagente di rilevamento contiene acido solforico al 25%. Si consiglia di indossare un idoneo equipaggiamento di protezione (occhiali/guanti).

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
H ₂ O ₂ soluzione	Reagente liquido / 15 ml	424991

Idrazina con reagente in polvere

0,05 – 0,5 mg/l N_2H_4 / 50 – 500 μ g/l N_2H_4

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione (Annotazione 1, 2) e chiudere con l'apposito coperchio.

Ø 24 mm

2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione 1 g di polvere per test HYDRAZIN (Annotazione 3).
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.

Count-Down 10:00 inizio: 🗐

7. Premere il tasto [4].

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione procedere come segue:

- 8. Il leggero intorbidamento che si è creato col'aggiunta del reagente rimuovere filtrandolo (Annotazione 4).
- 9. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

10. Premere il tasto **TEST**.

Nel display appare il risultato in mg/l idrazina.

- 1. Qualora il campione di acqua si sia intorbidato è necessario filtrarlo prima di eseguire l'azzeramento.
- 2. La temperatura del campione non deve superare i 21°C.
- 3. Qualora si utilizzi il misurino per l'idrazina 1 g corrisponde ad un misurino segnato.
- 4. Hanno dimostrato buoni risultati i filtri a pieghe di qualità per precipitati medio-fini.
- 5. Per verificare un possibile invecchiamento il reagente in caso di conservazione per un lungo periodo, il test viene eseguito nel modo sopra descritto con acqua del rubinetto. Qualora il risultato dovesse essere superiore al valore del limite di detezione pari a 0,05 mg/l, il reagente deve essere utilizzato solo a determinate condizioni (divergenze dei valori rilevati consistenti).
- 6. E' possibile modificare l'unità di misura da mg/l in µg/l.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Hydrazin Test Polvere	Polvere / 30 g	462910
Misurino		384930

Idrazina con reagente liquido

 $0,005 - 0,6 \text{ mg/l } N_2H_4 / 5 - 600 \text{ } \mu\text{g/l } N_2H_4$

Ø 24 mm

Predisporre due cuvette pulite da 24 mm. Marcare una cuvetta come cuvetta per lo zero.

- Mettere in una cuvetta pulita da 24 mm 10 ml di aqua completamente desalinizzata (cuvetta per lo zero).
- Mettere nella cuvetta 1 ml VARIO Hydra 2 Rgt reagente (Annotazione 3).
- 3. Chiudere la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- 4. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 5. Premere il tasto **ZERO**.
- 6. Estrarre la cuvetta dal pozzetto di misurazione.
- Mettere in una seconda cuvetta pulita da 24 mm 10 ml di campione (cuvetta del campione).
- Mettere nella cuvetta 1 ml VARIO Hydra 2 Rgt reagente.
- 9. Chiudere la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Zero accettato Predisporre Test Premere TEST

Count-Down 12:00 Premere il tasto TEST.
 Attendere 12 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l idrazina.

Annotazioni:

- 1. Non è possibile conservare i campioni, procedere quindi immediatamente con l'anàlisi.
- 2. La temperatura del campione deve essere pari a 21° C $\pm 4^{\circ}$ C.
- 3. Nel campione per lo zero, il reagente produce una colorazione gialla chiara.
- 4 Interferenze:
 - Fino a 10 mg/l l'ammònio non causa interferenze.
 Con 20 mg/l può verificarsi un aumento del risultato del test fino al 20%.
 - Fino a 10 mg/l la morfolina non è causa di interferenze.
 - I campioni torbidi o dalla forte colorazione:

mescolare 1 parte di acqua desalinizzata (acqua distillata) ed 1 parte di candeggina per uso domestico. Versare 1 goccia di questa soluzione in 25 ml di campione e mescolare. Nel punto 1 utilizzare 10 ml di questo campione pretrattato anziché acqua desalinizzata.

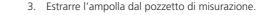
Attenzione: nel punto 7 utilizzare il campione non trattato.

Principio: l'idrazina viene ossidata dalla candeggina e l'interferenza cromatica viene annullata con la taratura a zero.

5. E' possibile modificare l'unità di misura da mg/l in μg/l.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
VARIO Hydra 2 Rgt	Reagente liquido / 100 ml	531200

Idrazina con Vacu-vials® K-5003 (vedi Annotazione)


 $0.01 - 0.7 \text{ mg/l } N_2H_4 / 10 - 700 \mu\text{g/l } N_2H_4$

Impiegare adattatore per cuvette rotonde 13 mm Ø.

 Porre l'ampolla per lo zero in dotazione nel pozzetto di misurazione.

Predisporre Zero Premere ZERO

- 4. Riempire il bicchiere con il campione fino alla tacca dei 25 ml.
- 5. Posizionare un'ampolla Vacu-vials® nel contenitore per i campioni.

Rompere la punta dell'ampolla premendo quest'ultima contro la parete del contenitore per i campioni.

Il campione di acqua riempie l'ampolla. Nell'ampolla rimane un volume ridotto di gas inerte.

- Capovolgere l'ampolla ripetutamente in modo che la bolla d'aria passa da un'estremità all'altra. Dopo asciugare l'ampolla esternamente.
- 7. Porre l'ampolla nel pozzetto di misurazione.

mL 25b 20b 115b 210b 26b

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00

8. Premere il tasto TEST.

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione

Nel display appare il risultato in mg/l idrazina.

- 1. Con questo metodo si tratta di un prodotto CHEMetrics. Il campo di misurazione indicato in questo fotometro e le lunghezze d'onde utilizzate possono però discostarsi dai valori CHEMetrics.
- 2. Prima di eseguire il test leggere assolutamente le istruzioni originali per operare ed il foglio dei dati di sicurezza allegato al kit per il test (MSDS disponibile anche nel sito internet www.chemetrics.com).
- 3. Vacu-vials® è un marchio registrato della Ditta CHEMetrics, Inc. / Calverton, U.S.A.
- 4. E' possibile modificare l'unità di misura da mg/l in μ g/l.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Vacu-vials® / CHEMetrics K-5003	Test-Kit / 30	380470

Iodio con compressa

0,05 - 3,6 mg/l I

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione e **svuotarla fino a far rimanere poche gocce**.
- Aggiungere una compressa DPD No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Riempire la cuvetta con il campione fino alla tacca dei 10 ml.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa finché la compressa non si è sciolta.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

9. Premere il tasto **TEST**.

Nel display appare il risultato in mg/l iodio.

Annotazioni:

1. Tutti i mezzi di ossidazione presenti nel campione reagiscono come lo iodio, fattore che determina risultati plurimi.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
DPD No. 1	Pastiglia / 100	511050BT



Ipoclorito di sodio con compressa

0.2 - 16 % w/w NaOCI

Preparazione del campione:

Il campione viene diluito 2000 volte:

- Risciacquare più volte una siringa da 5 ml con la soluzione da analizzare, quindi riempirla, evitando di formare bolle, fino alla tacca dei 5 ml. Introdurre i 5 ml in un recipiente graduato da 100 ml pulito. Riempire il recipiente con acqua priva di cloro fino alla tacca dei 100 ml e mescolare con una bacchetta pulita.
- 2. Risciacquare più volte una siringa da 5 ml con la soluzione diluita nella fase 1, quindi riempirla, evitando di formare bolle, fino alla tacca 1 ml. Introdurre questo ml in un recipiente graduato da 100 ml pulito. Riempire il recipiente con acqua priva di cloro fino alla tacca dei 100 ml e mescolare con una bacchetta pulita.

Il test viene eseguito con questa soluzione diluita.

Svolgimento della misurazione:

- 1. In una cuvetta pulita da 24 mm introdurre **10 ml di campione preparato** e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- Predisporre Zero Premere ZERO
- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Introdurre nei 10 ml di campione preparato una compressa di CHLORINE HR (KI) direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Introdurre nello stesso campione una compressa di ACIDIFYING GP direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finchè le compresse non si sono sciolte.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

9. Premere il tasto **TEST**.

Nel display appare il contenuto di cloro effettivo in percentuale (percentuale in peso, w/w %) riferito alla soluzione di ipoclorito di sodio non diluita.

- Nell'utilizzo delle soluzioni con ipoclorito di sodio è necessario tenere conto del fatto che sono estremamente alcaline e possono provocare irritazioni. Evitare il contatto con gli occhi, con la pelle e con gli indumenti. Rispettare attentamente le indicazioni del produttore.
- 2. Rispettare la sequenza di introduzione delle compresse.
- 3. Questo mètodo consente di effettuare il test in modo rapido e semplice direttamente in loco e quindi non garantisce la stessa precisione di un test esequito in laboratorio.
- 4. Se si rispetta la procedura descritta la precisione può raggiungere ± 1 di peso %.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack ACIDIFYING GP/ CHLORINE HR (KI)	Pastiglia / ognuno 100 Bacchetta compresa	517721BT
CHLORINE HR (KI)	Pastiglia / 100	513000BT
ACIDIFYING GP	Pastiglia / 100	515480BT

Manganese con compressa

0.2 - 4 mg/l Mn

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa MANGANESE LR 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita per farla sciogliere.
- Aggiungere allo stesso campione una compressa MANGANESE LR 2 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa finché le compresse non si sono sciolte.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

9. Premere il tasto **TEST**.

Attendere 5 minuti per il tempo di reazione.

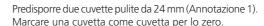
Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l manganese.

Annotazioni:

1. ▲ Mn MnO₄ KMnO₄

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack MANGANESE LR No. 1 / No. 2	Pastiglia / ognuno 100 Bacchetta compresa	517621BT
MANGANESE LR No. 1	Pastiglia / 100	516080BT
MANGANESE LR No. 2	Pastiglia / 100	516090BT



Manganese LR con reagente in Powder Pack (PP)

0.01 - 0.7 mg/l Mn

Ø 24 mm

- In una cuvetta pulita da 24 mm introdurre 10 ml di acqua completamente desalinizzata (cuvetta per lo zero).
- 2. Nell'altra cuvetta pulita da 24 mm introdurre **10 ml di** campione (cuvetta per il campione).
- Aggiungere in ciascuna cuvetta il contenuto di una bustina di polvere Vario Ascorbic Acid direttamente dall'astuccio.
- 4. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella provetta:

15 gocce di soluzione di reagente Alkaline-Cyanide

- 6. Chiudere le cuvette con i relativi coperchi e mescolare il contenuto capovolgendo le cuvette stesse.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella provetta:

21 gocce di soluzione indicatore PAN

- 8. Chiudere le cuvette con i relativi coperchi e mescolare il contenuto capovolgendo le cuvette stesse.
- 9. Premere il tasto [4].

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione procedere come segue:

- 10. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- 11. Premere il tasto **ZERO.**
- 12. Estrarre la cuvetta dal pozzetto di misurazione.
- 13. Porre la cuvetta con il campione nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- Premere il tasto **TEST.** Nel display appare il risultato in mg/l manganese.

Count-Down 2:00 Inizio:

Predisporre Zero Premere ZERO

Zero accettato Predisporre Test Premere TEST

- 1. Prima dell'anàlisi, risciacquare tutte le provette con acido nitrico diluito e quindi con acqua completamente desalinizzata.
- 2. Contiene un campione piu di 300 mg/l durezza CaCO₃, dopo l'aggiunta di Polvere Vario Ascorbic Acid si mettono 10 gocce di soluzione Rochelle.
- 3. Per alcuni campioni, dopo aver aggiunto la soluzione reagente "Alkaline-Cyanide" può venire a formarsi una soluzione nebulosa o torbida. Dopo il punto 7 l'intorbidamento dovrebbe scomparire.
- 4. Se il campione contiene elevate quantità di ferro (superiori a 5 mg/l) attendere un tempo di reazione di 10 minuti.
- 5. Conversione: $mg/l MnO_4 = mg/l Mn \times 2,17$
- 6. ▲ Mn

 MnO₄

 KMnO₄

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set VARIO Ascorbic Acid VARIO Alkaline-Cyanide VARIO PAN Indicator	Bustina di polvere / 100 Reagente liquido / 60 ml Reagente liquido / 60 ml	535090
VARIO Rochelle Salt Solution	30 ml	530640

Manganese HR con reagente in Powder Pack (PP)

0,1 - 18 mg/l Mn

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere Vario Manganese Citrate Buffer F10 direttamente dall'astuccio.
- 6. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto agitandolo.
- Mettere nello stesso campione il contenuto di una bustina di polvere Vario Sodium Periodate F10 direttamente dall'astuccio
- 8. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto agitandolo.
- 9. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

10. Premere il tasto **TEST**.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l manganese.

Annotazioni:

- 1. Ambito di applicazione: per il manganese solubile in acqua e acque di scarico
- 2. I campioni di acqua ad elevato potere tampone o con un pH estremo possono superare la capacità di tamponamento dei reagenti e rendere necessaria un'impostazione del pH. Ai fini della conservazione, prima dell'anàlisi, il pH dei campioni acidulati deve essere impostato ad un valore compreso fra 4 e 5 con 5 mol/L (5 N) di idrossido di sodio. Non deve essere superato il valore pH di 5, poiché altrimenti possono verificarsi precipitazioni di manganese.
- 3. Interferenze:

Sostanza causa di interferenze	Limite interferenze
Calcio	oltre 700 mg/l
Cloruro	oltre 70.000 mg/l
Ferro	oltre 5 mg/l
Manganese	oltre 100.000 mg/l

4. **A** Mn

MnO,

▼ KMnO₄

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set	Ducting di polyare / 100	535100
VARIO Manganese Citrate Puffer F10 VARIO Sodiumperiodate F10	Bustina di polvere / 100 Bustina di polvere / 100	

Manganese con reagenti liquidi

0,05 - 5 mg/l Mn

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS265 (Manganese Reagent A)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 7. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS266 (Manganese Reagent B)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS304 (Manganese Reagent C)

 Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.

Zero accettato Predisporre Test Premere TEST

Count-Down 3:00

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

12. Premere il tasto TEST.

Attendere 3 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come fosfato in mg/l manganese.

Annotazioni:

1. Le seguenti sostanze interferiscono:

Calcio > 500mg/l Sodio > 500mg/l Nickel > 0.5 mg/l Ferro > 5 mg/l Cromo > 5 mg/l

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS265 – Manganese Reagent A	Reagente liquido / 30 ml	56L026530
KS266 – Manganese Reagent B	Reagente liquido / 30 ml	56L026630
KS304 – Manganese Reagent C	Reagente liquido / 30 ml	56L030430

Predisporre Zero

Premere ZERO

Molibdato con compressa

1 - 50 mg/l MoO₄

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.
- 3. Premere il tasto ZERO.
- 4. Estrarre la **cuvetta** dal pozzetto di misurazione e **svuotaria**.
- Mettere 20 ml di campione in un matraccio graduato da 100 ml.
- Aggiungere ai 20 ml di campione una compressa MOLYBDATE HR No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Aggiungere allo stesso campione una compressa MOLYBDATE HR No. 2 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 8. Sciogliere le compresse agitando con un'apposita bacchetta pulita.
- Sciacquare la cuvetta con il campione preparato e quindi riempirla fino alla tacca 10 ml.
- 10. Chiudere la cuvetta con l'apposito coperchio.
- 11. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

12. Premere il tasto TEST.

Nel display appare il risultato in mg/l molibdato.

200

- 1. E' assolutamente necessario rispettare la sequenza di introduzione delle compresse.
- 2. Alle condizioni della reazione (pH 3,8 3,9) il ferro non reagisce. Anche altri metalli presenti in concentrazioni normali per le acque di caldaie, non hanno un influsso di rilevanza.
- 3. Conversioni: $mg/l Mo = mg/l MoO_4 \times 0,6$ $mg/l Na_2MoO_6 = mg/l MoO_4 \times 1,3$
- 4. ▲ MoO₄
 Mo
 Na₂MoO₄

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack MOLYBDATE HR No. 1 / No. 2	Pastiglia / ognuno 100 Bacchetta compresa	517631BT
MOLYBDATE HR No. 1	Pastiglia / 100	513060BT
MOLYBDATE HR No. 2	Pastiglia / 100	513070BT

Molibdato LR con reagente in Powder Pack (PP)

 $0.05 - 5 \text{ mg/l MoO}_4 / 0.03 - 3 \text{ mg/l Mo}$

- Aggiungere al campione di 20 ml il contenuto di una bustina di polvere Vario Molybdenum 1 LR F20 direttamente dall'astuccio.
 - Chiudere bene il cilindro graduato con l'apposito tappo e far sciogliere la polvere capovolgendo la cuvetta stessa.

- 4. Predisporre due cuvette pulite da 24 mm. Marcare una cuvetta come cuvetta per lo zero.
- 5. Introdurre in ciascuna cuvetta 10 ml di campione pretrattato.
- 6. Chiudere bene la cuvetta per lo zero con l'apposito coperchio.
- 7. Aggiungere **0,5 ml di soluzione di reagente Vario Molybdenum 2 LR** in un cuvetta di prova.
- 8. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.

Count-Down 1 2:00 Inizio: 🗵

- Premere il tasto [].
 Attendere 2 minuti per il tempo di reazione.
- 10. Passato il tempo di reazione procedere come segue:
- 11. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione $\overline{\lambda}$.

Predisporre Zero Premere ZERO

- 12. Premere il tasto **ZERO**.
- 13. Estrarre la cuvetta dal pozzetto di misurazione.
- 14. Porre la cuvetta del campione nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

15. Premere il tasto **TEST**.

Nel display appare il risultato in mg/l molibdato.

- Le acque fortemente alcaline o acide devono essere portate in un campo del pH compreso fra 3 e 5 prima dell'anàlisi (con 0,5 mol/l di acido solforico o 1 mol/l di soda caustica).
- 2. Per evitare errori dovuti a sedimenti, prima dell'anàlisi pulire la strumentazione in vetro con una soluzione di acido cloridrico (diluito a ca. il 20%) ed infine con acqua completamente desalinizzata.
- 3. MoO₄
 Mo
 Na₂MoO₄

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set		535450
VARIO Molybdenum 1 LR F20 VARIO Molybdenum 2 LR	Bustina di polvere / 100 Reagente liquido / 50 ml	
Cilindro da mischiare	25 ml	19802650

Predisporre Zero

Premere ZERO

Molibdato / Molibdeno HR con reagente in Powder Pack (PP)

 $0.5 - 66 \text{ mg/l MoO}_{4} / 0.3 - 40 \text{ mg/l Mo}$

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere Vario Molybdenum HR 1 F10 direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.
- Aggiungere allo stesso campione il contenuto di una bustina di polvere Vario Molybdenum HR 2 F10 direttamente dall'astuccio.
- 8. Chiudere la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- Aggiungere allo stesso campione il contenuto di una bustina di polvere Vario Molybdenum HR 3 F10 direttamente dall'astuccio.
- 10. Chiudere la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.
- 11. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- Zero accettato Predisporre Test Premere TEST
- Count-Down 5:00

12. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l molibdato.

Annotazioni:

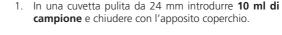
- 1. Filtrare tramite apposito filtro plissettato i campioni di acqua torbidi prima dell'anàlisi.
- 2. Il pH dei campioni con elevato potere tampone o di quelli con un pH estremo deve essere impostato, prima dell'anàlisi, ad un pH di circa 7 con 1 mol/l acido nitrico o 1 mol/l soda caustica.
- 3. Se la concentrazione è maggiore di 10 mg/l Cu, tempi di reazione superiori ai 5 minuti sono la causa di valori di misurazione troppo elevati. Una rapida esecuzione del test è quindi di particolare rilevanza.
- 4. Sostanze che possono essere causa di interferenze a partire dalla concentrazione indicata:

Aluminio	50 mg/l
Cromo	1000 mg/l
Ferro	50 mg/l
Nichel	50 mg/l
Nitriti	in tutti i quantitativi

5. MoO₄ Mo

▼ Na₂MoO₄

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set		535300
VARIO Molybdenum HR 1 F10	Bustina di polvere / 100	
VARIO Molybdenum HR 2 F10	Bustina di polvere / 100	
VARIO Molybdenum HR 3 F10	Bustina di polvere / 100	



Molibdato / Molibdeno HR con reagenti liquidi

 $1 - 100 \text{ mg/l MoO}_{4} / 0,6 - 60 \text{ mg/l Mo}$

2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

3. Premere il tasto **ZERO**.

- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS63 (Thioglycolate)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

8. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come fosfato in mg/l molibdato.

Annotazioni:

1. Il test deve essere eseguito subito dopo la campionatura. Il molibdato si deposita sulle pareti del recipiente di campionamento, portando a risultati di misurazione ridotti.

2. **M**oO₄

Мо

▼ Na₂MoO₄

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS63 – Thoiglycolate Reagent	Reagente liquido / 65 ml	56L006365

Nickel con compressa

0,1 -10 mg/l Ni

1. In una cuvetta pulita da 24 mm introdurre **10 ml di**

2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

campione e chiudere con l'apposito coperchio.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa NICKEL No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita finchè la compressa non si sarà sciolta completamente (Annotazione 1).
- 6. Aggiungere allo stesso campione **una compressa NICKEL No. 2** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa finché la compressa non si sarà sciolta.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

9. Premere il tasto **TEST**.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l nickel.

Annotazioni:

- 1. In presenza di ferro, aggiungere al campione un cucchiaio di nichel PT in polvere (dopo l'aggiunta del Nickel No. 1 in pastiglie) e mescolare.
- 2. Una concentrazione di cobalto superiore a 0,5 mg/l interferisce positivamente.
- 3. Maggiori concentrazioni di EDTA (almeno 25 mg/l) complessano il nichel, con conseguenti risultati ridotti. Gli agenti complessanti, che vengono usati per il trattamento delle acque (ad es. polifosfati) non influenzano il risultato.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.	
NICKEL No. 1	Pastiglia / 100	515630BT	
NICKEL No. 2	Pastiglia / 100	515640BT	

Nitrato con compressa e reagente polvere

0.08 - 1 mg/l N

- 1. In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotarla.
- 5. Riempire nella provetta per il test del nitrato con 20 ml di campione.
- 6. Aggiungere un micromisurino raso di reagente **NITRATE**
- 7. Chiudere bene la provetta per il test del nitrato con l'apposito coperchio e mescolare il contenuto agitandolo forte per 1 minuto.
- 8. Introdurre nei 20 ml di campione una compressa di NITRATE TEST direttamente dall'astuccio.
- 9. Chiudere bene la provetta per il test del nitrato con l'apposito coperchio e mescolare il contenuto agitandolo forte per 1 minuto.
- 10. La provetta stare in piedi. Dopo che il riducente si depositato sul fondo della provetta per il test del nitrato, la fiala viene capovolta ancora tre o quattro volte, per completare la flocculazione del riducente. Poi si lascia riposare la provetta per altri 2 minuti. Aprire la provetta e pulire con un panno pulito residui dell'agente riducente.
- 11. Nel bicchierino da 10 ml vengono lasciati decantare 24 ml della soluzione così trattata, facendo attenzione che non venga trasportato nel bicchierino da 24 ml alcun riducente.

- 12. Introdurre nei 10 ml di campione una compressa di **NITRITE LR** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 13. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finchè la compressa non si sarà sciolta.
- 14. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00 Premere il tasto TEST.
 Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione

Nel display appare il risultato in Nitrato.

Annotazioni:

- 1. Nel caso in cui il campione originale d'acqua contenga nitrito, si ottengono valori di azoto nitrato troppo alti. Per la correzione, il contenuto di azoto nitrico viene determinato con il metodo 270 e detratto dal risultato della determinazione di azoto nitrico. Il valore ottenuto indica il contenuto effettivo di azoto nitrico del campione di acqua da analizzare.
- 2. Concentrazioni di azoto nitrato, che siano superiori a 0,5 mg/l, possono essere determinate se il campione d'acqua viene prima diluito. Il risultato alfanumerico delli analisi indicato deve poi essere moltiplicato per un fattore di diluizione (diluizione p.es. 1:20, fattore di diluizione 20).
- 3. I seguenti ioni, attraverso la precipitazione, possono essere causa di interferenze: antimonio (III), ferro (III), piombo, mercurio (I), argento, cloroplatinato, metavanadato e bismuto. Gli ioni di rame (II) danno, in alcuni casi, valori bassi, dal momento che accelerano il processo di scomposizione del sale di diazonio. In practica è tuttavia improbabile che questi ioni compaiano in concentrazioni tali da provocare considerevoli errori di misurazione.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
NITRATE TEST	Polvere 15 g	465230
NITRATE TEST	Pastiglia / 100	502810
NITRITE LR	Pastiglia / 100	512310BT
Nitrate provetta		366220

Nitrato test in cuvette

1 - 30 mg/l N

Impiegare adattatore per cuvette rotonde 16 mm Ø.

 Aprire una cuvetta per reagenti chiusa con tappo bianco e riempirla con 1 ml di acqua completamente desalinizzata (cuvetta per lo zero).

- Aprire un'altra cuvetta per reagenti chiusa con tappo bianco e riempirla con 1 ml di campione (cuvetta per il campione).
- Mettere in ciascuna provetta il contenuto di una bustina di polvere Vario Nitrate Chromotropic direttamente dall'astuccio.
- Chiudere bene le cuvette con l'apposito coperchio e mescolare il contenuto capovolgendo le cuvette con cautela. (ATTENZIONE: sviluppo di calore)

Count-Down 5:00 Inizio:

5. Premere il tasto [4].

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione procedere come segue:

6. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione Λ .

Predisporre Zero Premere ZERO

- 7. Premere il tasto **ZERO.**
- 8. Estrarre la cuvetta dal pozzetto di misurazione.

Zero accettato Predisporre Test Premere TEST

10 Premere il tasto TEST.

Nel display appare il risultato come nitrato in mg/l.

Annotazioni:

- 1. Una piccola quantità di materia solida rimane eventualmente non sciolta.
- Per ottimizzare i valori di misura può essere determinata opzionalmente un valore del bianco specifico. A questo scopo, 1 ml di acqua deionizzata è usato e il risultato ottenuto viene sottratto dall valore di misura.
- 3. Conversione: $mg/l NO_3 = mg/l N \times 4,43$
- 4. ▲ N NO₃

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set	Set	535580
VARIO Nitrate Chromotropic	Bustina di polvere / 50	
VARIO Nitra X Reagent tube	Cuvette di reazione / 50	
VARIO aqua completamente desalinizzata	100 ml	

Nitrito con compressa

0.01 - 0.5 mg/l N

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Introdurre nei 10 ml di campione una compressa di NITRITE LR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto, finché la compressa non si è sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00 8. Premere il tasto TEST.

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato come nitrito in mg/l.

Annotazioni:

1. Con la precipitazione i seguenti ioni potrebbero provocare interferenze: antimonio (III), ferro (III), piombo, mercurio (I), argento, cloroplatinato, metavanadato e bismuto.

Gli ioni di rame (II) producono, in determinate condizioni, valori inferiori poiché accelerano la scomposizione del sale di diazonio.

Nella pratica è però improbabile che tali ioni si presentino in concentrazioni tali da provocare errori di misurazione considerevoli.

2. Conversione:

 $mg/l NO_2 = mg/l x 3,29$

Reagente / Accessori	Forma reagente/Quantità	Cod. art.	
NITRITE LR	Pastiglia / 100	512310BT	

Nitrito LR con reagente in Powder Pack (PP)

0.01 - 0.3 mg/l N

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere al campione di 10 ml il contenuto di una bustina di polvere Vario Nitri 3 direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto agitandolo.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

Count-Down 20:00 8. Premere il tasto TEST.

Attendere 20 minuti per il tempo di reazione.

Passato il tempo di reazione procedere nel modo seguente.

Nel display appare il risultato in mg/l nitrito.

Annotazioni:

1. Interferenze

- Le sostanze altamente ossidanti e riducenti causano interferenze in tutti i quantitativi.
- Gli ioni di rame e ferro (II) sono la causa di risultati ridotti.
- Gli ioni di antimonio, piombo, cloroplatinato, ferro (III), oro, metavanadato, mercurio, argento e bismuto provocano interferenze a causa di guasti.
- Se la concentrazione dei nitrati è molto elevata (> 100 mg/l N) viene sempre notata una piccola quantità di nitriti. Ciò potrebbe essere provocato da una bassa riduzione dei nitrati in nitriti che si verifica in modo spontaneo o nel corso della determinazione.
- 2. N NO₂

Reagente / Accessori	Forma reagente/Quantità	Cod. art.	
Vario Nitri 3 F10	Bustina di polvere / 100	530980	

Ossigeno attivo* con compressa

 $0.1 - 10 \text{ mg/l } O_{2}$

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere una compressa DPD No. 4 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si sarà sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

8. Premere il tasto **TEST.**

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l ossigeno attivo.

Annotazioni:

- * Con ossigeno attivo si intende un disinfettante di uso comune a base di "ossigeno" ottenuto dalla preparazione dell'acqua per la piscina.
- 1. Nella predisposizione del campione è necessario evitare i gas di scarico dell'ossigeno, per es. pipettando o agitando la cuvetta.
- 2. L'anàlisi deve avvenire immediatamente dopo il prelievo del campione.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.	
DPD No. 4	Pastiglia / 100	511220BT	

Ossigeno, sciolto con Vacu-vials® K-7553

 $10 - 800 \mu g/l O_{2}$

Impiegare adattatore per cuvette rotonde 13 mm Ø.

 Porre l'ampolla per lo zero in dotazione nel pozzetto di misurazione.

Predisporre Zero Premere ZERO

- Premere il tasto ZERO.
- 3. Estrarre l'ampolla dal pozzetto di misurazione.
- Far scorrere, dal basso verso l'alto, per alcuni minuti nel contenitore del campione l'acqua da analizzare per rimuovere dalla superficie eventuali bolle d'aria presenti.

- 5. Una volta che il contenitore è completamente lavato premere un'ampolla Vacu-vials® in uno degli angoli in basso del contenitore del campione. Aumentando lievemente la pressione la punta dell'ampolla si rompe.
 - Il campione di acqua riempie l'ampolla. Nell'ampolla rimane un volume ridotto di gas inerte.
- 6. Togliere immediatamente dal contenitore per i campioni l'ampolla con la punta verso il basso. Poiché la soluzione reagente ha una densità maggiore rispetto all'acqua è importante togliere l'ampolla dal contenitore per i campioni entro 5 secondi per evitare perdite di soluzione reagente.
- Chiudere l'apertura con un dito coperto protetto da materiale plastico in modo da impedire all'aria di penetrare dall'esterno.

Capovolgere ripetutamente l'ampolla e quindi asciugare l'esterno.

8. Porre l'ampolla nel pozzetto di misurazione.

Zero accettato Predisporre Test Premere TEST 9 Premere il tasto **TEST**

Nel display appare il risultato in µg/l ossigeno.

Annotazioni:

- Con questo metodo si tratta di un prodotto CHEMetrics. Il campo di misurazione indicato in questo fotometro e le lunghezze d'onde utilizzate possono però discostarsi dai valori CHEMetrics.
- 2. Prima di eseguire il test leggere assolutamente le istruzioni originali per operare ed il foglio dei dati di sicurezza allegato al kit per il test (MSDS disponibile anche nel sito internet www.chemetrics.com).
- 3. Conservare Vacu-vials® al buio a temperatura ambiente.
- 4. Vacu-vials® è un marchio registrato della Ditta CHEMetrics, Inc. / Calverton, U.S.A.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Vacu-vials® / CHEMetrics K-7553	Test-Kit / 30	380450
13-mm-adattatore Ø		19802192

Ozono con compressa

 $0.02 - 2 \text{ mg/l O}_{3}$

Ozono

>> oltre a Cl senza Cl

Nel display appare la seguente possibilità di scelta:

>> oltro a Cl

per la determinazione di ozono oltre al cloro

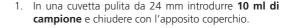
>> senza Cl

per la determinazione di ozono in assenza di cloro

Con i tasti freccia [A] e [V] selezionare la determinazione desiderata e confermare con [L].

Annotazioni:

- 1. Pulizia delle cuvette:
 - Poiché molti detergenti per la casa (per es. detersivo per stoviglie) contengono agenti di riduzione, nella determinazione dell'ozono si possono avere risultati inferiori. Per escludere tali errori di misurazione gli apparecchi di vetro devono essere privati del cloro depositato. A tale scopo gli apparecchi in vetro vengono conservati per un'ora in una soluzione di ipoclorito di sodio (0,1 g/l) e quindi risciacquati abbondantemente con acqua completamente desalinizzata.
- 2. Nella predisposizione del campione è necessario evitare i gas di scarico di ozono, per es. pipettando o agitando la cuvetta. L'anàlisi deve avvenire immediatamente dopo il prelievo del campione.
- 3. Lo sviluppo del colore DPD avviene con un pH compreso tra 6,2 6,5. La compressa del reagente contiene quindi un tampone per l'impostazione del pH. Le acque fortemente alcaline o acide devono tuttavia essere portate in un campo del pH compreso fra 6 e 7 prima dell'anàlisi (con 0,5 mol/l di acido solforico o 1 mol/l di soda caustica).
- 4. Concentrazioni superiori a 6 mg/l ozono nell'utilizzo delle compresse possono portare a risultati entro un campo di misurazione fino a 0 mg/l. In tal caso il campione di acqua deve essere diluito con acqua priva di ozono e la misurazione va ripetuta (test di plausibilità).
- 5. Se in diversi risultati del test viene visualizzato????, vedi pag. 356.
- Tutti i mezzi di ossidazione presenti nei campioni reagiscono come l'ozono, fattore che determina risultati plurimi.



Ozono, in presenza di cloro con compressa

 $0.02 - 2 \text{ mg/l } O_{2}$

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la **cuvetta** dal pozzetto di misurazione e **svuotare fino a far rimanere poche gocce.**
- Aggiungere una compressa DPD No. 1 ed una compressa DPD No. 3 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Zero accettato Predisporre T1 Premere TEST

Count-Down 2:00

9. Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione

- Estrarre la cuvetta dal pozzetto di misurazione, pulire accuratamente la cuvetta ed il relativo coperchio.
- Riempire una seconda cuvetta pulita con 10 ml di campione.
- 12. Aggiungere **una compressa GLYCINE** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.

- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non sarà sciolta.
- 14. Aggiungere una compressa DPD No. 1 ed una compressa DPD No. 3 direttamente dall'astuccio nella prima cuvetta pulita e schiacciarla con una bacchetta pulita.
- 15. Mettere il contenuto della seconda cuvetta (soluzione di Glycine) nella cuvetta preparata (punto 14).
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

T1 accettato Predisporre T2 Premere TEST

Count-Down 2:00 18. Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

*,** mg/l O₃
*,** mg/l Cl tot

Nel display appare il risultato in:

mg/l ozono mg/l de cloro totale

Annotazioni:

vedi pagina 223

Reagente / Accessori	Forma reagente/Quantità	Cod. art.	
Combi Pack DPD No. 1 / No. 3	Pastiglia / ognuno 100 Bacchetta compresa	517711BT	
DPD No. 1	Pastiglia / 100	511050BT	
DPD No. 3	Pastiglia / 100	511080BT	
GLYCINE	Pastiglia / 100	512170BT	

Ozono, in assenza de cloro con compressa

 $0.02 - 2 \text{ mg/l } O_{2}$

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la **cuvetta** dal pozzetto di misurazione e **svuotare fino a far rimanere poche gocce.**
- Aggiungere una compressa DPD No. 1 ed una compressa DPD No. 3 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Riempire la cuvetta con il campione fino alla tacca 10 ml.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00 9. Premere il tasto **TEST.**

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l ozono.

Annotazioni:

vedi pagina 223

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack DPD No. 1 / No. 3	Pastiglia / ognuno 100 Bacchetta compresa	517711BT
DPD No. 1	Pastiglia / 100	511050BT
DPD No. 3	Pastiglia / 100	511080BT

pH LR 5,2 – 6,8 con compressa

1. In una cuvetta pulita da 24 mm introdurre **10 ml di campione** e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa BROMOCRESOLPURPLE Photometer direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa finché la compressa non si sarà sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto **TEST**.

Nel display appare il risultato come valore pH.

Annotazioni:

- Per la determinazione fotometrica devono essere utilizzate solo le compresse BROMOCRESOLPURPLE con scritta nera sulla pellicola contrassegnate con il termine PHOTOMETER.
- 2. I valori pH inferiori a 5,2 e superiori a 6,8 possono determinare risultati compresi nell'ambito di misurazione. Si consiglia un test di plausibilità (metro pH).
- 3. L'esattezza dei valori pH con la determinazione colorimetrica dipende da varie condizioni marginali (capacità tampone del campione, contenuto salino ecc.).
- 4. Errore di sale

Correzione del valore misurato (valori medi) per campioni con un contenuto salino pari a:

Indicatore	Contenuto salino del campione		
Porpora bromo cresolo	1 molare	2 molare	3 molare
	– 0,26	– 0,33	– 0,31

I valori di Parson e Douglas (1926) si riferiscono all'utilizzo di tamponi Clark e Lubs. 1 mole NaCl = 58.4 g/l = 5.8 %

Reagente / Accessori	Forma reagente/Quantità	Cod. art.	
BROMOCRESOLPURPLE PHOTOMETER	Pastiglia / 100	515700BT	

pH 6,5 – 8,4 con compressa

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa PHENOL RED PHOTOMETER direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si sarà sciolta.
- Porre la cuvetta nel pozzetto di misurazione. Posizione X.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato come pH.

Annotazioni:

- Per la determinazione fotometrica del pH devono essere utilizzate esclusivamente le compresse PHENOL RED con stampigliatura nera sulla pellicola, che sono contrassegnate con il termine PHOTOMETER.
- 2. Campioni di acqua con durezza del carbonato* ridotta possono determinare pH errati.
 *Ks4,3 < 0,7 mmol/l ≙ Alcalinità totale < 35 mg/l CaCO₂
- 3. pH inferiori a 6,5 e superiori a 8,4 possono determinare risultati nell'ambito del campo di misurazione. Si consiglia un test di plausibilità (metro pH).
- 4. Errore di sale

A valori di salinità a 2 g / l alcun errore significativo di sale è prevedibile a causa delle valori di salinità dell reagente. A valori di salinità elevate, i valori misurati sono da correggere come segue:

Contenuto salino del campione	30 g/l (acqua marina)	60 g/l	120 g/l	180 g/l
Correzione	- 0,15 ¹⁾	- 0,21 ²⁾	- 0,26 ²⁾	- 0,29 ²⁾

¹⁾ in conformità con Kolthoff (1922)

²⁾ in conformità con Parson und Douglas (1926)

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
PHENOL RED PHOTOMETER	Pastiglia / 100	511770BT

pH 6,5 - 8,4 con reagente liquido

1. In una cuvetta pulita da 24 mm introdurre 10 ml di **campione** e chiudere con l'apposito coperchio.

2. Porre la cuvetta nel pozzetto di misurazione. Posizione X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- 5. Tenere il flacone contagocce in verticale e, premendo lentamente, far cadere gocce della stessa dimensione nella cuvetta:

6 gocce di soluzione PHENOL RED

- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato **Predisporre Test Premere TEST**

8. Premere il tasto TEST.

Nel display appare il risultato come pH.

Annotazioni:

- 1. Nell'analisi dell'acqua clorata il contenuto di cloro residuo esistente può influire sulla reazione cromatica del reagente liquido. E' possibile ovviare a tale evento senza problemi per la misurazione del pH aggiungendo alla soluzione del campione un piccolo cristallo di tiosolfato di sodio (S₂O₃Na₂ · 5 H₂O), prima di aggiungere la soluzione di PHENOL RED. Le compresse di PHENOL RED contengono già tiosolfato.
- 2. A causa della diversa dimensione delle gocce il risultato rilevato può presentare grandi differenze rispetto all'utilizzo delle compresse. Utilizzando una pipetta (0,18 ml corrispondono a 6 gocce) tale differenza può essere minimizzata.
- 3. In seguito all'utilizzo il flacone contagocce deve essere immediatamente richiuso con il tappo dello stesso colore.

4. Conservare il reagente al fresco ad una temperatura compresa fra +6°C e +10°C.

5. Errore di sale

A valori di salinità elevate, i valori misurati sono da correggere come segue:

Contenuto salino del campione	30 g/l (acqua marina)	60 g/l	120 g/l	180 g/l
Correzione	- 0,15 ¹⁾	- 0,21 ²⁾	- 0,26 ²⁾	- 0,29 ²⁾

¹⁾ in conformità con Kolthoff (1922)

²⁾ in conformità con Parson und Douglas (1926)

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
PHENOL RED soluzione	Reagente liquido / 15 ml	471040

pH HR 8,0 – 9,6 con compressa

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa THYMOLBLUE Photometer direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa finché la compressa non si sarà sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto **TEST**.

Nel display appare il risultato come valore pH.

Annotazioni:

- Per la determinazione fotometrica devono essere utilizzate solo le compresse THYMOLBLUE con scritta nera sulla pellicola contrassegnate con il termine PHOTOMETER.
- 2. I valori pH inferiori a 9,0 e superiori a 9,6 possono determinare risultati compresi nell'ambito di misurazione. Si consiglia un test di plausibilità (metro pH).
- 3. L'esattezza dei valori pH con la determinazione colorimetrica dipende da varie condizioni marginali (capacità tampone del campione, contenuto salino ecc.).
- 4. Errore salino

Correzione del valore misurato (valori medi) per campioni con un contenuto salino pari a:

Indicatore	Contenuto salino del campione		
Blu timolo	1 molare	2 molare	3 molare
	– 0,22	– 0,29	– 0,34

l valori di Parson e Douglas (1926) si riferiscono all'utilizzo di tamponi Clark e Lubs. 1 mole NaCl = 58.4~g/l = 5.8~%

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
THYMOLBLUE PHOTOMETER	Pastiglia / 100	515710

PHMB (Biguanide) con compressa

2 - 60 mg/l PHMB

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa PHMB PHOTOMETER direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si sarà sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in mg/l PHMB.

Annotazioni:

- 1. Dopo aver terminato la determinazione le cuvette devono essere immediatamente risciacquate e pulite con uno spazzolino.
- 2. In caso di utilizzo prolungato le cuvette e la bacchetta possono tingersi di blu. Tale colorazione può essere rimossa pulendo le cuvette e la bacchetta con un detergente da laboratorio (vedi Capitolo 1.2.2 Pulizia delle cuvette e degli accessori impiegati per l'anàlisi). Infine sciacquare a fondo con acqua del rubinetto ed infine con acqua completamente desalinizzata.
- 3. Con questa determinazione viene influenzato il risultato dell'anàlisi della durezza e della capacità acida del campione d'acqua. Questo mètodo viene regolato utilizzando un'acqua con la seguente composizione:

durezza calcio: 2 mmol/l capacità acido: 2,4 mmol/l

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
PHMB PHOTOMETER	Pastiglia / 100	516100BT

Polyacrylate/Poliacrilato con reagente liquido

1 - 30 mg/l

- 1. In una cuvetta pulita da 24 mm introdurre **10 ml di campione** e chiudere fortemente con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- 5. Nel campione da 10 ml introdurre 1 ml (25 gocce) KS255 (Polyacrylate reagente 1). (Annotazioni 1)
- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Nel campione da 10 ml introdurre 1 ml (25 gocce) KS256 (Polyacrylate reagent 2).
- 8. Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- 9. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00

10. Premere il tasto **TEST**.

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione

Nel display appare il risultato in mg/l Acido poliacrilico 2′100 sale di sodio.

Annotazioni:

- 1. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta.
- 2. Se con reagenti ed un volume di campione correttamente dosati non si produce alcuna torbidità o se la torbidità è solo lieve, è necessaria una concentrazione del campione per la determinazione di poliacrilato/polimeri. Per ottenere la concentrazione desiderata vedere la pagina successiva.
- 3. I risultati rilevati potrebbero essere differenti se nei campioni sono presenti impurità. In tali casi è necessario risolvere il problema. Vedere in proposito la pagina successiva.
- 4. Il metodo è stato avviato utilizzando acido poliacrilico 2'100 sale di sodio nell'intervallo 1 30mg/l. Altri poliacrilati/polimeri determinano risultati differenti modificando l'intervallo di misurazione.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set		56R019165
KS255 (Polyacrylate Reagenz 1)	Reagente liquido / 65 ml	56L025565
KS256 (Polyacrylate Reagenz 2)	Reagente liquido / 65 ml	56L025665

Concentrazione

Per determinare la concentrazione desiderata viene applicato lo stesso metodo utilizzato per eliminare eventuali elementi di disturbo. Nella fase 2, viene tuttavia utilizzato un volume di campione maggiore di acqua desalinizzata. Per il calcolo della concentrazione di volume originale deve essere pertanto considerato un fattore di concentrazione:

Se si utilizza un campione da 50 ml il fattore di concentrazione è pari a 20/50 = 0.4Se si utilizza un campione da 100 ml il fattore di concentrazione è pari a 20/100 = 0.2

Il volume del campione può essere aumentato in base alle necessità per ottenere una concentrazione del poliacrilato/polimero sufficiente per l'analisi.

Esempio:

Con un valore pari a 20 mg/l ed un volume del campione utilizzato per la concentrazione di 50 ml, la concentrazione originale del campione originale si calcola in questo modo: 20 * 0.4 = 8 mg/l.

Nota:

I campioni con un contenuto superiore a 10.000 TDS, devono essere diluiti prima di riempire la cartuccia. Tale diluizione deve essere tenuta in considerazione anche ai fini del calcolo del fattore di concentrazione

Preparazione della cartuccia:

- 1. Rimuovere lo stantuffo di una siringa da 20 ml e fissare il cilindro alla cartuccia C18.
- 2. Introdurre nel cilindro della siringa 5 ml KS336 (propan-2-olo) e far scorrere goccia a goccia il contenuto nella cartuccia mediante lo stantuffo. Smaltire l'eluato.
- 3. Togliere nuovamente lo stantuffo e riempire il cilindro della siringa con 20 ml di acqua desalinizzata. Mediante lo stantuffo, far scorrere goccia a goccia il contenuto nella cartuccia. Smaltire l'eluato. La cartuccia è ora pronta all'uso e può essere utilizzata.

Risoluzione di problemi:

- 1. Introdurre esattamente 20 ml di campione in una provetta da 100 ml e diluire con acqua desalinizzata fino a raggiungere ca. 50 60 ml.
- 2. Aggiungere al campione, KS173 (2,4-dinitrofenolo) in gocce, fino ad ottenere una colorazione lievemente giallastra.
- 3. Quindi aggiungere KS183 (acido nitrico), finché la colorazione non scompare.
- 4. Rimuovere lo stantuffo dal cilindro di una siringa da 60 ml e collegare saldamente la cartuccia C18 predisposta (vedere Preparazione della cartuccia) con l'estremità del cilindro.
- 5. Trasferire i 50 60 ml di campione dalla provetta al cilindro della siringa. Fissare nuovamente lo stantuffo, premere verso il basso e lasciar cadere il campione goccia a goccia nella cartuccia. Non premere lo stantuffo esercitando una forza eccessiva per eluire rapidamente il campione. Rimuovere lo stantuffo, ma lasciare fissata la cartuccia C18. Gettare l'intero eluato.
- 6. Mediante la siringa da 20 ml introdurre nel cilindro da 60 ml fissato alla cartuccia 20 ml di acqua desalinizzata. Aggiungere 1 ml (25 gocce) di KS255 (Polyacrylate Reagent 1). Mescolare il contenuto della siringa, capovolgendo con cautela.
- 7. Fissare nuovamente lo stantuffo, premere verso il basso e lasciar cadere il campione goccia a goccia nella cartuccia. Non premere lo stantuffo esercitando una forza eccessiva per eluire rapidamente il campione. Raccogliere l'eluato in un recipiente pulito.
- 8. Introdurre 10 ml di eluato in una cuvetta da 24 mm.
- 9. Eseguire la misurazione con questo campione, come descritto nella descrizione del metodo (vedere pag. 238).

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS336 (Propan-2-ol) C18-cartuccia	Reagente liquido / 65 ml	56L033665 AS-K22811-KW
KS173 (2,4 Dinitrophenol)	Reagente liquido / 65 ml	56L017365
KS183 (Nitric Acid)	Reagente liquido / 65 ml	56L018365

Potassio con compressa

0.7 - 16 mg/l K

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Introdurre nei 10 ml di campione una compressa di POTASSIUM T direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finchè la compressa non si sarà sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in mg/l potassio.

Annotazioni:

1. Il potassio provoca un intorbidamento finemente distribuito con aspetto lattescente. Non ricondurre le eventuali particelle singole alla presenza di potassio.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Potassium T	Pastiglia / 100	515670

Rame con compressa

0,05 - 5 mg/l Cu

Rame >>

diff lib. tot. Nel display appare la seguente possibilità di scelta:

>> diff

per la determinazione differenziata di rame libero, combinato e totale

>> lib.

per la determinazione di rame libero

>> tot.

per la determinazione di rame totale

Con i tasti freccia $[\blacktriangle]$ e $[\blacktriangledown]$ selezionare la determinazione desiderata e confermare con $[\lrcorner]$.

Annotazioni:

Se in diversi risultati del test viene visualizzato ??? , vedi pag. 356.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack COPPER No. 1 / No. 2	Pastiglia / ognuno 100 Bacchetta compresa	517691BT
COPPER No. 1	Pastiglia / 100	513550BT
COPPER No. 2	Pastiglia / 100	513560BT

Predisporre Zero Premere ZERO

Rame, determinazione differenziata con compressa

0,05 - 5 mg/l Cu

- 1. In una cuvetta pulita da 24 mm introdurre 10 ml di **campione** e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- 5. Aggiungere ai 10 ml di campione una compressa COPPER No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre T1 **Premere TEST**

- 8. Premere il tasto TEST.
- 9. Estrarre la cuvetta dal pozzetto di misurazione.
- 10. Aggiungere allo stesso campione una compressa COPPER No. 2 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 11. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 12. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

T1 accettato Predisporre T2 **Premere TEST**

13. Premere il tasto TEST.

*, ** mg/l Cu lib. *,** mg/l Cu comb.

*, ** mg/l Cu tot.

Nel display appare il risultato in: mg/l rame libero

mg/l rame combinato mg/l rame totale

Rame, libero con compressa

0,05 - 5 mg/l Cu

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO.**
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Ai 10 ml di campione aggiungere una compressa COPPER No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- Porre la cuvetta nel pozzetto di misurazione. Posizione X.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in mg/l rame libero.

Rame, totale con compressa

0,05 - 5 mg/l Cu

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa COPPER No. 1 ed una compressa COPPER No. 2 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in mg/l rame totale.

Rame con reagenti liquidi

0,05 - 4 mg/l Cu

Rame >> (

diff lib. tot. Nel display appare la seguente possibilità di scelta:

>> diff

per la determinazione differenziata di rame libero, combinato e totale

>> lib.

per la determinazione di rame libero

>> tot.

per la determinazione di rame totale

Con i tasti freccia $[\blacktriangle]$ e $[\blacktriangledown]$ selezionare la determinazione desiderata e confermare con $[\bot]$.

- 1. Per il corretto dosaggio, utilizzare il cucchiaio dosatore fornito con i reagenti.
- 2. Se in diversi risultati del test viene visualizzato ??? , vedi pag. 356.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS240 – Coppercol Reagent 1	Reagente liquido / 30 ml	56L024030
KS241 – Coppercol Reagent 2	Reagente liquido / 30 ml	56L024130
KP242 – Coppercol Reagent 3	Polvere / 10 g	56L024210
COPPER No. 2	Pastiglia / 100	513560BT

Rame, determinazione differenziata con reagenti liquidi

0.05 - 4 mg/l Cu

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3 Premere il tasto **ZERO**
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS240 (Coppercol Reagent 1)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS241 (Coppercol Reagent 2)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Aggiungere un cucchiaio dosatore di KP242 (Coppercol Reagent 3) (Annotazione 1, pag. 248).
- 10. Chiudere bene la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.

Zero accettato Predisporre T1 Premere TEST

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Zero accettato Predisporre T1 Premere TEST

- 12. Premere il tasto **TEST.**
- 13. Estrarre la cuvetta dal pozzetto di misurazione.
- 14. Aggiungere allo stesso campione **una compressa COPPER No. 2** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 15. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 16. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

T1 accettato Predisporre T2 Premere TEST

17. Premere il tasto TEST.

*,** mg/l Cu lib. *,** mg/l Cu comb. *,** mg/l Cu tot. Nel display appare il risultato in: mg/l rame libero mg/l rame combinato mg/l rame totale

Rame, libero con reagenti liquidi

0,05 - 4 mg/l Cu

Ø 24 mm

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS240 (Coppercol Reagent 1)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS241 (Coppercol Reagent 2)

- 8. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Aggiungere un cucchiaio dosatore di KP242 (Coppercol Reagent 3) (Annotazione 1, pag. 248).
- 10. Chiudere bene la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

12. Premere il tasto TEST.

Nel display appare il risultato in mg/l rame libero.

Rame, totale con reagenti liquidi

0,05 - 4 mg/l Cu

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS240 (Coppercol Reagent 1)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

10 gocce KS241 (Coppercol Reagent 2)

- 8. Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Aggiungere un cucchiaio dosatore di KP242 (Coppercol Reagent 3) (Annotazione 1, pag. 248).
- 10. Chiudere bene la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.

- 11. Aggiungere allo stesso campione **una compressa COPPER No. 2** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 12. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 13. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Zero accettato Predisporre Test Premere TEST

14. Premere il tasto TEST.

Nel display appare il risultato in mg/l rame totale.

Rame, libero (Annotazione 1) con reagente in Powder Pack (PP)

0.05 - 5 mg/l Cu

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere ai 10 ml di campione il contenuto di una bustina di polvere VARIO Cu 1 F10 direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto agitandolo la cuvetta stessa (Anotazione 3).
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

8. Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l rame.

- 1. Per la determinazione del rame totale è necessaria una decomposizione.
- 2. Prima dell'anàlisi le acque fortemente acide (pH 2 o inferiore) devono essere portate in un campo del pH compreso fra 4 e 6 (con 8 mol/l di soluzione di idrossido di potassio KOH).
 - Attenzione: per i valori pH superiori a 6 il rame può precipitare.
- 3. La precisione non viene influenzata dalla polvere non sciolta.
- 4. Problemi:

Cianuro, CN ⁻	Il cianuro impedisce uno sviluppo completo del colore. Mescolare 10 ml di campione con 0,2 ml di formaldeide ed attendere 4 minuti per il tempo di reazione (il cianuro viene mascherato). Infine eseguire il test come descritto. Moltiplicare il risultato per 1,02 per tenere in considerazione la diluizione del campione con formaldeide.
Argento, Ag+	La presenza di un eventuale intorbidamento che si colora di nero può essere provocato dall'argento. Mescolare 75 ml di campione con 10 gocce di una soluzione di cloruro di potassio satura e quindi filtrare con filtro fine. Utilizzare 10 ml di campione filtrato per l'esecuzione del test.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
VARIO Cu 1 F10	Bustina di polvere / 100	530300

Silica con compressa

0,05 - 4 mg/l SiO₂

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere una compressa SILICA No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.

Count-Down 5:00 Inizio: 🗐

7. Premere il tasto [4].

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione è necessario procedere nel modo sequente:

- 8. Aggiungere allo stesso campione **una compressa SILICA PR** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Aggiungere allo stesso campione una compressa SILICA No. 2 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.

11. Porre la cuvetta nel pozzetto di misurazione. Posizione \overline{X} .

Zero accettato Predisporre T1 Premere TEST

Count-Down 2:00

12. Premere il tasto TEST.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l biossido di silicio.

- 1. E' assolutamente necessario rispettare la sequenza di introduzione delle compresse.
- 2. I fosfati non creano problemi nelle condizioni di reazione indicate.
- 3. Conversione: $mg/l Si = mg/l SiO_2 \times 0,47$
- 4. \triangleleft SiO₂ Si

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Combi Pack SILICA No. 1 / No. 2	Pastiglia / ognuno 100 Bacchetta compresa	517671BT
SILICA No. 1	Pastiglia / 100	513130BT
SILICA No. 2	Pastiglia / 100	513140BT
SILICA PR	Pastiglia / 100	513150BT

Silica LR con Powder Pack e reagente liquido

 $0.1 - 1.6 \text{ mg/l SiO}_{2}$

Predisporre due cuvette pulite da 24 mm. Marcare una cuvetta come cuvetta per lo zero.

- 1. Mettere in ciascuna cuvetta 10 ml di campione.
- 2. Mettere in ciascuna cuvetta 0,5 ml di soluzione reagente Vario Molybdate 3.
- 3. Chiudere le cuvette con l'apposito coperchio e mescolare il contenuto capovolgendo le cuvette stesse (Annotazione 1).

Count-Down 1 4:00 Inizio:

4. Premere il tasto [4].

Attendere **4 minuti per il tempo di reazione** . (Annotazione 2)

Passato il tempo di reazione procedere come segue:

- Aggiungere a ciascuna cuvetta il contenuto di una bustina di polvere Vario Silica Citric Acid F10 direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.

Count-Down 2 1:00 Inizio: 🕹

7. Premere il tasto [4].

Attendere **1 minuto per il tempo di reazione.** (Annotazione 3)

Passato il tempo di reazione procedere come segue:

- 8. Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- Mettere nella cuvetta per il campione il contenuto di una bustina di polvere Vario LR Silica Amino Acid E F10 direttamente dall'astuccio
- 10. Chiudere la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.

Predispo	rre	Zero
Premere	ZEI	RO

Count-Down	
2:00	

11. Premere il tasto **ZERO**. (La cuvetta per lo zero è già nel pozzetto – vedi punto 8.)

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione avviene immediatamente la misurazione per lo zero.

- 12. Estrarre la cuvetta dal pozzetto di misurazione.
- 13. Porre la cuvetta del campione nel pozzetto di misurazione. Posizione χ .

Zero accettato Predisporre Test Premere TEST

14. Premere il tasto **TEST**.

Nel display appare il risultato in mg/l silice.

Annotazioni:

- Le cuvette devono essere chiuse con l'apposito coperchio immediatamente dopo aver aggiunto la soluzione reagente Vario Molybdate 3, poiché altrimenti si potrebbero avere risultati inferiori
- 2. Il tempo di reazione indicato di 4 minuti si riferisce ad una temperatura del campione pari a 20°C. Per 30°C è necessario rispettare un tempo di reazione di 2 minuti, per 10°C di 8 minuti.
- 3. Il tempo di reazione indicato di 1 minuto si riferisce ad una temperatura del campione pari a 20°C. Per 30°C è necessario rispettare un tempo di reazione di 30 secondi, per 10°C di 2 minuti.
- 4. Problemi:

Sostanza	Problema
Ferro	è di disturbo se presente in grandi quantità
Fosfato	fino a 50 mg/l PO_4 il fosfato non crea problemi a 60 mg/l PO_4 il problema è di ca. il $-$ 2 % a 75 mg/l PO_4 il problema è di ca. il $-$ 11 %
Solfuri	creano problemi se presenti in qualsiasi quantità

Occasionalmente i campioni di acqua contengono forme di acido silicico che reagiscono molto lentamente con il molibdato. Il tipo esatto di tali forme non è attualmente noto. Con un pretrattamento con bicarbonato di sodio e quindi con acido solforico, queste possono essere trasformate in forme reattive (descrizione in "Standard Methods for the Examination of Water and Wastewater" in "Silica-Digestion with Sodium Bicarbonate").

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set		535690
VARIO LR Silica Amino Acid F10	Bustina di polvere / 100	
VARIO Silica Citric Acid F10	Bustina di polvere / 200	
VARIO Molybdate 3	Reagente liquido / 2x 50 ml	

Silica HR con reagente in Powder Pack (PP)

1 - 90 mg/l SiO₃

Ø 24 mm

Predisporre Zero Premere ZERO

Count-Down 1 10:00 Inizio:

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione (Annotazione 1) e chiudere con l'apposito coperchio.

- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.
- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione il contenuto di una bustina di polvere Vario Silica HR Molybdate F10 direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.
- Aggiungere allo stesso campione il contenuto di una bustina di polvere Vario Silica HR Acid Rgt. F10 direttamente allo stesso campione di acqua (Annotazione 2).
- 8. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Premere il tasto [].
 Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione è necessario procedere nel modo sequente:

- Aggiungere allo stesso campione il contenuto di una bustina di polvere Vario Silica Citric Acid F10 direttamente dall'astuccio (Annotazione 3).
- 11. Chiudere la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.
- Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.
- 13. Premere il tasto **TEST**.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l silice.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

Annotazioni:

- 1. La temperatura dei campioni deve essere compresa fra 15°C e 25°C.
- 2. Se sono presenti la silice o il fosfato si sviluppa un colore giallo.
- 3. L'eventuale colore giallo determinato dalla presenza di fosfato viene eliminato procedendo come segue (vedi sotto).
- 4 Problemi:

Sostanza	Problema
Ferro	è di disturbo se presente in grandi quantità
Fosfato	fino a 50 mg/l PO_4 il fosfato non crea problemi a 60 mg/l PO_4 il problema è di ca. il $-$ 2 % a 75 mg/l PO_4 il problema è di ca. il $-$ 11 %
Solfuri	creano problemi se presenti in qualsiasi quantità

Occasionalmente i campioni di acqua contengono forme di acido silicico che reagiscono molto lentamente con il molibdato. Il tipo esatto di tali forme non è attualmente noto. Con un pretrattamento con bicarbonato di sodio e quindi con acido solforico, queste possono essere trasformate in forme reattive (descrizione in "Standard Methods for the Examination of Water and Wastewater" in "Silica-Digestion with Sodium Bicarbonate").

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
Set		535700
VARIO Silica HR Molybdate F10	Bustina di polvere / 100	
VARIO Silica HR Acid Rgt F10	Bustina di polvere / 100	
VARIO Silica HR Citric Acid F10	Bustina di polvere / 100	

Silica con reagenti liquidi e polvere

0,1-8 mg/l SiO₂

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

20 gocce KS104 (Silica Reagent 1)

 Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.

Count-Down 5:00

- 7. Attendere **5 minuti per il tempo di reazione**.
- 8. Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

20 gocce KS105 (Silica Reagent 2)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Aggiungere un cucchiaio dosatore di KP106 (Silica Reagent 3) (Annotazione 1).
- 11. Chiudere bene la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

13. Premere il tasto TEST.

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l silice.

- 1. Per il corretto dosaggio, utilizzare il cucchiaio dosatore fornito con i reagenti.
- 2. Per ottenere risultati accurati, la temperatura del campione deve essere mantenuta da 20°C a 30°C .
- 3. Con una temperatura inferiore ai 20°C non avviene alcuna reazione completa, con consequenti risultati ridotti.
- 4. SiO₂ Si

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS104 – Silica Reagent 1 KS105 – Silica Reagent 2	Reagente liquido / 65 ml	56L010465 56L010565
KP106 – Silica Reagent 3	Reagente liquido / 65 ml Polvere / 10 g	56P010610

Solfato con compressa

5 - 100 mg/l SO₄

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa SULFATE T direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

Count-Down 2:00

8. Premere il tasto **TEST**.

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l solfato.

Annotazioni:

1. Il solfato provoca una torbidità finemente distribuita con aspetto del latte.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
SULFATE T	Pastiglia / 100	515450BT

Solfato con reagente in Powder Pack (PP)

5 - 100 mg/l SO₄

- 1. In una cuvetta pulita da 24 mm introdurre **10 ml di** campione e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

3. Premere il tasto ZERO.

4. Estrarre la cuvetta dal pozzetto di misurazione.

- Aggiungere ai 10 ml di campione il contenuto di una bustina di polvere Vario Sulpha 4 / F10 direttamente dall'astuccio.
- 6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione \overline{X} .

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

8. Premere il tasto TEST.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l solfato.

Annotazioni:

1. Il solfato provoca una torbidità finemente distribuita.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
VARIO Sulpha 4 / F10	Bustina di polvere / 100	532160

Solfito con compressa

0,1 - 5 mg/l SO₃

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa SULFITE LR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa finché la compressa non si è sciolta.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 5:00

8. Premere il tasto **TEST**.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l solfito.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
SULFITE LR	Pastiglia / 100	518020BT

Solfuro con compressa

 $0.04 - 0.5 \text{ mg/l S}^{-1}$

 In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Aggiungere ai 10 ml di campione una compressa SULFIDE No. 1 direttamente dall'astuccio e schiacciarla e far sciogliere con una bacchetta pulita.
- 6. Aggiungere allo stesso campione **una compressa SULFIDE No. 2** direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 7. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.
- 8. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00

9. Premere il tasto **TEST**.

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l solfuro.

- 1. E' assolutamente necessario rispettare la sequenza di introduzione delle compresse.
- 2. Il cloro ed altri agenti ossidanti che reagiscono con DPD, non compromettono l'esito del test.
- 3. Per evitare perdite di solfuro, è necessario estrarre con cura il campione con un effetto di ventilazione minimo. Inoltre, è necessario effettuare il test immediatamente dopo il prelievo del campione.
- 4. La temperatura di anàlisi consigliata è di 20°C. Eventuali differenze di temperatura possono comportare esiti superiori o minori.
- 5. Conversione: $H_2S = mg/l S \times 1,06$

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
SULFIDE No. 1	Pastiglia / bottiglia / 100	502930
SULFIDE No. 2	Pastiglia / bottiglia / 100	502940

Sostanze solide sospese

0 - 750 mg/l TSS

Preparazione del campione:

Omogeneizzare 500 ml di campione di acqua in un mixer ad alta velocità per 2 minuti.

- In una cuvetta pulita da 24 mm introdurre 10 ml di acqua completamente desalinizzata e chiudere con l'apposito coperchio.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotarla completamente.
- Mescolare con cura il campione di acqua omogeneizzato. Risciacquare e riempire la cuvetta con il campione.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

7. Premere il tasto **TEST**.

Nel display appare il risultato in mg/l TSS (Total Suspended Solids).

Annotazioni:

- 1. La definizione fotometrica delle sostanze solide sospese si basa su un metodo gravimetrico. In laboratorio viene eseguita l'evaporazione dei residui del filtraggio di un campione di acqua filtrato in forno a 103°C 105°C, ed il residuo asciutto viene pesato.
- 2. Se è necessaria una maggiore precisione, bisognerà eseguire una determinazione gravimetrica di un campione. Tale risultato può essere utilizzato per una regolazione del fotometro da parte dell'utente con lo stesso campione.
- 3. Il limite di rilevamento stimato per questo metodo è pari a 20 mg/l TSS.
- 4. Misurare il campione d'acqua non appena possibile dopo il prelievo del campione. I campioni possono essere conservati per un massimo di 7 giorni a 4°C in bottiglie di plastica o di vetro.
 - La misurazione deve avvenire alla stessa temperatura presente al momento del prelievo del campione. Eventuali differenze di temperatura fra la misurazione ed il prelievo del campione possono modificare il risultato rilevato.

5. Interferenze:

- Eventuali bolle d'aria interferiscono e possono essere rimosse agitando con delicatezza la cuvetta.
- Il colore interferisce se la luce viene assorbita a 660 nm.

Tensioattivi, anionici con MERCK Spectroquant® test in cuvetta, No. 1.02552.0001

0,05 – 2 mg/l SDSA¹⁾ 0,06 – 2,56 mg/l SDBS²⁾ 0,05 – 2,12 mg/l SDS³⁾ 0,08 – 3,26 mg/l SDOSSA⁴⁾

Predisporre due cuvette di reazione pulite. Marcare una cuvetta come cuvetta per lo zero.

- Mettere 5 ml di acqua completamente desalinizzata nella cuvetta per lo zero (campione di zero, Annotazione 6). Non mescolare il contenuto!
- Nell'altra cuvetta aggiungere 5 ml di campione (campione, Annotazione 6). Non mescolare il contenuto!
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella ciascuna cuvetta:

Aggiungere 2 gocce di reagente T-1K.

 Chiudere bene le cuvette con il relativo tappo a vite e mescolare bene il contenuto per 30 secondi agitandolo forte

Count-Down 10:00 Inizio: حا

5. Premere il tasto [4].

Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione procedere nel modo sequente:

Predisporre Zero Premere ZERO

- 7. Premere il tasto ZERO.
- 8. Estrarre la cuvetta dal pozzetto di misurazione.
- Capovolgere la cuvetta del campione e porre la cuvetta nel pozzetto di misurazione. Posizione Δ. (Annotazione 7)

Zero accettato Predisporre Test Premere TEST

Premere il tasto **TEST**.
 Nel display appare il risultato in mg/l SDSA.

- 1. Questo metodo è un prodotto della Ditta MERCK.
- Prima di eseguire il test, leggere attentamente le istruzioni originali e le indicazioni di sicurezza in dotazione con il kit per il test (le caratteristiche tecniche di sicurezza per il materiale sono disponibili alla Homepage www.merckmillipore.com).
- 3. Spectroquant® è un marchio registrato della Ditta MERCK KGaA.
- 4. Adottare misure di sicurezza idonee ed una tecnica di laboratorio di qualità nel corso dell'intero processo.
- 5. Poiché la reazione dipende dalla temperatura, è necessario mantenere una temperatura di 15 20°C per le cuvette di reazione, è necessario mantenere una temperatura di 10 20°C per ed il campione d'acqua.
- 6. Dosare il volume dei campioni con una pipetta volumetrica da 5 ml (Classe A).
- 7. Se la fase sottostante fosse torbida, riscaldare la cuvetta brevemente con la mano.
- 8. Il campione di acqua deve avere un pH compreso fra 5 e 10.
- 9. ▲ SDSA¹)

 SDBS²)

 SDS³)

\mathbf{v}	ς	\Box	75	ς Δ	(4)

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
MERCK Spectroquant® 1.02552.0001	Test in cuvetta / 25 Tests	420763

¹⁾ calcolato come acido dodecan-1-solfonico, sale sodico (APHA 5540, ASTM 2330-02, ISO 7875-1)

²⁾ calcolato come acido dodecilbenzensolfonico sale sodico (EPA 425.1)

³⁾ calcolato come sodio dodecile solfato

⁴⁾ calcolato come diottil sodio solfosuccinato

Tensioattivi, non ionici con MERCK Spectroquant® test in cuvetta, No. 1.01787.0001

Ø 16 mm

0,1 – 7,5 mg/l Triton® X-100 0,11 – 8,25 mg/l NP 10

Predisporre due cuvette di reazione pulite. Marcare una cuvetta come cuvetta per lo zero.

- Mettere 4 ml di acqua completamente desalinizzata nella cuvetta per lo zero (campione di zero, Annotazione 6).
- 2. Nell'altra cuvetta aggiungere 4 ml di campione (campione, Annotazione 6).
- Chiudere bene le cuvette con il relativo tappo a vite e mescolare bene il contenuto per 1 minuto agitandolo forte.

Count-Down 2:00 Inizio:

4. Premere il tasto [4].

Attendere 2 minuti per il tempo di reazione.

Passato il tempo di reazione procedere nel modo sequente:

 Capovolgere la cuvetta per lo zero e porre la cuvetta nel pozzetto di misurazione. Posizione \(\int_\).

Predisporre Zero Premere ZERO

- 6. Premere il tasto **ZERO**.
- 7. Estrarre la cuvetta dal pozzetto di misurazione.
- Capovolgere la cuvetta del campione e porre la cuvetta nel pozzetto di misurazione. Posizione

 .

Zero accettato Predisporre Test Premere TEST

9 Premere il tasto **TEST**

Nel display appare il risultato in mg/l Triton® X-100.

Annotazioni:

- 1. Questo metodo è un prodotto della Ditta MERCK.
- 2. Prima di eseguire il test, leggere attentamente le istruzioni originali e le indicazioni di sicurezza in dotazione con il kit per il test (le caratteristiche tecniche di sicurezza per il materiale sono disponibili alla Homepage www.merckmillipore.com).
- 3. Spectroquant® è un marchio registrato della Ditta MERCK KGaA.
- 4. Adottare misure di sicurezza idonee ed una tecnica di laboratorio di qualità nel corso dell'intero processo.
- 5. Poiché la reazione dipende dalla temperatura, è necessario mantenere una temperatura di **20 25°C** (per le cuvette di reazione ed il campione d'acqua).
- 6. Dosare il volume dei campioni con una pipetta volumetrica da 4 ml (Classe A).
- 7. Il campione di acqua deve avere un pH compreso fra 3 e 9.
- 8. Triton® è un marchio registrato della Ditta DOW Chemical Company.
- 9. ▲ Triton® X-100

V NP 10

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
MERCK Spectroquant® 1.01787.0001	Test in cuvetta / 25 Tests	420764

¹⁾ Nonylphenol Ethoxylat

Tensioattivi, cationici con MERCK Spectroquant® test in cuvetta, No. 1.01764.0001

0,05 - 1,5 mg/l CTAB

Predisporre due cuvette di reazione pulite. Marcare una cuvetta come cuvetta per lo zero.

- 1. Mettere 5 ml di acqua completamente desalinizzata nella cuvetta per lo zero (campione di zero, Annotazione 6). Non mescolare il contenuto!
- Nell'altra cuvetta aggiungere 5 ml di campione (campione, Annotazione 6). Non mescolare il contenuto!
- Pipettare nelle due cuvette 0,5 ml di reagente T-1K. (Annotazione 6)
- 4. Chiudere bene le cuvette con il relativo tappo a vite ed agitarla lentamente **per 30 sec.**.

Count-Down 5:00 Inizio: ع

5. Premere il tasto [4].

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione procedere nel modo seguente:

 Porre la cuvetta per lo zero nel pozzetto di misurazione. Posizione \(\int_\text{. (Annotazione 9)}\)

Predisporre Zero Premere ZERO

- 7 Premere il tasto **ZERO**
- 8. Estrarre la cuvetta dal pozzetto di misurazione.
- Porre la cuvetta del campione nel pozzetto di misurazione. Posizione . (Annotazione 9)

Zero accettato Predisporre Test Premere TEST

10. Premere il tasto **TEST**.

Nel display appare il risultato in mg/l CTAB.

- 1. Questo metodo è un prodotto della Ditta MERCK.
- 2. Prima di eseguire il test, leggere attentamente le istruzioni originali e le indicazioni di sicurezza in dotazione con il kit per il test (le caratteristiche tecniche di sicurezza per il materiale sono disponibili alla Homepage www.merckmillipore.com).
- 3. Spectroquant® è un marchio registrato della Ditta MERCK KGaA.
- 4. Adottare misure di sicurezza idonee ed una tecnica di laboratorio di qualità nel corso dell'intero processo.
- 5. Poiché la reazione dipende dalla temperatura, è necessario mantenere una temperatura di **20 25°C** (per le cuvette di reazione ed il campione d'acqua).
- 6. Dosare il volume dei campioni con una pipetta volumetrica da 5 ml e 0,5 ml (Classe A).
- 7. CTAB = calcolato come N-Cetil-N,N,N-trimetilammonio bromuro
- 8. Il campione di acqua deve avere un pH compreso fra 3 e 8.
- 9. Se la fase sottostante fosse torbida, riscaldare la cuvetta brevemente con la mano.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
MERCK Spectroquant® 1.01764.0001	Test in cuvetta / 25 Tests	420765

TOC LR con MERCK Spectroquant® test in cuvetta, No. 1.14878.0001

5,0 - 80,0 mg/l TOC

Predisporre due contenitori pulite in vetro da 24 mm. Marcare un contenitore in vetro come campione per lo zero.

- Mettere in un contenitore pulita 25 ml di aqua completamente desalinizzata (campione per lo zero).
- Mettere in un secondo contenitore pulita 25 ml di campione (campione).
- Tenere il contagocce in verticale e, premendo lentamente, far cadere in ogni contenitore di vetro gocce della stessa dimensione:

Aggiungere **3 gocce di reagente TOC-1K** e mescolare.

- 4. Il pH della soluzione deve essere inferiore a 2,5. Se necessario regolarne il valore con acido solforico.
- Mescolare per 10 minuti a velocità media (agitatore magnetico, bacchetta).

Decomposizione:

Predisporre due cuvette di reazione pulite da 16 mm. Marcare una cuvetta come cuvetta per lo zero.

- 6. Pipettare in una cuvetta di reazione 3 ml del campione per lo zero preparato (cuvetta per lo zero).
- Pipettare in una cuvetta di reazione 3 ml del campione preparato (cuvetta del campione).
- 8. Aggiungere nelle due cuvette **un micromisurino raso di TOC-2K**.
- Chiudere immediatamente le cuvette con un tappo in alluminio.

- Riscaldare le cuvette capovolte per 120 minuti a 120°C nel termoreattore preriscaldato.
- 11. Far raffreddare le cuvette chiuse capovolte in verticale per 1 ora. Non raffreddare in acqua! Al termine della fase di raffreddamento, rimettere la cuvetta diritta e misurare nel fotometro entro 10 min.

Svolgimento della misurazione:

Impiegare adattatore per cuvette rotonde 16 mm Ø.

12. Introdurre la cuvetta per lo zero in dotazione nel pozzetto di misurazione. Posizione χ

Predisporre Zero Premere ZERO

- 11. Premere il tasto ZERO.
- 12. Estrarre la cuvetta dal pozzetto di misurazione.
- 13. Una volta raffreddata, introdurre la cuvetta del campione nel pozzetto di misurazione. Posizione $\overline{\chi}$

Zero accettato Predisporre Test Premere TEST

14. Premere il tasto TEST.

Nel display appare il risultato in mg/l TOC.

- 1. Questo metodo è un prodotto della Ditta MERCK.
- 2. Prima di eseguire il test, leggere attentamente le istruzioni originali e le indicazioni di sicurezza in dotazione con il kit per il test (le caratteristiche tecniche di sicurezza per il materiale sono disponibili alla Homepage www.merckmillipore.com).
- 3. Spectroquant® è un marchio registrato della Ditta MERCK KGaA.
- 4. Adottare misure di sicurezza idonee ed una tecnica di laboratorio di qualità nel corso dell'intero processo.
- 5. Dosare il volume dei campioni con una pipetta volumetrica da 5 ml (Classe A).
- 6. TOC = **T**otal **O**rganic **C**arbon = carbonio organico totale.

Reagente / Accessori		Forma reagente/Quantità	Cod. art.
MERCK Spectroquant®	1.14878.0001	Test in cuvetta / 25 tests	420756
Tappi a vite	1.73500.0001	6 unità	420757

TOC HR con MERCK Spectroquant® test in cuvetta, No. 1.14879.0001

50 - 800 mg/l TOC

Predisporre due contenitori pulite in vetro da 24 mm. Marcare un contenitore in vetro come campione per lo zero.

- Mettere in un contenitore pulita 10 ml di aqua completamente desalinizzata (campione per lo zero).
- Mettere in un secondo contenitore pulita 1 ml di campione. Aggiungere 9 ml di acqua desalinizzata e mescolare (campione).
- Tenere il contagocce in verticale e, premendo lentamente, far cadere in ogni contenitore di vetro gocce della stessa dimensione:
 - Aggiungere **2 gocce di reagente TOC-1K** e mescolare.
- 4. Il pH della soluzione deve essere inferiore a 2,5. Se necessario regolarne il valore con acido solforico.
- Mescolare per 10 minuti a velocità media (agitatore magnetico, bacchetta).

Decomposizione:

Predisporre due cuvette di reazione pulite da 16 mm. Marcare una cuvetta come cuvetta per lo zero.

- Pipettare in una cuvetta di reazione 3 ml del campione per lo zero preparato (cuvetta per lo zero).
- Pipettare in una cuvetta di reazione 3 ml del campione preparato (cuvetta del campione).
- 8. Aggiungere nelle due cuvette **un micromisurino raso di TOC-2K**
- Chiudere immediatamente le cuvette con un tappo in alluminio.

- Riscaldare le cuvette capovolte per 120 minuti a 120°C nel termoreattore preriscaldato.
- 11. Far raffreddare le cuvette chiuse capovolte in verticale per 1 ora. Non raffreddare in acqua! Al termine della fase di raffreddamento, rimettere la cuvetta diritta e misurare nel fotometro entro 10 min.

Svolgimento della misurazione:

Impiegare adattatore per cuvette rotonde 16 mm Ø.

12. Introdurre la cuvetta per lo zero in dotazione nel pozzetto di misurazione. Posizione χ

Predisporre Zero Premere ZERO

- 11. Premere il tasto ZERO.
- 12. Estrarre la cuvetta dal pozzetto di misurazione.
- 13. Una volta raffreddata, introdurre la cuvetta del campione nel pozzetto di misurazione. Posizione $\overline{\chi}$

Zero accettato Predisporre Test Premere TEST

14. Premere il tasto TEST.

Nel display appare il risultato in mg/l TOC.

- 1. Questo metodo è un prodotto della Ditta MERCK.
- 2. Prima di eseguire il test, leggere attentamente le istruzioni originali e le indicazioni di sicurezza in dotazione con il kit per il test (le caratteristiche tecniche di sicurezza per il materiale sono disponibili alla Homepage www.merckmillipore.com).
- 3. Spectroquant® è un marchio registrato della Ditta MERCK KGaA.
- 4. Adottare misure di sicurezza idonee ed una tecnica di laboratorio di qualità nel corso dell'intero processo.
- 5. Dosare il volume dei campioni con una pipetta volumetrica da 5 ml (Classe A).
- 6. TOC = **T**otal **O**rganic **C**arbon = carbonio organico totale.

Reagente / Accessori		Forma reagente/Quantità	Cod. art.
MERCK Spectroquant®	1.14879.0001	Test in cuvetta / 25 tests	420756
Tappi a vite	1.73500.0001	6 unità	420757

Torbidità

10 - 1000 FAU

Ø 24 mm

- 1. In una cuvetta pulita da 24 mm introdurre 10 ml di acqua completamente desalinizzata e chiudere con l'apposito coperchio (Annotazione 4).
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto **ZERO**.
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotarla completamente.
- 5. Mescolare con cura il campione di acqua. Risciacquare e riempire la cuvetta con il campione di acqua.
- 6. Chiudere la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendolo.
- 7. Porre la cuvetta nel pozzetto di misurazione. Posizione χ .

Zero accettato **Predisporre Test** Premere TEST

8. Premere il tasto TEST.

Nel display appare il risultato in FAU.

- 1. Tale misurazione dell'intorbidamento è un metodo di radiazione di attenuazione riferito alle unità di attenuazione di formazina (FAU). I risultati sono idonei per le anàlisi di routine, ma non possono essere utilizzati per la documentazione di conformità, poiché il metodo di radiazione di attenuazione si distingue dal metodo nefelometrico (NTU).
- 2. Il limite di rilevamento stimato per guesto metodo è di 20 FAU.
- 3. Misurare il campione d'acqua non appena possibile dopo il prelievo del campione. I campioni possono essere conservati per un massimo di 48 ore a 4°C in bottiglie di plastica o di vetro. La misurazione deve avvenire alla stessa temperatura presente al momento del prelievo del campione. Eventuali differenze di temperatura fra la misurazione ed il prelievo del campione possono modificare la torbidità del campione.
- 4. Il colore interferisce se la luce viene assorbita a 530 nm.

 Nei campioni caratterizzati da una forte colorazione utilizzare una parte del campione filtrata anziché dell'acqua per la taratura a zero.
- 5. Le bolle d'aria alterano la misurazione della torbidità. Degasare eventualmente i campioni con un bagno ad ultrasuoni.

Triazole Benzotriazole/Tolyltriazole con reagente in Powder Pack (PP)

1-16 mg/l / 1,1-17,8

- Introdurre nella cuvetta di decomposizione 25 ml del campione preparato.
- Aggiungere al campione di 25 ml il contenuto di una bustina di polvere Vario Triazole Rgt F25 direttamente dall'astuccio (annotazione 1).
- 3. Chiudere il contenitore di decomposizione con il tappo e disciogliere la polvere agitando.
- Tenere la lampada UV nel campione (annotazione 1, 2, 3).
 Attenzione: indossare occhiali di protezione dai raggi UV!
- 5. Accendere la lampada UV.

Count-Down 1 5:00 Inizio: 🗵

- 6. Premere il tasto [4].
 - Attendere **5 minuto per il tempo di reazione**. (annotazione 10, 11).

Passato il tempo di reazione procedere nel modo sequente:

7. Spegnere la lampada UV e toglierla dal campione.

- 8. Mescolare il contenuto capovolgendo le cuvette con cautela.
- In una cuvetta pulita da 24 mm introdurre 10 ml di acqua completamente desalinizzata e chiudere fortemente con l'apposito coperchio.
- 10. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 11. Premere il tasto ZERO.
- Estrarre la cuvetta dal pozzetto di misurazione e svuotarla.
- 13. Riempire la cuvetta con il **campione decomposto** fino alla tacca 10 ml.
- 14. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

15. Premere il tasto **TEST**.

Nel display appare il risultato in mg/l Benzotriazole o Tolyltriazole (annotazione 4).

- 1. Bustina di polvere Triazole Reagent e Lampada UV disponibile a richiesta.
- 2. Durante il funzionamento della lampada UV, è necessario indossare appositi occhiali di protezione.
- 3. Per l'utilizzo della lampada UV è necessario rispettare le istruzioni del fabbricante. Non toccare la superficie della lampada UV. Eventuali impronte corrodono il vetro. Pulire la lampada UV fra le misurazioni con un panno morbido pulito.
- 4. Il test non distingue fra toliltriazole e benzotriazola.
- 5. Misurare il campione d'acqua non appena possibile dopo il prelievo del campione.
- Ossidanti o riducenti eventualmente presenti nel campione pregiudicano la misurazione.
- 7. Per ottenere risultati precisi è necessario mantenere una temperatura del campione compresa fra i 20°C ed i 25°C.
- 8. Prima dell'analisi, le acque contenenti nitriti o borace devono raggiungere un intervallo del pH compreso fra 4 e 6 (con acido solforico 1N).
- Contiene un campione piu di 500 mg/l durezza CaCO₃, 10 gocce di soluzione Rochelle è aggiunto.
- 10. In presenza di triazolo si produce una colorazione gialla.
- 11. Se viene eseguita la fotolisi per più o meno di 5 minuti, può determinare risultati errati.
- 12. A Benzotriazole

 Tolyltriazole

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
VARIO TRIAZOLE Rgt F25	Bustina di polvere / 100	532200

Urea con compressa e reagente liquido

 $0,1 - 2,5 \text{ mg/l (NH}_2)_2 \text{CO (mg/l Urea)}$

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- In presenza di cloro libero (HOCI), aggiungere una compressa di UREA PRETREAT direttamente dall'astuccio e schiacciarla con una bacchetta pulita (nota 10).
- Chiudere bene la cuvetta con l'apposito tappo e mescolare il contenuto capovolgendo la cuvetta stessa, finchè la compressa non si sarà sciolta.
- Aggiungere 2 gocce di reagente 1 Urea ai 10 ml di campione (annotazione 9).
- 8. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Aggiungere allo stesso campione una goccia di reagente 2 Urea (ureasi).
- 10. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.

Count-Down 5:00 Inizio: 🗐

- 11. Premere il tasto [.]. Attendere 5 minuti per il tempo di reazione. Passato il tempo è necessario procedere nel modo sequente:
- 12. Introdurre nel campione preparato una compressa di AMMONIA No. 1 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Introdurre nello stesso campione una compressa di AMMONIA No. 2 direttamente dall'astuccio e schiacciarla con una bacchetta pulita.

14. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché le compresse non si sono sciolte.

15. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

Count-Down 10:00 Premere il tasto TEST.
 Attendere 10 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione.

Nel display appare il risultato in mg/l urea.

- 1. La temperatura del campione deve essere compresa fra 20°C e 30°C.
- 2. Eseguire l'anàlisi entro 1 ora dal prelevamento del campione.
- 3. Concentrazioni superiori a 2 mg/l di Urea possono portare a risultati entro un campo di misurazione In tal caso il campione di acqua deve essere diluito con acqua priva di Urea e la misurazione va ripetuta (test di plausibilità).
- 4. E' assolutamente necessario rispettare la sequenza di aggiunta dei reagenti.
- 5. La compressa AMMONIA No. 1 si sciogli completamente solo dopo aver aggiunto la compressa AMMONIA No. 2.
- 6. Non immagazzini Reagente 1 Urea sotto 10°C, cristallizzazione possibile. Conservare il Reagente 2 (ureasi) ben chiuso in frigorifero a 4°C 8°C.
- 7. Ammònio e clorammine vengono rilevate insieme nella determinazione dell'urea.
- 8. Nell'anàlisi dei campioni di acqua marina, prima di introdurre la compressa AMMONIA No. 1, aggiungere un misurino di Ammonia Conditioning Powder ed agitare per consentirne lo scioglimento.
- 9. Tenere il flacone contagocce in verticale premendo lentamente per far cadere grosse gocce nella cuvetta.
- 10. Una compressa UREA PREATREAT elimina le interferenze di cloro libero fino a 2 mg/l (due compresse fino a 4 mg/l, tre compresse fine a 6 mg/l).

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
UREA PRETREAT	Pastiglia / ognuno 100 Bacchetta compresa	516110BT
UREA reagente 1	Pastiglia / 100	459300
UREA reagente 2	Pastiglia / 100	459400
Combi Pack AMMONIA No. 1 / No. 2	Pastiglia / ognuno 100 Bacchetta compresa	517611BT
AMMONIA No. 1	Pastiglia / 100	512580BT
AMMONIA No. 2	Pastiglia / 100	512590BT

Zinco con compressa

0.02 - 0.9 mg/l Zn

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione.
- Aggiungere ai 10 ml di campione una compressa di COPPER / ZINC LR direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- 3. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- 4. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

Count-Down 5:00

5. Premere il tasto ZERO.

Attendere 5 minuti per il tempo di reazione.

Passato il tempo di reazione viene effettuata automaticamente la misurazione

- 6. Estrarre la cuvetta dal pozzetto di misurazione.
- Nella cuvetta predisposta aggiungere una compressa di EDTA direttamente dall'astuccio e schiacciarla con una bacchetta pulita.
- Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa, finché la compressa non si è sciolta.
- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.

Zero accettato Predisporre Test Premere TEST

10. Premere il tasto TEST.

Nel display appare il risultato in mg/l zinco.

- 1. E' assolutamente necessario rispettare la sequenza di introduzione delle compresse.
- 2. Qualora si presuma la presenza di elevati quantitativi di cloro residuo, l'anàlisi viene effettuata dopo la declorazione del campione di acqua. Per declorare il campione viene aggiunto al campione stesso (punto 1) una compressa di DECHLOR. La compressa viene pressata e mescolata fino allo scioglimento. Viene infine aggiunta la compressa di COPPER / ZINC LR (punto 2) ed il test viene eseguito come descritto.
- 3. Quando si utilizzano compresse rame/zinco LR l'indicatore Zincon reagisce sia con lo zinco che con il rame. L'intervallo di misurazione specificato si riferisce event. alla concentrazione totale di entrambi gli ioni.
- 4. Le concentrazioni superiori a 1 mg/l possono produrre risultati entro l'intervallo di misurazione. Si consiglia un test di plausibilità (diluizione del campione).
- 5. Con l'aggiunta della compressa EDTA nella seconda fase si garantisce la determinazione, dove event. il rame presente non viene rilevato.
- 6. Le acqua fortemente alcaline o acide devono essere portate prima dell'analisi in un range pH di ca. pH 9 (con 1 mol/l di acido cloridrico o 1 mol/l di idrossido di sodio).

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
COPPER / ZINC LR	Pastiglia / 100	512620BT
EDTA	Pastiglia / 100	512390BT
DECHLOR	Pastiglia / 100	512350BT

Zinco con reagenti liquidi e polvere

0,1 - 2,5 mg/l Zn

- In una cuvetta pulita da 24 mm introdurre 10 ml di campione e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Predisporre Zero Premere ZERO

- 3. Premere il tasto ZERO.
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nella cuvetta:

20 gocce KS243 (Zinc Reagent 1)

- Chiudere bene la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.
- Aggiungere un cucchiaio dosatore di KP244 (Zinc Reagent 2) (Annotazione 1).
- 8. Chiudere bene la cuvetta con l'apposito coperchio e far sciogliere la polvere capovolgendo la cuvetta stessa.
- 9. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.

Zero accettato Predisporre Test Premere TEST

10 Premere il tasto **TEST**

Nel display appare il risultato in mg/l zinco.

- 1. Per il corretto dosaggio, utilizzare il cucchiaio dosatore fornito con i reagenti.
- 2. Questo test è adatto per la determinazione dello zinco libero, disciolto. Lo zinco, che è legato ad un forte agente complessante, non viene rilevato.
- 3. I cationi, come composti di ammonio quaternario, modificano il colore da rosa-rosso a violetto, a seconda della concentrazione di rame esistente. In questo caso aggiungere al campione alcune gocce di KS89 (cationic suppressor), finché il colore diventa arancione/ blu. Attenzione: Dopo l'aggiunta di ogni goccia agitare il campione.

Reagente / Accessori	Forma reagente/Quantità	Cod. art.
KS243 – Zinc Reagent 1	Reagente liquido / 65 ml	56L024365
KP244 – Zinc Reagent 2	Polvere / 20 g	56P024420

1.2 Indicazioni importanti in merito ai metodi

1.2.1 Utilizzo corretto dei reagenti

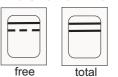
E' assolutamente necessario rispettare la sequenza di introduzione delle compresse.

Reagenti in compresse:

I reagenti in compresse devono essere introdotti direttamente dall'astuccio, evitando il contatto con le dita.

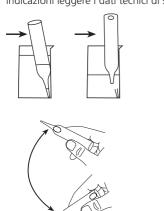
Reagenti liquidi:

Tenere il flacone contagocce in verticale e premendo lentamente mettere gocce della stessa dimensione nel campione.


Dopo l'uso i flaconi contagocce devono essere immediatamente richiusi con il relativo tappo.

Rispettare le indicazioni relative alla conservazione (per es. conservare in frigorifero).

Bustine polvere (Powder Pack):


VARIO Chlorine DPD / F10

marcatura di colore blu

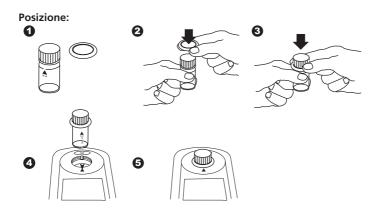
Vacu-vials® di CHEMetrics:

Conservare Vacu-vials® a temperatura ambiente e al riparo dalla luce. Per ulteriori indicazioni leggere i dati tecnici di sicurezza.

294

1.2.2 Pulizia delle cuvette e degli accessori impiegati per l'analisi

Le cuvette, i coperchi e la bacchetta devono essere puliti accuratamente in seguito ad ogni anàlisi, per evitare errori di misurazione. Anche piccoli residui di reagenti possono determinare misurazioni errate

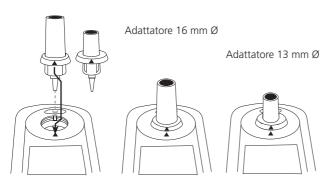

Procedura:

Pulire le cuvette e gli accessori impiegati per l'anàlisi non appena possibile una volta effettuata l'anàlisi.

- a) Pulire le cuvette e gli accessori impiegati per l'anàlisi con un detergente reperibile in commercio per i materiali in vetro da laboratorio (per es. Extran® MA 02 (neutro, contenente fosfati), Extran® MA 03 (alcalino, senza fosfati) della Merck KGaA).
- b) Risciacquare abbondantemente con acqua corrente.
- c) Se indicato nelle "Annotazioni", effettuare la pulizia specifica per il mètodo, per es. risciacquare con acido cloridrico diluito.
- a) Risciacquare abbondantemente con acqua completamente desalinizzata (o anche acqua distillata).

1.2.3 Indicazioni tecniche operative

- 1. Le cuvette, i coperchi e la bacchetta devono essere pulite accuratamente in seguito ad ogni anàlisi, per evitare errori di misurazione. Anche piccoli residui di reagenti possono determinare misurazioni errate.
- Le pareti esterne o le cuvette devono essere pulite ed asciugate prima di iniziare l'anàlisi.
 Eventuali impronte delle dita o gocce d'acqua sulla superficie di penetrazione della luce della cuvetta portano a misurazioni errate.
- 3. Se non è prescritto l'uso di una cuvetta per lo zero fissa, è necessario eseguire l'azzeramento ed effettuare il test con la stessa cuvetta, poiché le cuvette possono presentare tolleranze ridotte l'una rispetto all'altra.
- 4. Per l'azzeramento ed il test la cuvetta deve essere sempre posta nel pozzetto di misurazione in modo tale che la gradazione con il triangolo bianco indichi sempre la tacca sull'esterno.
- L'azzeramento ed il test devono essere eseguiti con il coperchio della cuvetta chiuso. Il coperchio della cuvetta deve essere provvisto di anello di tenuta.



- 6. La formazione di bollicine nelle parete interne della cuvetta può condurre a misurazioni errate. In tal caso la cuvetta viene chiusa con l'apposito coperchio e le bollicine vanno sciolte agitando la cuvetta stessa prima dell'esecuzione del test.
- E' necessario evitare la penetrazione di acqua nel pozzetto di misurazione. L'acqua nella scatola del fotometro può provocare la rottura delle componenti elettroniche e danni dovuti alla corrosione.
- 8. L'imbrattamento del dispositivo ottico nel pozzetto di misurazione porta a misurazioni errate. Le superfici di penetrazione della luce del pozzetto di misurazione devono essere controllate ed eventualmente pulite ad intervalli regolari. Per la pulizia è opportuno utilizzare un panno umido e bastoncini di cotone.
- Differenze di temperatura considerevoli fra il fotometro e l'ambiente esterno possono portare a misurazioni errate, per es. a causa della formazione di acqua di condensa, nell'ambito del dispositivo ottico e della cuvetta.
- 10. Proteggere l'apparecchio dalla luce diretta dei raggi solari durante il funzionamento.

Corretto riempimento della cuvetta:

Impiegare adattatore:

1.2.4 Diluizione dei campioni di acqua

Qualora sia necessario ottenere una diluizione precisa, è necessario procedere come segue:

Mettere il campione in un matraccio graduato da 100 ml con una pipetta, riempirlo con acqua completamente desalinizzata fino alla tacca e mescolare bene.

Campione d'aqua [ml]	Fattore di moltiplicazione
1	100
2	50
5	20
10	10
25	4
50	2

Da questo campione di acqua diluito il volume del campione viene quindi, come descritto nelle disposizioni per l'anàlisi, prelevato con una pipetta e quindi viene effettuata l'anàlisi.

Attenzione:

- 1. Con la diluizione l'errore di misurazione aumenta.
- 2. Per il pH non è possibile effettuare una diluizione, che porta a valori di misurazione errati. Con l'indicazione "Overrange" è necessario utilizzare un altro mètodo di misurazione (per es. metro pH).

acqua completamente desalinizzata (o anche acqua distillata)

1.2.5 Correzione in caso di aggiunta di volumi

Se nella preimpostazione del pH di un campione di acqua viene aggiunta una grande quantità di acido o di base, è necessario provvedere alla correzione del volume dei risultati rilevati visualizzati.

Esempio:

Per l'impostazione del pH 100 ml di campione vengono mescolati con 5 ml di acido cloridrico. Il risultato rilevato visualizzato è 10 mg/l.

```
Volume complessivo = 100 \text{ ml} + 5 \text{ ml} = 105 \text{ ml}

Fattore di correzione = 105 \text{ ml} / 100 \text{ ml} = 1,05

Risultato corretto = 10 \text{ mg/l} \times 1,05 = 10,5 \text{ mg/l}
```

Parte 2 Istruzioni per l'uso

2.1 Attivazione

2.1.1 Prima attivazione

Con la prima attivazione è necessario impiegare le batterie e gli in dotazione. Procedere come descritto al Capitolo 2.1.2 Mantenimento dei dati – Indica, 2.1.3 Sostituzione della batteria Con la prima attivazione

Prima del primo start-up procede con le seguenti regolazioni nel menu:

- MODE 10: selezionare lingua
- MODE 12: impostare data e ora
- MODE 34: eseguire "cancella dati"
- MODE 69: eseguire "User m. init"; Inizializzazione del sistema dei mètodi dell'operatore (Polinomio & Concentrazione)

Vedi Capitolo Impostazioni.

2.1.2 Mantenimento dei dati – Indicazioni importanti

Le batterie garantiscono la conservazione delle impostazioni e dei risultati di misurazione memorizzati.

Se è necessario sostituire le batterie, i dati del MD 600 sono protetti per ca. 2 minuti. Se i tempi per la sostituzione superano i 2 minuti si può verificare una perdita dei dati completa.

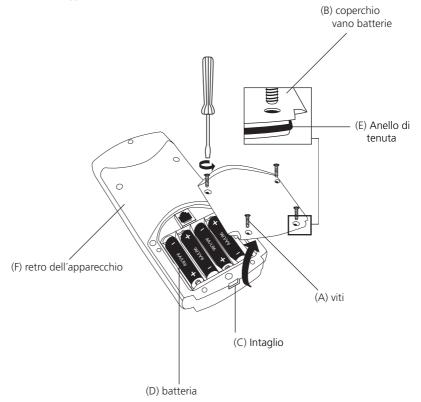
Suggerimento: Per la sostituzione predisporre un cacciavite e batterie nuove.

2.1.3 Sostituzione della batteria

Suggerimento: Non utilizzare l'accumulatore ricaricabile!

- 1. Spegnere l'apparecchio.
- 2. Rimuovere eventualmente la cuvetta dal pozzetto di misurazione.
- 3. Porre l'apparecchio con il lato frontale rivolto verso il basso su una base piana e pulita.
- 4. Allentare le quattro viti (A) sul fondo dell'apparecchio nel coperchio del vano batterie (B).
- 5. Premere verso l'alto il coperchio del vano batterie (B) agendo sull'intaglio (C), quindi rimuovere il coperchio.
 - Togliere il coperchio del vano batterie (B).
- 6. Rimuovere la batteria (D) esauriti.
- 7. Inserire 4 nuovi batteria al litio.

Rispettare la polarità nell'inserimento.


- 8. Riporre il coperchio del vano batterie. Posizionare nella scanalatura l'anello di tenuta (E) nel coperchio del vano batterie (B).
- 9. Porre il coperchio del vano batterie (B) sullo strumento, senza spostare l'anello di tenuta (E).
- 10. Inserire e stringere le viti.

ATTENZIONE:

Provvedere allo smaltimento delle batterie nel rispetto delle disposizioni di legge.

2.1.4 Schema strumenti:

- (A) viti
- (B) coperchio vano batterie
- (C) Intaglio
- (D) batteria: 4 batterias (Mignon AA/LR6)
- (E) Anello di tenuta
- (F) retro dell'apparecchio

ATTENZIONE:

Per poter garantire la completa ermeticità del fotometro, inserire l'anello di tenuta (E) ed avvitare il coperchio del vano batterie (B).

2.2 Funzioni tasti

2.2.1 Panoramica

Accensione e spegnimento dell'apparecchio

Per utilizzare la tastiera numerica 0-9 premere il tasto Shift. Tenere premuto il tasto Shift e premere il/i tasto/i desiderato/i. es.: [Shift] + [1] [1]

Ritorna alla selezione del mètodo/al menù sovraordinato

Tasto di funzione: spiegazioni nel punto corrispondente del testo

Tasto di funzione: spiegazioni nel punto corrispondente del testo

Tasto di funzione: spiegazioni nel punto corrispondente del testo

Conferma di dati inseriti

Menù per le impostazioni ed altre funzioni

Spostamento del cursore verso l'alto e verso il basso

Memorizzazione di un risultato visualizzato

Esecuzione di un azzeramento

Esecuzione di una misurazione

Visualizzazione della data e dell'ora / Count-down operatore

Decimali

2.2.2 Visualizzazione della data e dell'ora

19:27:20 15.06.2012

Premere il tasto ["Orologio"].

Nel display appaiono l'ora e la data

L'apparecchio torna alla ruotine precedente dopo ca. 15 secondi

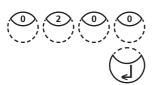
oppure premendo il tasto [] o [ESC].

2.2.3 Count-down operatore

Questa funzione consente all'operatore, di utilizzare il countdown definito individualmente.

Premere il tasto ["Orologio"].

19.20.20 15.06.2012 Nel display appaiono l'ora e la data


Premere il tasto ["Orologio"].

Count-Down

mm : ss 99 : 99 Nel display appare:

A questo punto, premendo il tasto [ع] viene assunto l'ultimo operatore del count-down in uso

oppure

premendo un tasto della tastiera numerica viene introdotto un nuovo valore. L'inserimento consta di due caratteri, nella sequenza minuti, secondi,

per es.: 2 minuti, 0 secondi = [Shift] + [0] [2] [0] [0]

Confermare i dati inseriti con [4].

Count-Down 2:00

Inizio: 🔟

Nel display appare:

Inizio del count-down con il tasto [4].

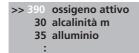
Una volta eseguito il count-down l'apparecchio torna alla routine precedente.

2.2.4 Retroilluminazione del display

Premere il tasto [Shift] + [F1], per attivare o disattivare la retroilluminazione del display. Durante la misurazione la retroilluminazione si disattiva automaticamente.

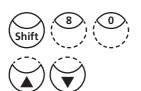
2.3 Modalità di lavoro

Accendere l'apparecchio premendo il tasto [ON/OFF].


Autotest ...

L'apparecchio esegue un autotest elettronico.

2.3.1 Spegnimento automatico


L'apparecchio si spegne automaticamente 20 minuti dopo l'ultima attivazione di un tasto. Negli ultimi 30 secondi prima dello spegnimento dell'apparecchio viene emesso un segnale acustico. A tal punto, premendo un tasto, è possibile evitare che l'apparecchio si spenga. Durante le attività in corso dell'apparecchio (Count-Down in corso, processo di stampa) lo spegnimento automatico non è attivo. In seguito alla conclusione dell'attività inizia il tempo di attesa di 20 minuti per lo spegnimento automatico.

2.3.2 Scelta del mètodo

Nel display appare un elenco per la selezione:

Due sono le possibilità per selezionare il mètodo desiderato:

- a) inserire direttamente il numero del mètodo, per es.: [8] [0] per il bromo
- b) selezionare il mètodo desiderato dalla lista visualizzata premendo i tasti freccia [▲] o [▼].

Confermare la selezione con [4].

2.3.2.1 Informazioni sui mètodi (F1)

Con il tasto F1 è possibile passare dall'elenco per la selezione del mètodo sintetico a quello dettagliato e viceversa.

Esempio

100 Cloro 0,02-6 mg/l Cl₂ compressa 24 mm

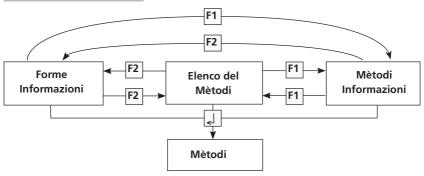
DPD No 1

Riga 1: numero mètodo, denominazione mètodo Riga 2: campo di misurazione

Riga 3: tipo di reagente

Riga 4: cuvetta

Riga 5-7: reagenti impiegati


tube: cuvetta reagente dal test in cuvette

2.3.2.2 Informazioni sulla forma di citazione (F2)

Premendo il tasto F2 viene visualizzato un elenco delle forme con i relativi campi di misurazione. Per la conversione della forma di citazione vedi Capitolo 2.3.7 Modifica della forma di citazion, pagina 308.

320 Fosfato LR T 0.05-4 mg/l PO $_4$ 0.02-1.3 mg/l P 0.04-3 mg/l P $_2$ O $_5$

Riga 1: numero mètodo, denominazione mètodo Riga 2: campo di misurazione con forma citazione 1 Riga 3: campo di misurazione con forma citazione 2 Riga 4: campo di misurazione con forma citazione 3

2.3.3 Differenziazione

Per alcuni mètodi è possibile una differenziazione (per es. cloro). Compare quindi una interrogazione in merito al tipo di misurazione (per es. differenziato, libero o totale).

Selezionare con i tasti freccia [▲] o [▼] il tipo di misurazione desiderato.

Confermare la selezione con [4].

2.3.4 Azzeramento

Predisporre zero Premere ZERO

Nel display appare:

Zero

Predisporre una cuvetta pulita secondo a quanto prescritto per l'anàlisi e porla nel pozzetto di misurazione con la marcatura per le cuvette in corrispondenza della marcatura all'esterno

Zero accettato Predisporre test Premere TEST Premere il tasto [ZERO].

Nel display appare:

2.3.5 Esecuzione dell'anlisi

Una volta terminato l'azzeramento prelevare la cuvetta dal pozzetto di misurazione. Quindi eseguire l'anàlisi, come descritto nel mètodo relativo.

Con la visualizzazione dei risultati rilevati è possibile:

- per alcuni mètodi l'unità può essere diversa,
- memorizzare e / o stampare i risultati,
- effettuare ulteriori misurazioni con lo stesso azzeramento oppure
- scegliere un nuovo mètodo

2.3.6 Rispetto dei tempi di reazione (count-down)

Per il mantenimento dei tempi di reazione come aiuto viene offerta una funzione timer, il cosiddetto count-down.

Nella guida per l'operatore ci sono:

Premere il tasto [
].
Predisporre il campione, avviare il count-down con
[
] e passato il count-down, procedere come descritto nel mètodo. La cuvetta non viene posta nelpozzetto di misurazione.

Test

Count-Down

1:59

 Premere il tasto [TEST]
 Predisporre il campione come descritto nel mètodo ed introdurre la cuvetta nel pozzetto di misurazione. Il count-down viene visualizzato premendo il tasto [TEST] e viene avviato automaticamente. Passato il count-down avviene automaticamente la misurazione.

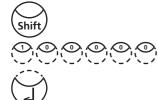
- 1. Il count-down in corso può essere terminato premendo il tasto [4]. La misurazione avviene immediatamente. L'operatore deve considerare il tempo di reazione necessario. Il mancato rispetto dei tempi di reazione determina risultati rilevati errati.
- Viene continuamente visualizzato il periodo di attesa rimanente.
 Negli ultimi 10 secondi prima del decorso del periodo di attesa viene emesso un segnale acustico.

2.3.7 Modifica della forma di citazione

Per alcuni mètodi è possibile modificare la "forma di citazione" del risultato del test. Se nel display appare il risultato del test, premere i tasti freccia [A] o [V].

Esempio:

In caso di modifica della forma di citazione del risultato del test la visualizzazione del campo di misurazione sul display viene automaticamente adattata. La forma di citazione visualizzata con la memorizzazione di un risultato del test non può più essere modificata per il risultato memorizzato. Con il richiamo successivo del mètodo viene utilizzata l'ultima forma di citazione utilizzata. Se con un mètodo la forma di citazione può essere modificata, ciò è segnalato nelle istruzioni. Nelle annotazioni del mètodo sono quindi stampati i tasti freccia con le possibili forme di citazione:


2.3.8 Memorizzazione del risultato rilevato

Durante la visualizzazione dei risultati rilevati premere il tasto [STORE].

Nel display appare:

 L'operatore può inserire un codice fino a 6 caratteri. (Il codice può, per es., fornire indicazioni in merito all'operatore o al luogo di prelievo del campione.)

Confermare l'inserimento del codice [4].

• Se si rinuncia all'inserimento del codice, confermare direttamente con [[4]]. (Si ha un'attribuzione automatica del codice con 0.)

Viene memorizzata l'intera serie di dati con data, ora, codice, mètodo e risultato rilevato.

è memorizzato

Nel display appare:

Ouindi viene di nuovo visualizzato il risultato rilevato.

Annotazione:

ancora 900 spazi liberi in memoria

solo 29 spazi liberi in memoria La quantità di spazio libero in memoria viene visualizzato dal display:

Con una quantità di spazio libero in memoria inferiore a 30 sul display viene visualizzato:

Cancellare i dati memorizzati nel più breve tempo possibile (vedi Capitolo "Cancellazione risultati rilevati memorizzati"). Se tutta la memoria è occupata non è possibile memorizzare ulteriori risultati.

2.3.9 Stampa del risultato rilevato (modulo a raggi infrarossi IRIM opzionale)

Con il modulo IRIM inserito (vedere Capitolo 2.5) e la stampante collegata, è possibile stampare il risultato della misurazione (senza previa memorizzazione).

Premere il tasto F3.

Viene stampata l'intera serie di dati con data, ora, mètodo e risultato rilevato

100 Cloro T 0,02 – 6 mg/l Cl₂ Profi-Mode: no 2009-07-01 14:53:09 No. progressivo: 1 No. del codice: 007 4,80 mg/l Cl₂

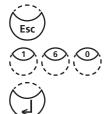
Con numero progressivo si intende un numero interno che viene automaticamente assegnato con la memorizzazione del risultato di misurazione. Compare solo con la stampa.

2.3.10 Esecuzione di ulteriori misurazioni

Zero accettato Predisporre Test Premere TEST

Predisporre Zero Premere ZERO Qualora debba essere effettuata la misurazione di ulteriori campioni con lo stesso mètodo:

Premere il tasto [TEST]
 Nel display appare:


Confermare con [TEST].

O

 Premere il tasto [ZERO], per eseguire un nuovo azzeramento.

Nel display appare:

2.3.11 Scelta del nuovo mètodo

Premendo il tasto [ESC] il fotometro torna alla scelta del mètodo.

E' possibile anche indicare un nuovo numero mètodo, per es. [Shift] + [1] [6] [0] per CyA-TEST (Acido cianurico).

Confermare l'inserimento con [4].

2.3.12 Misurazione delle estinzioni

Campo di misurazione: da -2600 mAbs a +2600 mAbs

Cod. mètodo	Denominazione
900	mAbs 430 nm
910	mAbs 530 nm
920	mAbs 560 nm
930	mAbs 580 nm
940	mAbs 610 nm
950	mAbs 660 nm

Richiamare la lunghezza d'onda desiderata inserendo il codice del mètodo corrispondente o effettuare la selezione dall'elenco per la selezione del mètodo.

900 mAbs 430 nm -2600 mAbs - + 2600 mAbs Predisporre Zero Premere ZERO Nel display appare per es.:

Eseguire l'azzeramento sempre con una cuvetta piena (per es. con acqua completamente desalinizzata).

Zero accettato Predisporre Test Premere TEST Nel display appare:

Eseguire la misurazione del campione.

500 mAbs

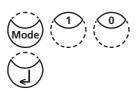
Nel display appare per es.:

Consiglio:

I tempi di reazione possono essere più facilmente rispettati utilizzando il count-down dell'operatore (Capitolo 2.2.3, pagina 304).

2.4 Impostazioni: Panoramica delle funzioni MODE

Funzione MODE	N°	Breve descrizione	pagina
Cancellazione dati	34	Cancellazione di tutti i risultati rilevati memorizzati	325
Cancellazione impostazione	46	Cancellazione delle impostazioni dell'operatore	333
Cancella mètodi utente	66	Cancella tutti i dati di un polinomio dell'operatore o di un mètodo di concentrazione	343
Concentrazione utente	64	Indicazione dei dati per la produzione di un mètodo di concentrazione	338
Contrasto LCD	80	Impostazione del contrasto del display	348
Luminosità LCD	81	Impostazione della luminosità del display LCD	348
Count-Down	13	Accensione / Spegnimento del count-down per il rispetto dei tempi di reazione	314
Elenco mètodi	60	Elaborazione dell'ellenco mètodi dell'operatore	336
Elenco mètodi tutti on	61	Elenco mètodi dell'operatore, attivazione di tutti i mètodi	337
Elenco mètodi tutti off	62	Elenco mètodi dell'operatore, disattivazione di tutti i mètodi	337
Impostazioni operatore	45	Memorizzazione delle impostazioni versione software corrente	332
Informazioni sull'apparecchio	91	Informazioni sul fotometro per es. versione software corrente	349
Inizial. mètodi utente	69	Inizializzazione del sistema dei mètodi dell'operatore (Polinomio & Concentrazione)	345
Langelier	70	Calcolo dell'indice di saturazione Langelier	346
Lingua	10	Impostazione della lingua	312
Memoria, codice	32	Visualizzazione dei dati di misurazione da una serie di codici	323
Memoria, data	31	Visualizzazione dei dati di misurazione da una serie di data	337
Memoria, mètodo	33	Visualizzazione dei dati di misurazione di un mètodo prescelto	324
Memoria dati	30	Visualizzazione di tutti i risultati rilevati memorizzati	321
Modalità professionale	50	Attivazione / Disattivazione della guida operatore dettagliata (funzione laboratorio)	334
Orologio	12	Impostazione della data e dell'ora	313
OTZ	55	One Time Zero (OTZ)	335
Parametri di stampa	29	Registrazione dello stampatore	320


Funzione MODE	N°	Breve descrizione	pagina
Polinomi utente	65	Indicazione dei dati per la produzione di un polinomio dell'operatore	340
Regolazione	40	Regolazione del metodo particolare	326
Segnale acustico	14	Attivazione / Disattivazione del segnale acustico al termine della misurazione	315
Stampa	20	Stampa di tutti i risultati rilevati memorizzati	316
Stampa, codice	22	Stampa dei dati di misurazione da una serie di codici	318
Stampa, data	21	Stampa dei dati di misurazione da una serie di date	317
Stampa, mètodo	23	Stampa dei dati di misurazione di un mètodo prescelto	319
Stampa mètodi utente	67	Stampa dei dati dei mètodi dell'operatore (Polinomio & Concentrazione)	344
Suono tasti	11	Attivazione / Disattivazione del segnale acustico per la conferma della pressione dei tasti	313
Temperatura	71	Impostazione dell'unità di misura della temperatura	347

Le impostazioni selezionate permangono anche dopo lo spegnimento dell'apparecchio, finché non viene eseguita una nuova impostazione.

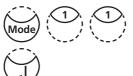
2.4.1 Libero per motivi tecnici

2.4.2 Regolazioni di base dello strumento 1

Scelta della lingua

Premere in sequenza i tasti [MODE], [Shift] + [1] [0].

<Lingua>
 Deutsch
 >> English
 Francais


Nel display appare:

Con i tasti freccia $[\blacktriangle]$ o $[\blacktriangledown]$, selezionare la lingua desiderata.

Confermare la selezione con [4].

Suono tasti

Premere in sequenza i tasti [MODE], [Shift] + [1] [1].

Confermare con [4].

<Tono tasti> ON: 1 OFF: 0

Nel display appare:

- Premendo i tasti [Shift] + [0] viene escluso il suono dei tasti
- Premendo i tasti [Shift] + [1] viene attivato il suono dei tasti.

Confermare l'inserimento con [4].

Annotazione:

Nelle determinazioni che prevedono un tempo di reazione, negli ultimi 10 secondi prima della scadenza del count-down, anche con il suono dei tasti disattivato, viene emesso un segnale acustico.

Data e ora

Premere in sequenza i tasti [MODE], [Shift] + [1] [2].

Confermare l'inserimento con [4].

Nel display appare:

L'inserimento consta di due caratteri

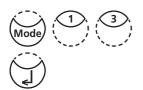
AA-MM-GG	hh:mm
09-05-14	:

nella sequenza anno, mese, giorno, per es.: 14 maggio 2009 = [Shift] + [0][9][0][5][1][4]

AA-MM-GG	hh:mm
09-05-14	15:07

nella sequenza ore, minuti, per es.: 15 e 7 minuti = [Shift] + [1][5][0][7]

Confermare l'inserimento con [4].


Annotazione:

Nella conferma dell'inserimento con [4], i secondi vengono automaticamente impostati su zero.

Count-down (rispetto dei tempi di reazione)

Per alcuni mètodi è prescritto il rispetto dei tempi di reazione. Tali tempi di attesa sono indicati nel mètodo con una funzione timer, il count-down.

Il count-down può essere disattivato nel modo seguente per tutti i mètodi che vengono di volta in volta applicati:

Premere in sequenza i tasti [MODE], [Shift] + [1] [3].

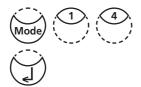
Confermare l'inserimento con $[\tilde{\tilde{L}}]$.

<Count-Down> ON: 1 OFF: 0

Nel display appare:

- Premendo i tasti [Shift] + [0] il count-down viene disattivato
- Premendo i tasti [Shift] + [1] il count-down viene attivato.

Confermare l'inserimento con [4].


Annotazioni:

- 1. Durante la misurazione il count-down in corso può essere disattivato in qualsiasi momento premendo il tasto [4] (applicazione per es. per determinazioni di serie). Il "Count-down dell'operatore" è disponibile anche quando il count-down è disattivato.
- 2. Se il count-down viene disattivato il tempo di reazione necessario deve essere verificato autonomamente dall'operatore.

Il mancato rispetto dei tempi di reazione determina risultati rilevati errati.

Suono segnali

Per l'esecuzione di un azzeramento o di una misurazione il fotometro impiega 8 secondi. Al termine di questa misurazione viene emesso un breve segnale acustico.

Premere in sequenza i tasti [MODE], [Shift] + [1] [4].

Confermare l'inserimento con [هـ].

<Tono di segnale> ON: 1 OFF: 0

Nel display appare:

- Premendo i tasti [Shift] + [0] il suono dei segnali viene disattivato.
- Premendo i tasti [Shift] + [1] il suono dei segnali viene attivato.

Confermare l'inserimento con [ع].

Annotazione:

Nelle determinazioni che prevedono un tempo di reazione, negli ultimi 10 secondi prima della scadenza del count-down, anche con il suono dei segnali disattivato, viene emesso un segnale acustico.

2.4.3 Stampa dei risultati rilevati memorizzati

Stampa di tutti i dati

Premere in sequenza i tasti [MODE], [Shift] + [2] [0].

Confermare l'inserimento con [ع].

Nel display appare:

Premendo il tasto [] viene effettuata la stampa di tutti i risultati del test memorizzati.

n. progressivo:

Nel display appare per es.:

Dopo la stampa il fotometro torna alla selezione del menù.

Annotazione:

Cancellare l'entrata premendo il tasto [ESC]. Vengono stampati tutti i risultati rilevati memorizzati. Vedi Capitolo 2.5.1 Stampa dei dati.

Stampa dei resultati rilevati da una serie di dati

Premere in sequenza i tasti [MODE], [Shift] + [2] [1].

Confermare con [4].

<stampare> in base alla data da AA-MM-GG

Nel display appare:

Digitare la data d'inizio nella sequenza anno, mese, giorno per es.: 14 maggio 2009 = [Shift] + [0][9][0][5][1][4]

Confermare con [4].

al AA-MM-GG

Nel display appare:

Digitare la data della fine nella sequenza anno, mese, giorno per es.: 19 maggio 2009 = [Shift] + [0][9][0][5][1][9]

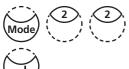
Confermare con [4].

dal 14.05.2009 a 19.05.2009 inizio: 💄

Nel display appare:

fine: ESC

Premendo il tasto [ها] viene eseguita la stampa di tutti i risultati del test memorizzati nel periodo indicato.


Dopo la stampa il fotometro torna al menù Mode.

Annotazione:

Cancellare l'entrata premendo il tasto [ESC].

Per stampare solo i risultati del test di un giorno, indicare la stessa data di inizio e della fine.

Stampa dei risultati rilevati da una serie di codici

Premere in sequenza i tasti [MODE], [Shift] + [2] [2].

Confermare con [4].

<stampare> in base all codice da

Nel display appare:

Digitare il numero del codice di inizio di max. 6 cifre, per es. [Shift] + [1].

Confermare con [4].

Nel display appare:

Digitare il numero del codice della fine di max. 6 cifre, per es. [Shift] + [1] [0].

Confermare con [4].

da 000001 000010

Nel display appare:

inizio: fine: ESC Premendo il tasto [ع] viene eseguita la stampa di tutti i risultati del test memorizzati della serie di codici selezionati.

Dopo la stampa il fotometro torna al menù Modalità.

Annotazione:

Cancellare l'entrata premendo il tasto [ESC].

Per stampare i risultati del test dello stesso codice, digitare lo stesso codice di inizio e della fine. Per stampare tutti i risultati del test senza codice (codice uguale a 0) per il valore di inizio e della fine viene digitato uno zero [Shift] + [0].

Stampa dei risultati rilevati di un mètodo prescelto

Premere in sequenza i tasti [MODE], [Shift] + [2] [3].

Confermare con [4].

<stampare> >>30 Alcalinità-m 40 Alluminio T 60 Ammònio T

Nel display appare per es.:

Selezionare dall'elenco il mètodo desiderato o digitare direttamente il codice del mètodo.

Confermare con [4].

In caso di diversi mètodi effettuare una nuova scelta e confermare con il tasto [4].

<stampare> Mètodo 30 Alcalinità-m inizio: 🔟

Nel display appare per es.:

fine: ESC

Premendo il tasto [ها] viene eseguita la stampa di tutti i risultati del test memorizzati del mètodo selezionato.

Dopo la stampa il fotometro torna al menù Mode.

Parametri per la stampa

Premere in sequenza i tasti [MODE], [Shift] + [2] [9].

Confermare con [4].

<Param. di stampa>
2: Baud rate

Nel display appare:

fine: ESC

Per l'impostazione del Baudrate premere il tasto [Shift] + [2].

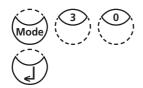
<Baud rate> è: 19200

selezionare: [▲] [▼]
memorizzare:
fine: ESC

Nel display appare:

Premendo i tasti freccia [▼] o [▲] selezionare il Baudrate desiderato. (1200, 2400, 4800, 9600, 14400, 19200)

Confermare con [4].


Terminare premendo il tasto [ESC].

Torna al menù Mode con il tasto [ESC].

Torna alla selezione del mètodo con il tasto [ESC].

2.4.4 Richiamo/cancellazione dei risultati rilevati memorizzati

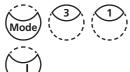
Richiamo di tutti i risultati rilevati memorizzati

Conformare l'inscrimente son []

<Memoria> mostra tutti i dati inizio: ↓ fine: ESC stampa: F3 stampa tutti: F2 $Confermare \ l'inserimento \ con \ [\ \ \ \ \ \,].$

Nel display appare:

Le serie di dati vengono visualizzate in sequenza cronologica, a partire dal risultato rilevato memorizzato per ultimo. Premendo il tasto [ع] vengono visualizzati tutti i risultati del test memorizzati nel periodo indicato.


Premere in sequenza i tasti [MODE], [Shift] + [3] [0].

- Con il tasto [F3] viene stampato il risultato visualizzato nel display.
- Con il tasto [F2] vengono stampati tutti i risultati.
- Terminare con il tasto [ESC].
- Premendo il tasto [▼] viene visualizzata la serie di dati successiva.
- Premendo il tasto [**A**] viene visualizzata la serie di dati precedente.

Se nella memoria non si trovano dati, nel display appare:

Nessun dato

Richiamo dei risultati rilevati memorizzati da una serie di date

Premere in sequenza i tasti [MODE], [Shift] + [3] [1].

Confermare con [.]].

<Memoria> in base alla data da AA-MM-GG

Nel display appare:

Digitare la data di inizio nella sequenza anno, mese, giorno per es.:

14 maggio 2009 = [Shift] + [0][9][0][5][1][4].

Confermare con [4].

Nel display appare:

Digitare la data della fine nella seguenza anno, mese, giorno per es.:

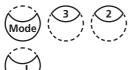
19 maggio 2009 = [Shift] + [0][9][0][5][1][9].

Confermare con [4].

da 14.05.2009 a 19.05.2009

inizio: 🔟 fine: ESC

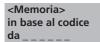
stampa: F3 stampa tutti: F2 Nel display appare:


- Premendo il tasto [] vengono visualizzati tutti i risultati del test memorizzati nel periodo indicato.
- Con il tasto [F3] viene stampato il risultato visualizzato nel display.
- Con il tasto [F2] vengono stampati tutti i risultati selezionati.
- Terminare con il tasto [ESC].

Annotazione:

Cancellare l'entrata premendo il tasto [ESC].

Per stampare solo i risultati del test di un giorno, indicare la stessa data di inizio e della fine.


Richiamo dei risultati rilevati memorizzati da una serie di codici

Premere in sequenza i tasti [MODE], [Shift] + [3] [2].

Confermare con [4].

Nel display appare:

Digitare il numero del codice di inizio di max. 6 cifre, per es. [Shift] + [1].

Confermare con [4].

Nel display appare:

Digitare il numero del codice della fine di max. 6 cifre, per es. [Shift] + [1] [0].

Confermare con [4].

da 000001 000010 inizio:

stampa: F3 stampa tutti: F2 Nel display appare:

- Premendo il tasto [4] vengono visualizzati tutti i risultati del test memorizzati dei codici selezionati
- Con il tasto [F3] viene stampato il risultato visualizzato nel display.
- Con il tasto [F2] vengono stampati tutti i risultati selezionati.
- Terminare con il tasto [ESC].

Annotazione:

Cancellare l'entrata premendo il tasto [ESC].

Per visualizzare solo i risultati del test dello stesso codice, digitare lo stesso codice di inizio e

Per visualizzare tutti i risultati del test senza codice (codice uguale a 0) per il valore di inizio e della fine viene digitato uno zero [Shift] + [0].

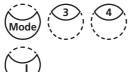
Richiamo dei risultati rilevati memorizzati di un mètodo selezionato

Premere in sequenza i tasti [MODE], [Shift] + [3] [3].

Confermare con [4].

<Memoria> >>30 Alcalinitá-m 40 Alluminio T 60 Ammònio T Nel display appare per es.:

Selezionare dall'elenco il mètodo desiderato o digitare direttamente il codice del mètodo.

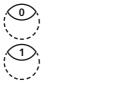

Confermare con [4].

In caso di diversi mètodi effettuare una nuova scelta e confermare con il tasto [4].

<Memoria> Mètodo 30 Alcalinitá-m inizio: ↓ fine: ESC stampa: F3 stampa tutti: F2 Nel display appare:

- Premendo il tasto [4] vengono visualizzati tutti i risultati del test memorizzati del mètodo selezionato.
- Con il tasto [F3] viene stampato il risultato visualizzato nel display.
- Con il tasto [F2] vengono stampati tutti i risultati selezionati.
- Terminare con il tasto [ESC].

Cancellazione dei risultati rilevati memorizzati



Premere in sequenza i tasti [MODE], [Shift] + [3] [4].

Confermare l'inserimento con [4].

Nel display appare:

- Premendo i tasti [Shift] + [0] i dati vengono mantenuti.
- Dopo aver premuto i tasti [Shift] + [1] appare la seguente domanda di conferma:

Per procedere con la cancellazione premere il tasto [4].

<Cancella dati> Cancella dati: ↓ Non cancellare: ESC

ATTENZIONE:

Vengono cancellati tutti i risultati rilevati memorizzati

oppure abbandonare il menù premendo il tasto [ESC] se i dati non devono essere cancellati.

Annotazione:

Vengono cancellati tutti i risultati rilevati memorizzati.

2.4.5 Regolazione

Metodo della durezza del calcio 191 – Regolare il bianco del metodo

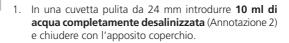
Premere in sequenza i tasti [MODE], [Shift] + [4] [0].

Confermare con [4].

<Regolazione>

1: M191 Ca Durezza 2 T 2: M191 canc. 0 regol.

3: M170 Fluoruro L


Nel display appare:

<Regolazione>
M191 Ca Durezza 2 T
Predisporre Zero
Premere ZERO

Premere i tasti [Shift] + [1].

Nel display appare:

- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- 3 Premere il tasto **ZERO**
- 4. Estrarre la cuvetta dal pozzetto di misurazione e svuotarla
- 5. Pipettare in un beaker 100 ml di acqua priva di calcare (nota 3. 4).
- In questi 100 ml aggiungere 10 compresse CALCIO H No. 1 direttamente dall'astuccio, schiacciarla con una bacchetta pulita e farla sciogliere completamente
- 7. Aggiungere **10 compresse CALCIO H No. 2** direttamente dall'astuccio, schiacciarla con una bacchetta pulita e farla sciogliere completamente.
- 8. Premere il tasto [4].

Attendere 2 minuti per il tempo di reazione.

Zero accettato Count-down 2:00 inizio: 🗸 Passato il tempo di reazione procedere nel modo seguente:

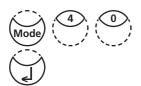
9. Risciacquare la cuvetta con la soluzione colorata e riempirla con guesta soluzione.

Predisporre Test Premere TEST

10. Premere il tasto TEST.

è memorizzato

Viene memorizzato il valore del bianco del metodo riferito al batch



Premere il tasto [4] per tornare alla modalità menù.

Annotazioni:

- Se si utilizzano batch nuovi di compresse CALCIO, al fine di ottimizzare i valori di misurazione, è necessario eseguire una nuova regolazione del bianco del metodo.
- 2. Acqua desalinizzata o acqua del rubinetto.
- Se non è disponibile acqua priva di calcare è possibile eseguire un mascheramento degli ioni di calcio tramite l'EDTA.
 Produzione: aggiungere e disciogliere 50 mg (punta della spatola) di EDTA in 100 ml di acqua.
- 4. E' necessario accertarsi che il volume del campione sia esattamente pari a 100 ml per la precisione del bianco del metodo.

Metodo della durezza del calcio 191 – Impostare il bianco del metodo al valore di fabbricazione

Premere in sequenza i tasti [MODE], [Shift] + [4] [0].

Confermare con [4].

<Regolazione>

1: M191 Ca Durezza 2 T 2: M191 canc. 0 regol.

3: M170 Fluoruro L

Nel display appare:

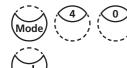
Premere i tasti [Shift] + [2].

<Regolazione> M191 Ca Durezza 2 T Reset ?

Sì: Shift + 1

No: Shift + 0

Nel display appare:



Premendo i tasti [Shift] + [0] il bianco del metodo permane inalterato.

Premendo i tasti [Shift] + [1] il bianco del metodo viene cancellato e impostare al valore di fabbricazione.

Lo strumento torna quindi nella modalità menù.

Fluoruro metodo 170

Premere in sequenza i tasti [MODE], [Shift] + [4] [0].

Confermare con [4].

<Regolazione>
1: M191 Ca Durezza 2 T

2: M191 canc. 0 regol.

3: M170 Fluoruro L

Nel display appare:

Premere i tasti [Shift] + [3].

<Regolazione>
170 Fluoruro L
ZERO: acqua desalin.
Premere ZERO

Nel display appare:

- In una cuvetta pulita da 24 mm introdurre esattamente 10 ml di acqua completamente desalinizzata e chiudere con l'apposito coperchio.
- 2. Porre la cuvetta nel pozzetto di misurazione. Posizione $\overline{\chi}$.
- 3. Premere il tasto **ZERO.**
- 4. Estrarre la cuvetta dal pozzetto di misurazione.
- Introdurre nei 10 ml di acqua completamente desalinizzata esattamente 2 ml di soluzione reagente SPADNS.

Attenzione: la cuvetta è colma fino al margine!

6. Chiudere la cuvetta con l'apposito coperchio e mescolare il contenuto capovolgendo la cuvetta stessa.

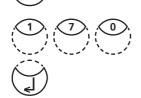
Zero accettato T1: 0 mg/l F Premere TEST

- Porre la cuvetta nel pozzetto di misurazione. Posizione √X.
- 8. Premere il tasto TEST.
- Estrarre la cuvetta dal pozzetto di misurazione. Pulire accuratamente la cuvetta ed il coperchio e riempirla con 10 ml di Fluorid Standard (concentrazione 1 mg/l F) precisi.
- 10. Aggiungere ai 10 ml di Fluorid Standard esattamente **2 ml di soluzione reagente SPADNS**.

Attenzione: la cuvetta è colma fino al margine!

 Porre la cuvetta nel pozzetto di misurazione. Posizione ∑.

T1 accettato T2: 1 mg/l F Premere TEST 12. Premere il tasto **TEST**.


Regolazione accettata

Nel display appare:

Confermare con il tasto [4].

Torna alla selezione del metodo con il tasto [ESC].

Selezionare il metodo Fluoruro con i tasti [Shift] + [1][7][0] e $[L_i]$.

Con la visualizzazione di un messaggio di errore ripetere la regolazione.

Annotazioni:

- 1. Utilizzando un nuovo batch di soluzione reagente SPADNS, è necessario eseguire una nuova regolazione. (cfr. Standard Methods 20th, 1998, APHA, AWWA, WEF 4500 F D., p. 4–82).
- 2. Il risultato dell'anàlisi dipende sostanzialmente dall'esatto volume del campione e del reagente, che deve essere dosato esclusivamente con una pipetta piena da 10ml e da 2 ml (classe A).

Impostazioni dell'operatore

Esecuzione:

- Viene utilizzato uno standard di concentrazione nota al posto del campione di acqua, come descritto nel metodo.
- Si suggerisce di utilizzare gli standard indicati nella letteratura specifica in proposito (DIN EN, ASTM, norme nazionali) e gli standard di liquidi della concentrazione nota disponibili nel commercio di settore.
- Il risultato del test può infine essere impostato sul valore nominale dello standard e memorizzato (vedi sotto).
- Con mètodi diversi può essere impostata esclusivamente la forma semplice, e cioè per es. con il metodo "Cloro con compresse" delle tre possibilità, "differenziato, libero e totale" per l'impostazione deve essere selezionata la variante "libero".
- Alcuni mètodi non possono essere impostati, ma tale operazione viene eseguita indirettamente tramite il metodo base. Vedi elenco nel prospetto.

Effetti:

- I mètodi impostati vengono resi riconoscibili tramite un nome del metodo rappresentato in modo inverso.
- Fatta eccezione per i mètodi 103, 110, 113, 111 e "Cloro (KI) HR" che devono essere impostati in modo indipendente, l'impostazione del metodo base 100 "Cloro libero con compresse" ha effetti su tutti gli altri mètodi DPD (compresse e reagente liquido). Vedi elenco nel prospetto.
- Per i mètodi, come per es. "Biossido di cloro oltre a cloro" l'impostazione del metodo base ha effetto sia sul valore del biossido di cloro che su quello del cloro.
- In caso di mètodi differenziati, per es. il rame (diff., libero, tot.) l'impostazione della variante "libero" ha anche effetti sulle altre determinazioni di questo metodo, quindi in questo esempio sul rame differenziato e totale.

Ripristino dell'impostazione:

Dopo aver cancellato la taratura dell'utente, è di nuovo attiva l'impostazione originaria effettuata dal produttore.

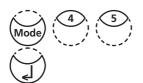
Annotazioni:

Il metodo Fluoruro non può essere impostato con la modalità 45, poiché qui è necessaria un'impostazione particolare (vedi modalità 40, Capitolo "Regolazione – Fluoruro metodo 170").

Prospetto

N.	Metodo	Campo consigliato per l'impostazione dell'operatore
30	Alcalinità m	50–150 mg/l CaCO ₃
31	Alcalinità m HR T	50–300 mg/l CaCO ₃
35	Alcalinità p	100–300 mg/l CaCO ₃
40	Alluminio T	0,1-0,2 mg/l Al
50	Alluminio PP	0,1-0,2 mg/l Al
60	Alluminio T	0,3-0,5 mg/l Al
62	Ammònio PP	0,3–0,5 mg/l N
65	Ammònio LR TT	1 mg/l N
66	Ammonium HR TT	20 mg/l N
280	Azoto tot LR	10 mg/l N
281	Azoto tot HR	50–100 mg/l N
120	Biossido di cloro T	Impostazione tramite il metodo base 100 Cloro libero
122	Biossido di cloro PP	Impostazione tramite il metodo base 110 Cloro libero
85	Boro T	1 mg/l B
80	Bromo T	Impostazione tramite il metodo base 100 Cloro libero
81	Bromo PP	Impostazione tramite il metodo base 110 Cloro libero
20	Capacità acido	1–3 mmol/l

```
N.
       Metodo
                                 Campo consigliato per l'impostazione dell'operatore
157
                                 0,1-0,3 mg/l CN
     Cianuro
100 Cloro T
                                 0,5-1,5 mg/l Cl<sub>2</sub>
103 Cloro HR T
                                 0,5-6 mg/l Cl<sub>2</sub>
                                 Impostazione tramite il metodo base 100 Cloro libero
101 Cloro L
110 Cloro PP
                                 0.5-1 ma/l Cl
113 Cloro MR PP
                                 0,5-1 mg/l Cl
111 Cloro HR PP
                                 4-5 mg/l Cl<sub>2</sub>
105 Cloro (KI) HR
                                 70-150 mg/l Cl<sub>2</sub>
90
       Cloruro
                                 10-20 mg/l Cl<sub>3</sub>
92
       Cloruro I
                                 10-15 mg/l Cl<sub>3</sub>
130 COD LR
                                 100 mg/l O<sub>3</sub>
131 COD MR
                                 500 mg/l O<sub>2</sub>
132 COD HR
                                 5 g/l O<sub>3</sub>
204 Colore
                                 Intervallo di esercizio
125 Cromo
                                 1 ma/l
160 CvA-TEST
                                 30-60 ma/l CvA
165 DEHA T
                                 200-400 µg/l DEHA
167 DEHA PP
                                 200 µg/l DEHA
190 Durezza, calcio
                                 100-200 mg/l CaCO<sub>3</sub>
191 Durezza, calcio
                                 100-200 mg/l CaCO<sub>3</sub>
200 Durezza, totale
                                 15-25 mg/l CaCO<sub>3</sub>
                                 Impostazione tramite il metodo base 200 Durezza, totale
201 Durezza, totale HR
220 Ferro T
                                 0.3-0.7 \text{ mg/l Fe}
222 Ferro PP
                                 0,1-2 mg/l Fe
223 Ferro TPTZ
                                 0,3-0,7 mg/lFe
224 Ferro (Fe in Mo) PP
                                 0.5-1.5 \text{ ma/lFe}
225 Ferro LR L
                                 0.5-1.5 \text{ ma/lFe}
226 Ferro LR 2 L
                                 1-15 mg/l Fe
227 Ferro HR L
                                 6-8 mg/l Fe
170 Fluoruro
                                 Impostazione a due punti con 0 e 1 mg/l F con modalità 40
320 Fosfato LR T
                                 1-3 mg/l PO
321 Fosfato HR T
                                 30-50 mg/l PO
323 Fosfato, orto PP
                                 0,1-2 mg/l PO,
324 Fosfato, orto KT
                                 3 mg/l PO<sub>4</sub>
327 Fosfato 1 C
                                 20-30 mg/l PO,
328 Fosfato 2 C
                                 1-3 mg/l PO,
325 Fosfato, idr. KT
                                 0,3-6 mg/l P
326 Fosfato, tot KT
                                 0,3-0,6 mg/L P
334 Fosfato LR L
                                 5-7 mg/l PO,
335 Fosfato HR L
                                 30-50 mg/l PO,
316 Fosfonato
                                 1-2 mg/l PO,
                                 Impostazione tramite il metodo base 100 Cloro libero
210 H,O, T
213 H<sub>2</sub>O<sub>2</sub> LR L
                                 20-30 mg/l H<sub>2</sub>O<sub>2</sub>
      H<sub>3</sub>O<sub>3</sub> HR L
                                 200-300 mg/l H<sub>3</sub>O<sub>3</sub>
214
205
      Idrazina P
                                 0,2-0,4 mg/l N<sub>2</sub>H<sub>4</sub>
206
      Idrazina L
                                 0,2-0,4 mg/l N<sub>2</sub>H<sub>4</sub>
207 Idrazina C
                                 0,2-0,4 mg/l N<sub>2</sub>H<sub>4</sub>
215 Iodio
                                 Impostazione tramite il metodo base 100 Cloro libero
212 Sodio ipoclorito T
                                 8%
240 Manganese T
                                 1-2 ma/l Mn
242 Manganese PP
                                 0,1-0,4 mg/l Mn
```


N. 243 245 250 251 252 254	Metodo Manganese HR PP Manganese L Molibdato T Molibdato LR PP Molibdato HR PP Molibdato HR L	Campo consigliato per l'impostazione dell'operatore 4–6 mg/l Mn 2–3 mg/l Mn 5–15 mg/l Mo 1,5–2,5 mg/l Mo 10–30 mg/l Mo 50–70 mg/l Mo
257 260 265 270 272 290	Nickel T Nitrato LR Nitrato KT Nitrito T Nitrito LR PP Ossigeno, attivo	6–8 mg/l Ni 0,5–0,7 mg/l N 10 mg/l N 0,2–0,3 mg/l N 0,1–0,2 mg/l N Impostazione tramite il metodo base 100 Cloro libero
300 338 329 330 331 332 70 340 150	Ossigeno Ozono (DPD) Polyacrylate L pH LR pH T pH L pH HR PHMB Potassio T Rame T	Possibile regolazione dello strumento di misurazione dell'ossigeno Impostazione tramite il metodo base 100 Cloro libero 15-20 mg/l Acido poliacrilico 2'100 sale di sodio 6,0-6,6 7,6-8,0 7,6-8,0 8,6-9,0 15-30 mg/l X
151 153 350 351 352 353 360 360 370 365	Rame L Rame PP Silice Silice LR Silice HR Silice L Solfato PP Solfato PP Solfito Solfuro T	2–3 mg/l Cu 0,5–1,5 mg/l Cu 0,5–1,5 mg/l SiO ₂ 1 mg/l SiO ₂ 50 mg/l SiO ₂ 4–6 mg/l SiO ₂ 50 mg/l SO ₄ 50 mg/l SO ₄ 3–4 mg/l SO ₃ 0,2–0,4 mg/l S
384 376 377 378 380 381 386 388 390 400 405	Solidio i Sostanze solide sospese Tensioattivi TT, anionici Tensioattivi TT, non ionici TOC LR TT TOC HR TT Torbidità Triazole PP Urea Zinco Zinco L	Intervallo di esercizio 0,5–1,5 mg/l SDSA

Memorizzazione delle impostazioni dell'utente

100 Cloro T 0.02-6 mg/l Cl2 0.90 mg/l libero Cl2

332

Eseguire la misurazione con uno standard di concentrazione nota come descritto al di sotto del mètodo desiderato.

Con la visualizzazione del risultato del test premere di seguito i tasti [MODE], [Shift] + [4] [5] e [\square].

<Imposta. operat.> 100 Cloro T 0.02-6 mg/l Cl2 0.90 mg/l lib. Cl2 su: ↑, giù: ↓ memorizza: ↓ Nel display appare:

Premendo una volta il tasto freccia $[\blacktriangle]$ il risultato visualizzato aumenta.

Premendo una volta il tasto freccia [▼] il risultato visualizzato diminuisce.

Tenere premuti i tasti finché il valore visualizzato non coincide con il valore di riferimento dello standard impiegato.
Confermare il valore impostato premendo il tasto [4].

Premendo il tasto [ESC] il processo di impostazione viene annullato senza memorizzare il nuovo fattore.

Fattore impostato memorizzato

100 Cloro T 0.02-6 mg/l Cl2 1.00 mg/l libero Cl2 Nel display appare:

Appare infine il risultato del test calcolato con la nuova impostazione ed il nome del mètodo viene visualizzato in modo inverso.

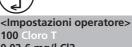
Con la visualizzazione della richiesta dello zero premere di

seguito i tasti [MODE], [Shift] + [4] [6] e [4].

Cancellazione delle impostazioni dell'operatore

L'impostazione dell'operatore può essere cancellata esclusivamente per i mètodi nei quali anch'essa può essere esequita.

100 Cloro T 0.02-6 mg/l Cl2


Richiamare il mètodo desiderato.

Predisporre Zero Premere ZERO

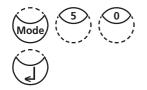
0.02-6 mg/l Cl2 Annulla importaz. dell' operatore? SI: 1, NO: 0 Nel display appare:

- Premendo i tasti [Shift] + [1] l'impostazione dell'operatore viene cancellata.
- Premendo i tasti [Shift] + [0] l'impostazione dell'operatore permane.

333

L'apparecchio torna infine alla richiesta dello zero.

MD600 11f 02/2024


2.4.6 Funzioni di laboratorio

Consiglio di operatore ridotto => "Profi Mode" (modalità professionale)

Questa funzione può essere usata per le anàlisi di routine con tutti i campioni di un mètodo. Fondamentalmente nei mètodi sono riportate le seguenti informazioni:

- a) mètodo
- b) campo di misurazione
- c) data e ora
- d) differenziazione dei risultati rilevati
- e) guida per l'operatore dettagliata
- f) rispetto dei tempi di reazione.

Se è attiva la modalità professionale, il fotometro si limita ad un minimo di guida per l'operatore. I punti d, e ed f vengono a mancare.

Premere in sequenza i tasti [MODE], [Shift] + [5] [0].

Confermare l'inserimento con [4].

<Profi Mode> corrente:
ON: 1 OFF: 0

Nel display appare:

- Premendo i tasti [Shift] + [0] la modalità professionale viene disattivata.
- Premendo i tasti [Shift] + [1] la modalità professionale viene attivata.

attivata

Nel display appare:

oppure

disattivata

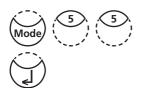
Confermare l'inserimento con [هـ].

Annotazione:

Nella modalità professionale è possibile memorizzare i risultati. Per i risultati memorizzati sul display appare anche: "Modalità professionale".

L'impostazione selezionata permane anche dopo lo spegnimento dell'apparecchio, finché non viene effettuata una nuova impostazione.

One Time Zero (OTZ)


Il OneTimeZero è disponibile per tutti i metodi in cui la taratura a zero si svolge in una cuvetta rotonda di 24 mm con campione di acqua (vedi Capitolo 1.1 Schema metodi).

Il OneTimeZero può essere utilizzato se vengono eseguiti diversi test in condizioni di prova identiche con lo stesso campione di acqua. Cambiando metodo non è più necessario eseguire una nuova taratura a zero; è possibile procedere direttamente con il test.

Con OneTimeZero attivato, quando per la prima volta viene selezionato un metodo che consente l'OTZ, lo strumento richiede una taratura a zero con "preparazione OT-Zero". Lo svolgimento avviene come descritto nel metodo. Questa taratura a zero viene memorizzata fino allo spegnimento del fotometro ed utilizzata per tutti i metodi che possono impiegare OTZ.

Se necessario, sarà comunque possibile procedere con una nuova taratura a zero in qualsiasi momento, premendo il tasto [Zero].

Attivazione/disattivazione "Funzione OTZ":

Premere in sequenza i tasti [MODE], [Shift] + [5][5].

Confermare l'inserimento con [ا].

<OneTimeZero> corrente: ON: 1 OFF: 0

Nel display appare:

• Premendo i tasti [Shift] + [0] viene disattivata l'OTZ.

• Premendo i tasti [Shift] + [1] viene attivata l'OTZ.

attivata

Nel display appare:

oppure

disattivata

Dopo la stampa il fotometro torna al menù Mode.

Nota:

La precisione specificata vale per i valori di misurazione con una propria taratura a zero (il One Time Zero è disattivata).

2.4.7 Funzioni operatore

Elenco mètodi dell'operatore

L'elenco dei mètodi da selezionare, al momento della fornitura, mostra sempre tutti i mètodi disponibili. L'operatore ha, inoltre, la possibilità di adattare tale elenco alle proprie necessità.

In seguito ad un aggiornamento vengono automaticamente aggiunti nuovi mètodi all'elenco dell'operatore.

Per motivi tecnici legati al software, nell'elenco mètodi specifico dell'operatore deve essere attivato almeno un mètodo. L'apparecchio attiva quindi eventualmente in modo automatico il primo mètodo dell'elenco. Deve essere perciò attivato un altro mètodo prima di disattivare il mètodo attivato in automatico.

Elaborazione dell'elenco mètodi dell'operatore

Premere in sequenza i tasti [MODE], [Shift] + [6] [0].

Confermare con [4].

<Lista mètodi> selezionato: • commuta: F2 memorizza: annulla: ESC Nel display appare:

Premere il tasto [] per iniziare.

Appare l'elenco mètodi completo.

<Lista mètodi>
>> 50 • Alcalinità-m
40 • Alluminio
50 • Ammònio

I mètodi con un punto [•] dietro al numero del mètodo appaiono nell'elenco di selezione dei mètodi, i mètodi senza punto no.

>> 30 • Alcalinità-m

Premendo i tasti [A] oppure [V] selezionare il mètodo desiderato dell'elenco indicato.

Con il tasto [F2] si passa da "attivo" [•] a "non attivo" [].

>> 30 Alcalinità-m

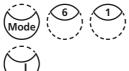
>> 30 • Alcalinità-m

Selezionare, impostare ecc. il mètodo successivo finché tutti i mètodi presentano l'impostazione desiderata.

Confermare con [4] per salvare.

336

Premendo il tasto [ESC] l'inserimento può essere annullato in qualsiasi momento senza assunzione delle modifiche.


SUGGERIMENTO:

Se nell'elenco di selezione dei mètodi vengono visualizzati solo pochi mètodi, è sensato eseguire dapprima la modalità 62 "Elenco mètodi tutti off" e quindi elaborare l'elenco con la modalità 60 "Elenco mètodi". Devono essere quindi contrassegnati con il "punto" [•] solo i mètodi che devono apparire successivamente nell'apposito elenco di selezione.

I nomi dei polinomi (1-25) e delle concentrazioni dell'operatore (1-10) appaiono tutti nell'elenco dei mètodi, anche se questi non sono programmati. Non è possibile attivare i mètodi non programmati!

Attivazione di tutti i mètodi dell'elenco di selezione dell'operatore

Con questa funzione di modalità vengono attivati tutti i mètodi e al momento dell'accensione dell'apparecchio appare un elenco di selezione completo dei mètodi.

Premere in sequenza i tasti [MODE], [Shift] + [6] [1].

Confermare con [4].

<Attivare ListaM> **Attiva** tutti i mètodi Si: 1, No: 0

Nel display appare:

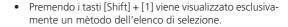
- Premendo i tasti [Shift] + [1] vengono visualizzati tutti i mètodi dell'elenco.
- Premendo i tasti [Shift] + [0] rimane l'elenco presente.

L'apparecchio torna infine al menù Mode.

Disattivazione di tutti i mètodi dell'elenco di selezione dell'operatore

Per motivi tecnici legati al software, nell'elenco mètodi specifico dell'operatore deve essere attivato almeno un mètodo. L'apparecchio attiva quindi automaticamente il primo mètodo dell'elenco.

Premere in sequenza i tasti [MODE], [Shift] + [6] [2].



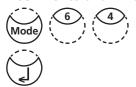
Confermare con [4].

<Dissatt. ListaM> Dissativa tutti i mètodi Si: 1, No: 0

Nel display appare:

• Premendo i tasti [Shift] + [0] rimane l'elenco presente.

L'apparecchio torna infine al menù Mode.


MD600 11f 02/2024

Mètodo di concentrazione dell'operatore

E' possibile inserire e memorizzare un massimo di 10 concentrazioni dell'operatore. Sono necessari da 2 a 14 standard di concentrazioni note ed un valore zero (acqua desalinizzata oppure bianco). Gli standard devono essere misurati con una concentrazione crescente, con una colorazione che varia dalla più chiara alla più scura. I limiti per "Underrange" e "Overrange" sono definiti con –2600 mAbs* e +2600 mAbs*. Dopo aver avviato un mètodo tarato, sul display, come intervallo vengono visualizzate le concentrazioni dello standard minimo e di quello massimo rilevati. L'intervallo operativo deve essere compreso in tale intervallo per ottenere risultati il più possibile accurati.

*1000 mAbs = 1 Abs = 1 E (display)

Inserimento di un mètodo di concentrazione:

Premere in sequenza i tasti [MODE], [Shift] + [6] [4].

Confermare con [4].

< Conc. utente> scegli numero: ____ (850-859)

Modalità di inserimento:

Nel display appare:

Digitare il numero di un mètodo compreso nell'intervallo 850-859 utilizzando i tasti numerici,

per es.: [Shift] + [8] [5] [0]

Confermare con [4].

sovrascr. met. conc.? Si: 1 No: 0

selez. lungh. d'onda: 1: 530 nm 4: 430 nm 2: 560 nm 5: 580 nm 3: 610 nm 6: 660 nm

Annotazione:

Se il numero indicato è già stato utilizzato per memorizzare un mètodo di concentrazione, il display visualizza la domanda:

- torna alla richiesta del numero del mètodo con i tasti [Shift] + [0] o [ESC].
- Procedere premendo i tasti [Shift] + [1].

Selezionare la lunghezza d'onda desiderata utilizzando i tasti numerici, per es.: [Shift] + [2] per 560 nm.

Selezionare l'unità desiderata premendo i tasti freccia [▲] oppure [▼].

scegli unità: >> mg/l g/l mmol/l mAbs μg/l E A

Confermare con [4].

scegli risoluzione

1: 1

2: 0.1

3: 0.01 4: 0.001

Selezionare la risoluzione desiderata utilizzando i tasti numerici, per es.: [Shift] +[3] per 0,01.

Nota:

Adeguare la risoluzione desiderata in conformità a quanto indicato:

Intervallo	risoluzione max.
0,0009,999	0,001
10,0099,99	0,01
100,0 999,9	0,1
10009999	1

Modalità di misurazione con standard di concentrazione nota:

Nel display appare:

Predisporre zero e premere [Zero].

Nota:

Utilizzare acqua desalinizzata o bianco.

Nel display appare:

Indicare la concentrazione del primo standard; per es.: [Shift] + [0][,][0][5]

- Tornare indietro con il tasto [ESC].
- Ripristinare l'inserimento con il tasto [F1].

Confermare con [4].

Nel display appare:

< Conc. utente> Predisporre Zero Premere ZERO

< Conc. utente>
Zero accettato

S1: +_

⊿ | ESC | F1

< Conc. utente>
S1: 0.05 mg/l
predisporre
Premere TEST

S1: 0.05 mg/l

mAbs: 12 _«

S2: +_____

Predisporre il primo standard e premere [Test].

Nel display appare il valore indicato ed il valore di estinzione rilevato. Confermare con [ع].

Digitare la concentrazione del secondo standard; es. [Shift] +[0][,][1]

- Tornare indietro con il tasto [ESC].
- Ripristinare l'inserimento con il tasto [F1].

Confermare con [4].

S2: 0.10 mg/l predisporre Premere TEST

Predisporre il secondo standard e premere [Test].

S2: 0.10 mg/l mAbs: 150

Nel display appare il valore indicato ed il valore di estinzione rilevato. Confermare con [4].

S2 accettato
S3: +_____

_| | ESC | F1 | Store

Nota:

- Per misurare ulteriori standard, procedere come descritto in precedenza.
- E' necessario misurare almeno 2 standard.
- E' possibile misurare un massimo di 14 standard (da S1 a S14).

Se è stato misurato il numero di standard desiderato o il numero massimo di 14 standard, premere il tasto [Store].

Nel display appare:

Il fotometro torna automaticamente nella modalità menù. Ora il mètodo di concentrazione è memorizzato nello strumento, ed è possibile selezionare il mètodo digitando il numero oppure tramite l'apposita lista di selezione.

CONSIGLIO:

Annotarsi i dati relativi ad una concentrazione dell'operatore, poiché in caso di totale interruzione della corrente (per es. in caso di sostituzione della batteria) tutti i dati della concentrazione andranno persi e sarà necessario reinserirli.

E' possibile trasmettere i dati ad un PC con la modalità 67 (è necessario il modulo a raggi infrarossi).

Polinomio dell'operatore

E' possibile inserire e memorizzare un massimo di 25 polinomi dell'operatore. Il programma consente all'operatore di utilizzare polinomi fino al 5° grado:

$$y = A + Bx + Cx^2 + Dx^3 + Ex^4 + Fx^5$$

Se è necessario un polinomio di grado inferiore gli altri coefficienti vengono impostati a zero (0); per es.: per un polinomio di 2° grado sono D, E, F = 0.

I valori dei coefficienti A, B, C, D, E, F devono essere inseriti sotto forma di notazione scientifica con un massimo di 6 decimali, per es.: 121,35673 = 1,213567E+02

Inserimento di un polinomio dell'operatore:

Premere in sequenza i tasti [MODE], [Shift] + [6] [5].

Confermare con [4].

< Polinomio utente> scegli numero: ____ (800-824) Nel display appare:

Digitare il numero di un mètodo compreso nell'intervallo 800-824 utilizzando i tasti numerici, per es.: [Shift] + [8] [0] [0]

No: 0

sovrascrivi polin.?

selez. lungh. d'onda:

1: 530 nm 4: 430 nm 2: 560 nm 5: 580 nm

3: 610 nm 6: 660 nm

< Polinomio utente> $V = A + Bx + Cx^2 + Dx^3 +$ Ex4+Fx5

A: +

A: 1.32 E+

intervallo di misura Min E: + Max E: +

Confermare con [4].

Annotazione:

Se il numero indicato è già stato utilizzato per memorizzare un polinomio, il display visualizza la domanda:

- torna alla richiesta del numero del mètodo con il tasto [0] o [ESC].
- Procedere premendo i tasti [Shift] + [1].

Selezionare la lunghezza d'onda desiderata utilizzando i tasti numerici, per es.: [Shift] + [2] per 560 nm.

- Selezionare fra il simbolo più e il simbolo meno premendoi tasti freccia [▲] oppure [▼].
- Inserire i dati del coefficiente A con decimali. per es.: [Shift] + [1][.][3][2]
- Ripristinare l'inserimento con il tasto [F1].

Confermare con [4].

- Selezionare fra il simbolo più e il simbolo meno premendo i tasti freccia [▲] oppure [▼].
- Inserire l'esponente del coefficiente A, per es.: [Shift] + [3]

Confermare con [4].

I dati degli altri coefficienti vengono richiesti in seguenza (B. C. D. E e F).

Annotazione:

Digitando zero [0] per il valore del coefficiente, viene automaticamente omesso l'inserimento dell'esponente.

Confermare ogni inserimento con [4].

Indicare i limiti nell'intervallo compreso fra – 2600 e + 2600 mAbs.

- Selezionare fra il simbolo più e il simbolo meno premendo i tasti freccia [▲] oppure [▼].
- Indicare il limite superiore (Max) e quello inferiore (Min) nell'unità di assorbimento (E = estinzione).

Confermare ogni inserimento con [4].

scegli unità: >> mg/l g/l mmol/l mAbs µg/l E A

Selezionare l'unità desiderata premendo i tasti freccia $[\blacktriangle]$ oppure $[\blacktriangledown]$.

Confermare con [4].

scegli risoluzione

%

1: 1 2: 0.1 3: 0.01 4: 0.001

Selezionare la risoluzione desiderata utilizzando i tasti numerici, per es.: [3] per 0,01.

Nota:

Adeguare la risoluzione desiderata in conformità a quanto indicato:

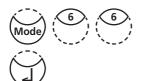
Intervallo	risoluzione max.
0,0009,999	0,001
10,0099,99	0,01
100,0 999,9	0,1
10009999	1

é memorizzato

Nel display appare:

Il fotometro torna automaticamente nella modalità menù.

Ora il polinomio è memorizzato nello strumento, ed è possibile selezionare il mètodo digitando il numero oppure tramite l'apposita lista di selezione.


CONSIGLIO:

Annotarsi tutti i dati relativi ad un polinomio dell'operatore, poiché in caso di totale interruzione della corrente (per es. in caso di sostituzione della batteria) tutti i dati del polinomio andranno persi e sarà necessario reinserirli.

E' possibile trasmettere i dati ad un PC con la modalità 67.

Cancellazione del mètodo operatore (polinomio o concentrazione)

In linea di massima, è possibile sovrascrivere ogni mètodo dell'operatore. Un mètodo dell'operatore esistente (polinomio o concentrazione) può essere tuttavia anche cancellato, e scomparire dall'elenco di selezione del mètodo:

Premere in sequenza i tasti [MODE], [Shift] + [6] [6].

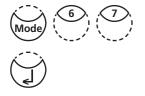
Confermare con [ع].

<Cancella m. ut.> scegli numero: _____ (800-824), (850-859) Nel display appare:

Inserire il numero del mètodo dell'operatore da cancellare (nell'intervallo da 800 a 824 oppure da 850 a 859), per es.: [Shift] + [8][0][0]

Confermare con [4].

M800 Cancellare? Si: 1, No: 0 Nel display appare la domanda:



- Cancellare il mètodo dell'operatore prescelto premendo i tasti [Shift] + [1].
- Non cancellare il mètodo dell'operatore prescelto premendo i tasti [Shift] + [0].

Il fotometro torna automaticamente nella modalità menù.

Stampa dei dati dei mètodi dell'operatore (Polinomio & Concentrazione)

Con questa funzione della modalità è possibile stampare tutti i dati inseriti dei polinomi dell'operatore e dei mètodi di concentrazione memorizzati e trasferirli ad un PC con Hyperterminal.

Premere in sequenza i tasti [MODE], [Shift] + [6] [7].

Confermare con [\downarrow].

Nel display appare:

Premendo il tasto [al] tutti i dati dei polinomi e della concentrazione memorizzati (per es. lunghezza d'onda, unità, ...) vengono stampati o trasferiti ad un PC.

M800 M803 ...

Nel display appare per es.:

Dopo l'emissione dei dati il fotometro torna automaticamente alla modalità menù

Inizializzazione del sistema dei mètodi dell'operatore (Polinomio & Concentrazione)

Con i mètodi dell'operatore memorizzati la perdita di corrente provoca dati incoerenti (sconnessi). Il sistema dei mètodi dell'operatore deve essere inizializzato con questa funzione della modalità per riportarlo ad uno stato predefinito.

Attenzione:

Con l'inizializzazione tutti i polinomi ed i mètodi della concentrazione memorizzati vengono cancellati!

Premere in sequenza i tasti [MODE], [Shift] + [6] [9].

Confermare con [4].

Inizio:

Nel display appare:

Confermare con [4].

Inizializzazione? Si: 1, No: 0

Nel display appare la domanda:

• Per avviare l'inizializzazione premere i tasti [Shift] + [1].

Per annullare l'inizializzazione premere i tasti [Shift] + [0].

Il fotometro torna automaticamente nella modalità menù.

2.4.8 Funzioni speciali

Indice di Langelier (Bilanciamento dell'acqua)

Per il calcolo dell'indice di Langelier si devono effetuare le determinazioni seguenti:

- Valore pH
- Temperatura
- Durezza del calcio
- Alcalinita-m
- TDS

I valori delle misurazioni vengono annotati e inseriti nel programma come qui di seguito descritto per il calcolo dell'indice di saturazione di Langelier.

Calcolo dell'indice di saturazione Langelier

+____

Durezza del calcio 50<=CH<=1000

+_ _ _ _

Alcalinità totale 5<=TA<=800

+_ _ _ .

total dissol. solids 0<=TDS<=6000

+_ _ _ _

Con la modalità 71 (vedi sotto) l'unità di misura della temperatura può essere impostata su gradi Celsius oppure su gradi Fahrenheit.

Premere in sequenza i tasti [MODE], [Shift] + [7] [0].

Confermare con [4].

Nel display appare:

Digitare il valore per la temperatura (T) in un ambito compreso fra 3 e 53°C e confermare con [4]. Qualora sia stata scelta l'unità di misura °F, per la temperatura è necessario digitare un valore compreso fra 37 e 128°F.

Nel display appare:

Digitare il valore per la durezza del calcio (CH) in un ambito compreso fra 50 e 1000 mg/l $CaCO_3$ e confermare con [\downarrow].

Nel display appare:

Digitare il valore per l'alcalinità totale (TA) in un ambito compreso fra 5 e 800 mg/l CaCO₃ e confermare con [ع].

La denominazione alcalinità totale corrisponde a alcalinitàm

Nel display appare:

Digitare il valore per TDS (total dissolved solids = somma dei materiali disciolti) in un ambito compreso fra 0 e 6000 mg/l e confermare con [4].

Valore pH 0<=pH<=12

<Langelier> Indice di saturazione Langelier 0,00

Nel display appare:

Digitare il valore pH in un ambito compreso fra 0 e 12 e confermare con [4].

Nel display appare l'indice di saturazione Langelier.

Premendo il tasto [2] viene riavviata la modalità.

Premendo il tasto [ESC] l'apparecchio torna al menù Modalità.

Istruzioni per l'uso:

Valori al di fuori dell'ambito possibile: Esempi:

CH<=1000 mg/l CaCO3! Il valore digitato è troppo alto.

CH>=50 mg/l CaCO3! Il valore digitato è troppo basso.

> Confermare il messaggio con [4] e digitare un valore nell'ambito indicato.

Esc 🕹

Impostazione dell'unità di misura della temperatura

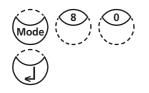
L'indicazione della temperatura per il calcolo dell'indice di saturazione Langelier può essere effettuata in gradi Celsius o gradi Fahrenheit. A tale scopo è necessario eseguire (una volta) la seguente impostazione:

Premere in sequenza i tasti [MODE], [Shift] + [7] [1].

Confermare con [4].

<Temperatura> 1: °C 2: °F

Nel display appare:



Premendo i tasti [Shift] + [1] viene selezionata l'unità di misura Celsius.

Premendo i tasti [Shift] + [2] viene selezionata l'unità di misura Fahrenheit. Infine, l'apparecchio ritorna al menù Modalità

2.4.9 Regolazioni di base dello strumento 2

Impostazione contrasto display

Premere in sequenza i tasti [MODE], [Shift] + [8] [0].

Confermare l'inserimento con [L].

<Contrasto LCD>

1 1

10 ↓

Nel display appare:

1 1

Premendo il tasto [**A**] il contrasto del display LCD viene aumentata di una unità.

Premendo il tasto [V] il contrasto del display LCD viene ridotta di una unità.

Premendo il tasto [Store] il contrasto del display LCD viene aumentata di dieci unità

Premendo il tasto [Test] il contrasto del display LCD viene ridotta di dieci unità.

Confermare con [4].

Impostazione della luminosità del display

Premere in sequenza i tasti [MODE] [8] [1].

Confermare con [4].

<Luminosità LCD>

1 ↓

Nel display appare:

Premendo il tasto [A] la luminosità del display LCD viene aumentata di una unità.

Premendo il tasto [▼] la luminosità del display LCD viene ridotta di una unità.

10↑ 10↓

Premendo il tasto [Store] la luminosità del display LCD viene aumentata di dieci unità.

Test

Premendo il tasto [Test] la luminosità del display LCD viene ridotta di dieci unità.

0...254:200

Nel display appare:

La luminosità può essere impostata ad un valore compreso fra 0 e 254 unità. Qui: 200.

Confermare con [4].

2.4.10 Funzioni/service speciale degli strumenti

Informazioni sul fotometro

Premere in sequenza i tasti [MODE], [Shift] + [9] [1].

Confermare l'inserimento con [4].

<Info appar.>
Software:
V012.002.3.003.003
Alimentaz. di rete:
si
avanti: ▼, fine: Esc

Questa modalità fornisce informazioni in merito al software in uso, al numero di misurazioni eseguite ed allo spazio libero in memoria.

Premendo il tasto [▼] viene visualizzato il numero di test esequiti e la memoria libera.

<Info appar.> Numero test: 67 spazi liberi:

999

fine: Esc

Torna al menù Mode con il tasto [ESC].

2.5 Trasmissione dati (modulo IRIM)

Per la stampa di dati correnti o memorizzati o per la trasmissione ad un PC è necessario il modulo IRIM opzionale disponibile.

2.5.1 Stampa dei dati

Oltre al modulo IRIM, per stampare i dati è necessaria la stampante qui di seguito indicata collegata all'interfaccia USB del modulo: HP Deskjet 6940.

2.5.2 Trasmissione dati ad un PC

Per la trasmissione dei risultati di misurazione ad un PC, oltre al modulo IRIM, è necessario un apposito programma incluso nella fornitura del modulo. La procedura esatta è riportata nelle istruzioni per l'uso del modulo IRIM, nonché nel nostro sito internet nella pagina dedicata al download

2.5.3 Aggiornamenti via Internet

Per l'aggiornamento è necessario il cavo di collegamento opzionale disponibile con gruppo elettronico integrato. Lo strumento viene collegato con l'interfaccia seriale del computer. Eventuali aggiornamenti di nuove versioni di software e lingue sono possibili tramite Internet.

La procedura esatta è descritta su Internet nella nostra Homepage nella parte dedicata ai download (non appena disponibile).

Per l'apertura e la chiusura del vano batterie vedere il Capitolo 2.1.3.!

Nota

Prima di un aggiornamento, per motivi di sicurezza, è opportuno stampare i risultati rilevati memorizzati o trasmetterli ad un PC.

In caso di interruzione del processo di aggiornamento (a causa di un'interruzione del collegamento, esaurimento delle batterie, ecc.) lo strumento non è più funzionante (nessuna risposta del display). Solo con una nuova completa trasmissione dei dati lo strumento sarà di nuovo funzionante

Parte 3 Appendice

3.1 Apertura della confezione

Al momento dell'apertura della confezione verificare, sulla base delle presenti informazioni, se tutte le componenti sono complete ed integre.

Per eventuali reclami rivolgersi immediatamente al proprio distributore di zona.

3.2 Contenuto della confezione

Il contenuto standard della confezione per il MD 600 contiene:

1 fotometro con custodia in plastica
4 batterie (la minicellula AA/LR6)
1 istruzioni per l'uso
1 dichiarazione di garanzia
1 Certificate of compliance
1 adattatore per cuvette rotonde 16 mm \varnothing
1 adattatore per cuvette rotonde 13 mm \varnothing
3 cuvette rotonde con coperchio, altezza 48 mm, Ø 24 mm
3 cuvette rotonde con coperchio, altezza 90 mm, Ø 16 mm
1 spazzolino per la pulizia
1 bacchetta in plastica

Per i dettagli inerenti le serie di reagenti disponibili, il modulo IRIM ed il cavo di collegamento per un aggiornamento del software fare riferimento al nostro catalogo generale nella versione più aggiornata.

3.3 Libero per motivi tecnici

3.4 Dati tecnici

Display grafico con retro-illuminazione

Interfaccia Interfaccia IR per la trasmissione dei dati di misurazione

Connettore RJ45 per gli aggiornamenti Internet

(vedi Capitolo 2.5.3)

Dispositivo ottico Diodi luminosi - Fotosensore - Disposizione per coppie nel

pozzetto di misurazione trasparente.

Intervalli lunghezza d'onda: $\lambda 1 = 530 \text{ nm IF } \Delta \lambda = 5 \text{ nm}$ $\lambda 2 = 560 \text{ nm IF } \Delta \lambda = 5 \text{ nm}$ $\lambda 3 = 610 \text{ nm IF } \Delta \lambda = 6 \text{ nm}$ $\lambda 4 = 430 \text{ nm IF } \Delta \lambda = 5 \text{ nm}$ $\lambda 5 = 580 \text{ nm IF } \Delta \lambda = 5 \text{ nm}$ $\lambda 6 = 660 \text{ nm IF } \Delta \lambda = 5 \text{ nm}$

IF = filtro interferenza

Correttezza

lunghezza d'onda

± 1 nm

Precisione fotometrica* $2\% FS (T = 20^{\circ}C - 25^{\circ}C)$

Risoluzione fotometrica 0,005 A

range di misura dell'assorbanza -2600 - 2600

Modo di protezione conforme IP 68 (1 h, 0,1 m)

Funzionamento Tastiera a membrana tattile resistente agli acidi ed ai

solventi con segnale acustico di conferma tramite

beeper incassato.

Alimentazione: 4 batterie (la minicellula AA/LR6)

Durata: durata di ca. 26 h o 3500 test

Spegnimento automatico: 20 minuti dopo l'attivazione dell'ultimo tasto, segnale

acustico per 30 secondi prima dello spegnimento

Dimensioni: ca. 210 x 95 x 45 mm (apparecchio)

ca. 395 x 295 x 106 mm (custodia)

Peso (apparecchio): ca. 450 g (compreso l'alimentatore e gli accumulatori)

Condizioni di esercizio: 5 – 40°C con umidità relativa max 30 – 90%

(senza condensa)

Selezione lingua: tedesco, inglese, francese, spagnolo, polacco, portoghese;

altre lingue con aggiornamenti via Internet

Memoria: ca. 1000 serie di dati

Il produttore si riserva il diritto di modifiche tecniche.

La precisione del sistema specificata è garantita solo con l'uso di ns. reagenti originali.

^{*} misurata con soluzioni standard

3.5 Abbreviazioni

Abbreviazione	Definizione	
°C	gradi Celsius	
°F	gradi Fahrenheit °F = (°C x 1.8) + 32	
°dH	gradi durezza tedesca	
°fH	gradi durezza francese	
°eH	gradi durezza inglese	
°aH	gradi durezza americana	
Abs	unità di assorbimento (≙ estinzione E) 1000 mAbs = 1 Abs ≙ 1 A ≜ 1 E	
μg/l	microgrammi per litro (= ppb)	
mg/l	milligrammi per litro (= ppm)	
g/l	grammi per litro (= ppth)	
KI	Kaliumiodid	
Ks4.3	capacità acida fino ad un valore pH pari a 4,3	
TDS	totale solidi disciolti (total dissolved solids)	
LR	range di misurazione basso (low range)	
MR	range di misurazione medio (medium range)	
HR	range di misurazione alto (high range)	
С	reagenti della CHEMetrics [©]	
L	reagente liquido (liquid)	
Р	reagente in polvere	
PP	polvere bustina	
Т	compressa	
TT	test in cuvetta (Tube Test)	
DEHA	N,N-dietilidrossilammina	
DPD	dietil-p-fenilendiammina	
DTNB	reagente Ellmans	
PAN	1-(2-piridilazo)-2-naftolo	
PDMAB	paradimetilamminobenzaldeide	
PPST	3-(2-piridil)-5,6-di(4-fenilsolfonil)1,2,4-triazina	
TBPE	Tetrabromophenolphthalein Ethyl Ester Potassium Salt	
TPTZ	2,4,6-tri-(2-piridil)-1,3,5-triazina	
Acqua desalinizzata	acqua completamente demineralizzata (è possibile utilizzare anche acqua distillata)	

3.6 Cosa fare se...

3.6.1 Indicazioni per l'utente visualizzate sul display / messaggi di errore

Segnalazione	Possibile causa	Provvedimento
Overrange	Campo di misurazione superato.	Se possibile diluire il campione o utilizzare un altro campo di misurazione.
	Torbidità nel campione.	Filtrare il campione.
	Penetrazione luce nel.	E' presente l'anello di tenuta sul coperchio della cuvetta? Ripetere la misurazione con l'anello di tenuta inserito.
Underrange	Campo di misurazione al di sotto del limite.	Indicare il risultato rilevato con x mg/l ridotto x = limite inferiore campo di misurazione; se necessario impiegare altri mètodi di anàlisi.
Sistema di memorizzazione esecuzione mo- dalità errori 34	Alimentazione corrente per sistema di memorizzazione venuta a mancare o non presente.	Impiegare o sostituire batteria. al litio. Cancellare i dati con la modalità 34.
Segnalazione batteria		
Datteria	Segnale d'allarme ogni 3 minuti Segnale d'allarme ogni 12 secondi	La capacità della pila è sufficiente ancora per poco, sostituire la pila
	Segnale d'allarme, l'apparecchio si spegne automaticamente	sostituire la pila
Imp Overrange E4	L' impostazione del valore nominale nell'impostazione dell'operatore è possibile solo	Verifica delle cause dell'errore per es.: errore dell'operatore (corretta modalità di procedere, rispetto del
Imp Underrange E4	entro limiti predeterminanti. Que- sti sono stati risultati al di sopra o al di sotto.	tempo di reazione) standard (pesata, diluizione, invecchiamento, valore pH) Ripetizione dell'impostazione.
Overrange E1	Con l'impostazione sul valore nominale il limite superiore o infe-	Esecuzione del test con uno, standard di concentrazione più
Underrange E1	riore del campo di misurazione è risultato al di sopra o al di sotto.	elevata / ridotta.
E40 L'impostazione impossibile	Se il risultato del test viene visua- lizzato con Overrange/Underran- ge, non è possibile l'impostazione da parte dell'utente.	Esecuzione del test con uno standard di concentrazione più elevata / ridotta.

Segnalazione	Possibile causa	Provvedimento
no si acceta Zero	troppa, troppo poca incidenza luminosa difettoso	E' stata dimenticata la cuvetta per lo zero? Impiegare la cuvetta per lo zero, ripetere la misurazione. Pulire il pozzetto di misurazione. Ripetere l'azzeramento.
???	Il calcolo di un valore non è possibile (per es.: cloro combinato).	La misurazione è stata eseguita correttamente? Se no – ripetere
Esempio 1 0,60 mg/l Cl lib. ??? Cl comb. 0,59 mg/l Cl tot.		Esempio: 1 I valori indicati sono diversi nell'ordine di grandezza, ma identici in considerazione delle tolleranze dei valori rilevati. Il cloro combinato, in questo caso non è presente.
Underrange ??? CI comb. 1,59 mg/l CI tot.		Esempio: 2 Il valore rilevato per il cloro libero è al di fuori del campo di misurazione, quindi il valore per il cloro combinato non può es- sere calcolato dall'apparecchio. Poiché non è presente cloro libero misurabile, si può dedurre che la parte di cloro combinato è uguale al contenuto di cloro totale.
0,60 mg/l Cl lib. ??? Cl comb. Overrange		Esempio: 3 Il valore di misurazione per il cloro totale è al di fuori del campo di misurazione, quindi il valore per il cloro combinato non può essere calcolato dall'apparecchio. In questo caso è necessario diluire il campione per rilevare il contenuto di cloro totale.
Error absorbance p.e.: T2>T1	durante la calibrazione dell fluoro, per esempio scambio di T1 e T2	Ripetere calibrazione

3.6.2 Ulteriori problemi e relative soluzioni

Problem a	Possibile causa	Soluzione
Il risultato è differente rispetto al valore previsto.	Forma di citazione diversa da quella desiderata.	Premere i tasti freccia per selezionare la forma di citazione desiderata.
Nessuna differenziazione: per es. con il cloro manca la possibilità di scelta dif- ferenziata, libera o totale.	E' attiva la modalità professionale.	Disattivare la modalità professionale con Mode 50.
Non appare il count- down automatico per il tempo di sviluppo del colore.	Count-down disattivato e/o modalità professionale attivata.	Attivare il count-down con Mode 13 e disattivare la modalità professionale con Mode 50.
Il mètodo sembra non essere presente.	Il mètodo nell'elenco mètodi dell'operatore è disattivato.	Attivare il mètodo desiderato con Mode 60.

3.7 Dichiarazione di conformità CE

Konformitätserklärung mit gefordertem Inhalt gemäß EN ISO/IEC 17050-1 Supplier's declaration of conformity in accordance with EN ISO/IEC 17050-1

EU-Konformitätserklärung / EU-Declaration of Conformity

Dokument-Nr. / Monat.Jahr:
Document No. / Month.Year:

2 / 12.2017

Für das nachfolgend bezeichnete Erzeugnis / For the following mentioned product

Bezeichnung / Name, Modellnummer / Model No.	MD 600 AL 400 PM 600 PM620 , 214020, 4214020, 214060, 214065
---	--

wird hiermit erklärt, dass es den grundlegenden Anforderungen entspricht, die in den nachfolgend bezeichneten Harmonisierungsrechtsvorschriften festgelegt sind: / it is hereby declared that it complies with the essential requirements which are determined in the following harmonisation rules:

Richtlinie 2014/30/EU des Europäischen Parlaments und des Rates vom 26. Februar 2014 zur Harmonisierung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit .

Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility.

RICHTLINIE 2011/65/EU DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 8. Juni 2011 zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten (Neufassung)

DIRECTIVE 2011/65/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast)

Angabe der einschlägigen harmonisierten Normen, die zugrunde gelegt wurden, oder Angabe der Spezifikationen, für die die Konformität erklärt wird: / Information of relevant harmonised standards and specifications on which the conformity is based:

relevant namionised standards and specimentors on which the comorning is based.			
Fundstelle / Reference	Ausgabedatum/	Titel / Title	
·	Edition	·	
Harmosisierte Normen / Harmonised S	tandards		
DIN EN 61326-1	2013-07	Elektrische Mess-, Steuer-, Regel- und Laborgeräte - EMV-Anforderungen - Teil 1: Allgemeine Anforderungen (IEC 61326-1:2012)	
DIN EN 50581	2013-02	Technische Dokumentation zur Beurteilung von Elektro- und Elektronikgeräten hinsichtlich der Beschränkung gefährlicher Stoffe; Deutsche Fassung EN 50581:2012	
Weitere angewandte technische Spezifikationen Journal of the EU)	(z.B. nicht im EU-Amts	blatt veröffentlicht) / Further applied technical specifications (e.g. not published in the Official	

Diese Erklärung wird verantwortlich für den Hersteller oder seinem Bevollmächtigten / This declaration is made for and on behalf of the manufacturer or his representatives

-1	
Name:	Tintometer GmbH
Anschrift / Address:	Schleefstr. 8-12, 44287 Dortmund, Germany

abgegeben durch / declared by

Name, Vorname / First name:	Dr. Grabert, Elmar
Funktion / Function:	Technische Leitung / Director Technology

Bevollmächtigte Person im Sinne des Anhangs II Nr. 1. A. Nr. 2, 2006/42/EG für die Zusammenstellung der technischen Unterlagen / Authorized person for compilation of technical documents on behalf of Annex II No. 1. A. No. 2, 2006/42/EC:

Name:	Corinna Meier
Anschrift / Address:	c/o Tintometer GmbH, Schleefstr. 8-12, 44287 Dortmund

Dortmund 19.12.2017

ppalle-pub-

Ort, Datum / Place and date of issue

Rechtsgültige Unterschrift / Authorized signature

Diese Erklärung bescheinigt die Übereinstimmung mit den so genannten Harmonisierungsrechtsvorschriften, beinhaltet jedoch keine Zusicherung von Eigenschaften. / This declaration certifies the conformity to the specified directives but contains no assurance of properties.

Zusatzangaben / Additional details:

Diese Erklärung gilt für alle Exemplare, die nach den entsprechenden Fertigungszeichnungen - die Bestandteil der technischen Unterlagen sind - hergesteilt werden. Weitere Angaben über die Einhaltung obiger Fundstellen erhälbli die begefrigte Konformalisaussage unterstützende Begleinboumentation. (This statement is wall for all copies wilnich were namufactured in accordance with the technical drawings which are part of the technical documentation. Now declarable south or might provide the desire beneformed references includent bet supporting documentation. Now and declarable south or might provide the development of the supporting documentation. Now and the supporting documentation were declarable south or might provide the supporting documentation.

Doc file: MD 600 AL 400 PM 600 PM620 DokNr 2 12 2017

Tintometer GmbH

Lovibond® Water Testing Schleefstraße 8-12 44287 Dortmund Tel.: +49 (0)231/94510-0 sales@lovibond.com www.lovibond.com Germany

Tintometer China

9F, SOHO II C. No.9 Guanghualu, Chaoyang District, Beijing, 100020 Customer Care China Tel.: 4009021628 Tel.: +86 10 85251111 Ext. 330 Fax: +86 10 85251001 chinaoffice@tintometer.com www.lovibond.com

China

The Tintometer Limited

Lovibond House Sun Rise Way
Amesbury, SP4 7GR
Tel.: +44 (0)1980 664800
Fax: +44 (0)1980 625412 water.sales@lovibond.uk www.lovibond.com

Tintometer South East Asia

Unit B-3-12, BBT One Boulevard, Lebuh Nilam 2, Bandar Bukit Tinggi, Klang, 41200, Selangor D.E Tel.: +60 (0)3 3325 2285/6 Fax: +60 (0)3 3325 2287 lovibond.asia@lovibond.com www.lovibond.com

Malaysia

Tintometer Inc.

6456 Parkland Drive Sarasota, FL 34243 Tel: 941.756.6410 Fax: 941.727.9654 sales@lovibond.us www.lovibond.us

USA

Tintometer Brazil

Caixa Postal: 271 CEP: 13201-970 Jundiaí – SP Tel.: +55 (11) 3230-6410 sales@lovibond.us www.lovibond.com.br

Brazil

Tintometer Spain Postbox: 24047 08080 Barcelona Tel.: +34 661 606 770 sales@tintometer.es www.lovibond.com

Spain

Tintometer Indien Pvt. Ltd.

Door No: 7-2-C-14, 2nd, 3rd & 4th Floor Sanathnagar Industrial Estate, Hyderabad: 500018, Telangana Tel: +91 (0) 40 23883300 Toll Free: 1 800 599 3891/ 3892 indiaoffice@lovibond.in www.lovibondwater.in

India

