

XIIK HR TT M132

200 - 15000 mg/L CODb)

Hr

Dichromate / H₂SO₄

Специфическая информация об инструменте

Тест может быть выполнен на следующих устройствах. Кроме того, указывается требуемая кювета и диапазон поглощения фотометра.

Приборы	Кювета	λ	Диапазон изме- рений
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect	ø 16 mm	610 nm	200 - 15000 mg/L COD ^{b)}
SpectroDirect, XD 7000, XD 7500	ø 16 mm	602 nm	200 - 15000 mg/L COD ^{b)}

Материал

Необходимый материал (частично необязательный):

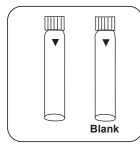
Реактивы	Упаковочная единица	Номер заказа
XΠK HR/25	25 Шт.	2420722
ХПК HR/25, без содержания ртути	25 Шт.	2420712
ΧΠΚ HR/150	150 Шт.	2420727

Также необходимы следующие принадлежности.

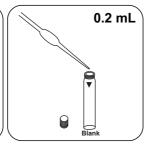
Принадлежности	Упаковочная единица	Номер заказа
Термореактор RD 125	1 Шт.	2418940
пипетка, 200 µl	1 Шт.	365042
Автоматическая пипетка, 1-5 мл	1 Шт.	365032

Область применения

- Обработка сырой воды
- Обработка сточных вод


Примечания

- Нулевая кювета стабильна, когда хранится в темноте. Нулевая кювета и тестовая кювета должны быть из одной партии.
- 2. Кюветы не должны нагреваться в кюветной шахте. Наиболее стабильные измеряемые величины определяются, когда кюветы остаются на ночь.
- Для проб с ХПК менее 1 г/л рекомендуется использовать набор кювет ХПК МR, а для проб, где менее 0,1 г/л - набор кювет ХПК LR, если требуется более высокая точность.



Выполнение определения XПК HR с кюветным тестом Vario

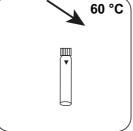
Выберите метод в устройстве.

Подготовьте две **кюветы с реагентами** . Отметьте одну кювету как нулевую.

Добавьте **0.2 мл полно- стью деминерализо- ванной воды** в нулевую кювету.

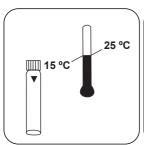
Добавьте **0.2 мл пробы** в кювету для проб.

Закройте кювету(ы).

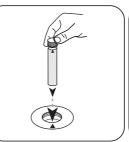

Перемешайте содержимое, осторожно покачивая. Внимание: Генерация тепла!

Растворите (содержимое) кюветы в течение 120 минут при температуре 150 °С в термореакторе.

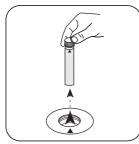
Извлеките кювету из термореактора. (Внимание: кювета горячая!)



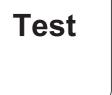
Дайте кювете (кюветам) остыть приблизительно до 60°C.



Перемешайте содержимое покачиванием.


Дайте кювете остыть до комнатной температуры, затем проведите измерение.

Поместите **нулевую кювету** в измерительную шахту. Обращайте внимание на позиционирование.


Нажмите клавишу НОЛЬ.

Извлеките **кювету** из измерительной шахты.

Поместите кювету для проб в измерительную шахту. Обращайте внимание на позиционирование.

Нажмите клавишу **TECT** (XD: **CTAPT**).

На дисплее отображается результат в формате g/L Химическое потребление кислорода / XПК (XD: mg/L Химическое потребление кислорода / XПК).

Химический метод

Dichromate / H₂SO₄

Приложение

Функция калибровки для фотометров сторонних производителей

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm	
а	-3.10235 • 10 ⁺²	
b	2.1173 • 10+4	
С	1.64139 • 10 ⁺²	
d		
е		
f		

Нарушения

Постоянные нарушения

• В исключительных случаях ингредиенты, для которых окислительная способность реагента недостаточна, могут привести к снижению результатов.

Исключаемые нарушения

- Чтобы избежать неправильных измерений из-за взвешенных частиц, важно аккуратно вставлять кюветы в измерительную шахту, так как при этом методе образуется осадок на дне кюветы.
- Перед проведением анализа наружные стенки кювет должны быть чистыми и сухими. Отпечатки пальцев или капли воды на кювете приводят к неправильным измерениям.
- В стандартном исполнении хлорид мешает от концентрации 10000 мг / л. В безртутной версии нарушение зависит от концентрации хлоридов и ХПК. Концентрации хлорида 100 мг / л могут здесь вызвать значительные нарушения. Чтобы удалить высокие концентрации хлоридов в образцах ХПК, см. Метод М130 COD LR TT.

Проверка метода

Предел обнаружения	112.81 mg/L
Предел детерминации	338.43 mg/L
Конечное значение диапазона измерений	15 g/L
Восприимчивость	21,164 mg/L / Abs
Доверительная область	70.48 mg/L
Среднеквадратическое откло- нение процесса	27.84 mg/L
Коэффициент вариации метода	0.37 %

Соответствует

ISO 15705:2002

Согласно

ISO 15705:2002

 $^{^{\}text{ы}}$ Для ХПК (150 °C), ТОС (120 °C) и определения общего содержания - хрома, - фосфата, - азота, (100 °C) необходим реактор