

pH-Wert HR T

M332

8,0 - 9,6 pH

Thymol Blue

Instrumentspezifische Informationen

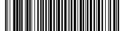
Der Test kann auf den folgenden Geräten durchgeführt werden. Zusätzlich sind die benötigte Küvette und der Absorptionsbereich der Photometer angegeben.

Geräte	Küvette	λ	Messbereich
MD 100, MD 600, MD 610, MD 640, MultiDirect, PM 620,	ø 24 mm	560 nm	8,0 - 9,6 pH
PM 630, XD 7000, XD 7500			

Material

Benötigtes Material (zum Teil optional):

Reagenzien	Form/Menge	Bestell-Nr.
Thymolblau Photometer	Tablette / 100	515710BT
Thymolblau Photometer	Tablette / 250	515711BT

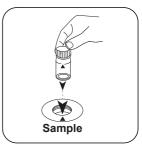

Anwendungsbereich

- Kesselwasser
- Beckenwasserkontrolle
- Rohwasserbehandlung

Anmerkungen

- Für die photometrische Bestimmung sind nur THYMOLBLUE Tabletten mit schwarzem Folienaufdruck zu verwenden, die mit dem Begriff PHOTOMETER gekennzeichnet sind.
- 2. Die Genauigkeit von pH-Werten durch die kolorimetrische Bestimmung ist von verschiedenen Randbedingungen (Pufferkapazität der Probe, Salzgehalt usw.) abhängig.

Durchführung der Bestimmung pH-Wert mit Tablette


Die Methode im Gerät auswählen.

Für diese Methode muss bei folgenden Geräten nicht jedes mal eine ZERO-Messung durchgeführt werden: XD 7000, XD 7500

24-mm-Küvette mit 10 mL Küvette(n) verschließen. Probe füllen.

Die Probenküvette in den Messschacht stellen. Positionierung beachten.

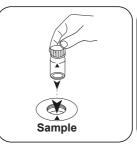
Taste **ZERO** drücken.

Küvette aus dem Messschacht nehmen.

Bei Geräten, die keine ZERO-Messung erfordern, hier beginnen.

Eine THYMOLBLUE PHOTOMETER Tablette zugeben.

Tablette(n) unter leichter Drehung zerdrücken.



Küvette(n) verschließen.

Tablette(n) durch Umschwenken lösen.

Die **Probenküvette** in den Messschacht stellen. Positionierung beachten.

Test

Taste **TEST** (XD: **START**) drücken.

In der Anzeige erscheint das Ergebnis als pH-Wert.

Chemische Methode

Thymol Blue

Appendix

Kalibrierfunktion für Photometer von Fremdherstellern

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	7.35421 • 10+0	7.35421 • 10 ⁺⁰
b	2.35059 • 10+0	5.05377 • 10 ⁺⁰
С	-1.31655 • 10 ⁺⁰	-6.08575 • 10 ⁺⁰
d	3.4837 • 10 ⁻¹	3.46223 • 10⁺0
е		
f		

Störungen

Permanente Störungen

 pH-Werte unter 8,0 und über 9,6 können zu Ergebnissen innerhalb des Messbereiches führen. Es wird ein Plausibilitätstest (pH-Meter) empfohlen.

Ausschließbare Störungen

Salzfehler: Korrektur des Messwertes (durchschnittliche Werte) für Proben mit einem Salzgehalt von:

Indikator	Salzgehalt der Pr	Salzgehalt der Probe			
Thymolblau	1 molar -0,22	2 molar -0,29	3 molar -0,34		
Die Worte von Person und Deuglas (1026) beziehen eich auf die Verwendung von Clark					

Die Werte von Parson und Douglas (1926) beziehen sich auf die Verwendung von Clark und Lubs Puffern. 1 Mol NaCl = 58,4 g/L = 5,8 %

Literaturverweise

Colorimetric Chemical Analytical Methods, 9th Edition, London