

 Chlorine L
 M101

 0.02 - 4.0 mg/L Cl₂ a)
 CL6

 DPD

Instrument specific information

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

Instrument Type	Cuvette	λ	Measuring Range
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 620, PM 630	ø 24 mm	530 nm	0.02 - 4.0 mg/L Cl ₂ ^{a)}
SpectroDirect	ø 24 mm	510 nm	0.02 - 3 mg/L Cl ₂ ^{a)}
XD 7000, XD 7500	ø 24 mm	510 nm	0.02 - 4.0 mg/L Cl ₂ a)

Material

Required material (partly optional):

Reagents	Packaging Unit	Part Number
DPD 1 Buffer Solution, Blue Bottle	15 mL	471010
DPD 1 Buffer Solution	100 mL	471011
DPD 1 Buffer Solution	1 pc.	471016
DPD 1 Reagent Solution, Green Bottle	15 mL	471020
DPD 1 Reagent Solution	100 mL	471021
DPD 1 Reagent Solution	1 pc.	471026
DPD 3 Solution, Red Bottle	15 mL	471030
DPD 3 Solution	100 mL	471031
DPD 3 Solution	1 pc.	471036
DPD Reagent Set	1 pc.	471056

Available Standards

Title	Packaging Unit	Part Number
ValidCheck Chlorine 1,5 mg/l	1 pc.	48105510

Application List

- · Waste Water Treatment
- · Disinfection Control
- · Boiler Water
- · Cooling Water
- Raw Water Treatment
- · Pool Water Control
- · Drinking Water Treatment

Sampling

- When preparing the sample, Chlorine outgassing, e.g. through the pipette or shaking, must be avoided.
- 2. The analysis must take place immediately after taking the sample.

Preparation

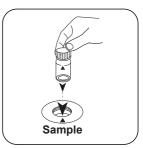
- Cleaning of vials:
 - As many household cleaners (e.g. dishwasher detergent) contain reducing substances, this can lead to lower results with the determination of Chlorine. To avoid measurement errors, the glassware used should be free of chlorine consumption. To achieve this, all glassware should be placed in a sodium hypochlorite solution (0.1 g/L) for one hour and then rinsed thoroughly with deionised water.
- For individual testing of free and total Chlorine, the use of different sets of glassware is recommended (EN ISO 7393-2, 5.3)
- The DPD colour development is carried out at a pH value of 6.2 to 6.5. The
 reagents therefore contain a buffer for the pH adjustment. Strong alkaline or acidic
 water samples must therefore be adjusted between pH 6 and pH 7 before the
 analysis (use 0.5 mol/l Sulphuric acid or 1 mol/l Sodium hydroxide).

Notes

- After use, ensure the cuvettes are once again closed with the respective samecoloured screw caps.
- Reagent sets are to be stored in the cool at +6 °C to +10 °C.

Determination of free chlorine with liquid reagent

Select the method on the device.


In addition, choose the test: free

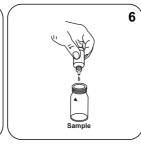
For this method, a ZERO measurement does not have to be carried out every time on the following devices: XD 7000, XD 7500

Fill 24 mm vial with 10 mL sample.

Place sample vial in the sample chamber. Pay attention to the positioning.

Press the **ZERO** button.

Remove the vial from the sample chamber.



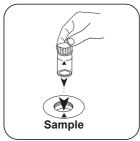
Empty vial.

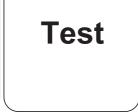

For devices that require no ZERO measurement, start here.

Hold cuvettes vertically and add equal drops by pressing slowly.

Add 6 drops DPD 1 Buffer Add 2 drops DPD Solution to the sample vial.

1 Reagent Solution to the sample vial.


Fill up vial with **sample** to the **10 mL mark**.


Close vial(s).

Invert several times to mix the contents.

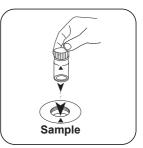
Place **sample vial** in the sample chamber. Pay attention to the positioning.

Press the **TEST** (XD: **START**)button.

The result in mg/L free chlorine appears on the display.

Determination of totale Chlorine with liquid reagent

Select the method on the device.


In addition, choose the test: total

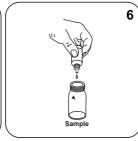
For this method, a ZERO measurement does not have to be carried out every time on the following devices: XD 7000, XD 7500

Fill 24 mm vial with 10 mL sample.

Place sample vial in the sample chamber. Pay attention to the positioning.

Press the **ZERO** button.

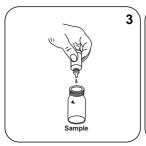
Remove the vial from the sample chamber.



Empty vial.

For devices that require no ZERO measurement, start here.

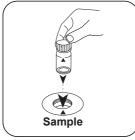
Hold cuvettes vertically and add equal drops by pressing slowly.

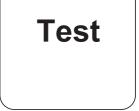


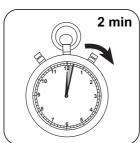
Add 6 drops DPD 1 Buffer Add 2 drops DPD Solution to the sample vial.

1 Reagent Solution to the sample vial.

Add 3 drops DPD 3 Solution to the sample vial.


Fill up vial with **sample** to the **10 mL mark**.


Close vial(s).


Invert several times to mix the contents.

Place **sample vial** in the sample chamber. Pay attention to the positioning.

Press the **TEST** (XD: **START**)button.

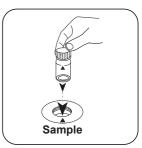
Wait for 2 minute(s) reaction time.

Once the reaction period is finished, the measurement takes place automatically.

The result in mg/L total Chlorine appears on the display.

Determination of Chlorine differentiated with liquid reagent

Select the method on the device.


In addition, choose the test: differentiated

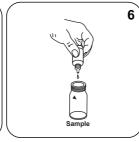
For this method, a ZERO measurement does not have to be carried out every time on the following devices: XD 7000, XD 7500

Fill 24 mm vial with 10 mL sample.

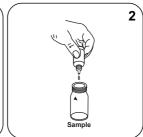
Place sample vial in the sample chamber. Pay attention to the positioning.

Press the **ZERO** button.

Remove the vial from the sample chamber.



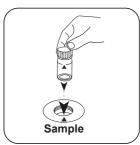
Empty vial.


For devices that require no ZERO measurement, start here.

Hold cuvettes vertically and add equal drops by pressing slowly.

Add 6 drops DPD 1 Buffer Add 2 drops DPD Solution to the sample vial.

1 Reagent Solution to the sample vial.


Fill up vial with **sample** to the **10 mL mark**.

Close vial(s).

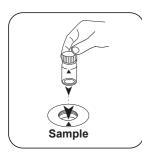
Invert several times to mix the contents.

Place **sample vial** in the sample chamber. Pay attention to the positioning.

Press the **TEST** (XD: **START**)button.

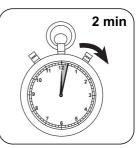
Remove the vial from the sample chamber.

Add 3 drops DPD 3 Solution to the sample vial.



Close vial(s).

Invert several times to mix the contents.



Place **sample vial** in the sample chamber. Pay attention to the positioning.

Test

Press the **TEST** (XD: **START**)button.

Wait for 2 minute(s) reaction time.

Once the reaction period is finished, the measurement takes place automatically.

The result in mg/L free chlorine, mg/l gebundenes Chor, mg/l total chlorine appears on the display.

Chemical Method

DPD

Appendix

Calibration function for 3rd-party photometers

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 24 mm	□ 10 mm
а	-4.53212 • 10 ⁻²	-4.53212 • 10 ⁻²
b	1.78637 • 10⁺⁰	3.8407 • 10+0
С	-1.14952 • 10 ⁻¹	-5.31366 • 10 ⁻¹
d	1.21371 • 10 ⁻¹	1.20623 • 10+0
е		
f		

Interferences

Persistant Interferences

· All oxidising agents in the samples react like chlorine, which leads to higher results.

Removeable Interferences

- · Interference from Copper and Iron (III) are eliminated by the addition of EDTA.
- Concentrations above 4 mg/L Chlorine, in the event of using fluid reagents, can lead
 to results within the measuring range of up to 0 mg/L. In this case, the sample must
 be diluted with chlorine-free water. 10 ml of the diluted sample should be mixed with
 the reagent and the measurement taken again (plausibility test).

Interference	from / [mg/L]
CrO ₄ ²⁻	0,01
MnO ₂	0,01

Conformity

EN ISO 7393-2

a) determination of free, combined and total